
Handling Data using
Regular Expressions

Lecture #4 - COMP 364
January 11, 2010, updated 2012
Derek Ruths

Source: xkcd

Friday, 20 January, 12

Pipelines

• The | operator will take the output of a command and send it to another
command

• curl http://en.wikipedia.org/wiki/Pipeline_(Unix) | head -n 10

• cat /usr/share/dict/words | less

• cat *.fasta | grep AAA

• tail and head can be combined together with a pipeline!

Friday, 20 January, 12

Regular Expressions: Motivation

• Create a data set from a subset of a data file

• Extract protein interactions for one organism from the STRING database

• Count specific items in a data set

• How many genes code for ribosomal proteins in the human genome?

• Extract data from a file

• Get all the gene locations from an NCBI genome file

All of these tasks involve selecting a subset of entries
from a larger (textual) data set.

Friday, 20 January, 12

• Purpose: precisely define a class of words/character sequences that have
some parts that “look the same”

• Words containing the string “ba”

• Words that start with a capital letter

• Character sequences containing only the characters A, C, T, and G

• We have already seen simple regular expressions: wildcards (* and ?)

Regular expressions

Friday, 20 January, 12

egrep: selecting lines from files

• Select all lines containing a specific regular expression:

• egrep “<regular expression>” <file to select lines from>

• Count the number of lines containing a specific regular expression:

• egrep -c “<regular expression>” <file to select lines from>

• egrep -c “[[:alnum]:]*[ba][[:alnum:]]*” words.txt - all words containing “ba”

• egrep “[ACGT]{5,}” e_coli.txt - all sequences of ACTG longer than 5 characters

Friday, 20 January, 12

The process of writing a regular expression

• The process has three steps:

1. Knowing what it is you want to match and how it might appear in the text

2. Writing a pattern to describe what you want to match.

3. Testing the pattern to see what it matches

Friday, 20 January, 12

Regular Expressions (in grep)

• Specifying a specific string:

• egrep “hello” foo.txt - find all lines containing the word “hello”

• Specifying a variable position: “.” and bracketed expressions (“[...]”)

• egrep “hs00.” foo.txt - find all lines containing the string “hs00<anything>”

• egrep “hs00[0123456789]” foo.txt - find all lines containing the string “hs00#”

• egrep “hs00[0-9]” foo.txt - shorter way of writing the above

• egrep “hs00[^0-9]” foo.txt - find all lines containing the string “hs00<anything
but a number>”

• Exercises

• Find all lines in foo.txt containing the string “hs00<alphabetical character>”

• Find all lines in foo.txt containing the string “hs00<alphanumeric characters>”

Friday, 20 January, 12

Character classes

• Specified by the brackets [], a character class is a regular expression that
matches exactly one character, and the possibilities for that character are
specified in the brackets.

• For example, to match “What” and “what”, a good regular expression would
be “[Ww]hat”, which says that the first character can be either ‘W’ or ‘w’ (but
not both!) and that the following characters must be exactly “hat”

• Other examples: hs00[0-9], [ACGT]+, COMP[34][56]4

Friday, 20 January, 12

Backslash magic

• “.” means “anything”... how do we specify that we want a period?

• “[“ is the beginning of a variable position... how do we specify that we want a
left square brace?

• “-” indicates a range of characters... how do we specify that we want a dash?

When in doubt, backslash the character!

Friday, 20 January, 12

Repetition operators

• ? - the preceding item is optional and matched at most once

• * - the preceding item will be matched zero or more times

• + - the preceding item will be matched one or more times

• {n} - the preceding item is matched exactly n times

• {n,} - the preceding item is matched n or more times

• {n,m} - the preceding item is matched at least n times, but not more than m
times.

Friday, 20 January, 12

Regular expressions:
specifying longer variable regions

• What if I wanted to find all sequences in which there were several variable
positions?

• Find all lines containing an email address:

• egrep “[A-Za-z0-9.-]+@[A-Za-z0-9.-]+\.[A-Za-z]+” emails.txt

• Find all lines containing DNA sequences longer than 5 nucleotides:

• egrep “[ACTG]{6,}” genome.txt

Friday, 20 January, 12

Grouping regular expressions

• Parentheses group expressions: repetition operators can act on these groups

• (TA)+A{3,} = TATA box

• The “|” character indicates an “or” - either expression can match

• N[^P](S|T)[^P] = N-glycosylation site motif

Friday, 20 January, 12

Exercises

• Write a regular expression for each of the following:

• A telephone number

• A telephone number with optional dashes

• A telephone number with an optional extension

• A sequence of DNA containing an exon (ensure that the coding
component has a correct coding region)

Friday, 20 January, 12

Useful shortcuts

• [:digit:] = 0-9

• [:alnum:] = A-Za-z0-9

• [:alpha:] = A-Za-z

• [:blank:] = tab or space

• [:punct:] = punctuation symbols

• [:space:] = any whitespace

• [:graph:] = anything EXCEPT whitespace

• [:upper:] = A-Z

• [:lower:] = a-z

Friday, 20 January, 12

Exercises

• A telephone number

• A UNIX path

• The scientific name of an organism

Friday, 20 January, 12

Anchors

• ^ = the beginning of a line

• $ = the end of a line

• What do these regular expressions correspond to?

• ^(Hello|Greetings) [[:upper:]][[:lower:]]+!

• ^(100|[1-9][[:digit:]]|[[:digit:]])[[:space:]](T|F)[[:space:]][[:alpha:]]+$

Friday, 20 January, 12

