
Python conventions
COMP 364 - Lecture 28
April 2nd, 2012
Mathieu Perreault
Trees are blossoming near the Eiffel Tower in Paris, as temperatures warm up, March 16, 2012. (Joel Saget/AFP/Getty Images) #

Monday, 2 April, 12

http://www.boston.com/bigpicture/2012/03/signs_of_spring_2012.html#photo19
http://www.boston.com/bigpicture/2012/03/signs_of_spring_2012.html#photo19

Announcements

• Final exam will be on Lectures 15-27 (includes Python)

• Written part on April 11th 2012

• Lab part on April 13th, 2012

• Review on Wednesday with the TA (you can ask as many
questions as you want!)

• I will send him a few mock questions.

Monday, 2 April, 12

What we know in Python

• We know a lot of data types (name a few?)

• We saw how to make Python programs (one file)

• We saw how to call functions on specific objects (e.g. strings)

• Today:

• Making your own functions

• Putting code in other files and importing it.

Monday, 2 April, 12

Making your own functions

• Making your own functions is advantageous

• Makes code easier to read

• Reduce redundancy

• As soon as you end up writing the same portion of code two or
more times, consider making it into a function.

• Can you think of procedures you’ve had to write multiple times
in the same program?

Monday, 2 April, 12

Anatomy of a function

• Anatomy of a function

• def	
 functionName(arg1,	
 arg2,...):
	
 	
 #	
 code	
 here
	
 	
 return	
 something

• Arguments: because your function will be created with
repeatable behavior in mind, you need some way to control it’s
behaviour so that it doesn’t always produce the same thing

• Example of a function:
	
 	
 def	
 read_csv_line(line):
	
 	
 	
 	
 splitLine	
 =	
 line.strip().split(‘,’)
	
 	
 	
 	
 return	
 splitLine

Monday, 2 April, 12

How to call your function

• A function needs to be defined before it is used

def	
 read_csv_line(myline):
	
 	
 	
 	
 splitLine	
 =	
 myline.strip().split(‘,’)
	
 	
 	
 	
 return	
 splitLine

• Then, later in code...

for	
 line	
 in	
 open(‘myfile.txt’):
	
 	
 values	
 =	
 read_csv_line(line)
	
 	
 id	
 =	
 values[0]
	
 	
 value	
 =	
 values[1]

Monday, 2 April, 12

Spotting what should become a function
• Take common procedures and make them into a function

menlabel = []
menvalues = []
for line in open('../files/men.txt'):
 label, value = line.strip().split(',')
 value = int(value)
 menlabel.append(label)
 menvalues.append(value)
menbars = [0.1*v for v in menvalues]

womenlabel = []
womenvalues = []
for line in open('../files/women.txt'):
 label, value = line.strip().split(',')
 value = int(value)
 womenlabel.append(label)
 womenvalues.append(value)
womenbars = [0.1*v for v in womenvalues]

plt.figure()
ind = np.arange(len(menlabel))

plt.title('Score by group and gender')
plt.ylabel('Scores')
plt.bar(ind, menvalues, color='r', width=width,yerr=menbars)
plt.bar(ind, womenvalues, bottom=menvalues, color='y', width=width,yerr=womenbars)
plt.xticks(ind+width/2., menlabel)

Monday, 2 April, 12

Special way to enter the “main” method

• By default, code that is not in a function will get run (same
behaviour that we had before with no functions).

• To make it cleaner, you can add this line:

if	
 __name__	
 ==	
 “__main__”:
	
 	
 #	
 your	
 main	
 code	
 here

Monday, 2 April, 12

Segmenting code in multiple files

• When you write a lot of code, it may end up in one giant file

• The purpose of functions is to segment better, and you can put
those functions in a separate file

• For example, you created many functions that do plotting
 make_bar_plot(mylist)
	
 make_histogram(myvalues)
	
 ...

• You can put them in a file called plots.py and import them
from any script!

• from	
 plots	
 import	
 *

Monday, 2 April, 12

Your own modules and packages in Python

• You can build your own modules!

• A module is a simple file which you can import if its location is on your
Python path.

• Build your own packages!

• Put you code in a folder (e.g. “mypackage”) and create the empty file
__init__.py

• If the “mypackage” folder is in your Python path, you will be able to
import it!

import	
 mypackage
from	
 mypackage.mymodule	
 import	
 *

import	
 utils
from	
 utils	
 import	
 myfunction

Monday, 2 April, 12

And in the end...

• To introduce common computer tools to Life Sciences students in order to
help them make sense of their data. Topics include visualization, storage,
filtering and analysis.

• We saw command line, regular expressions, Python, plotting, SQLite

• Solid toolset for a scientist, put those on your resume, I’ll vouch for you!

Thank you!
-m

Monday, 2 April, 12

