Cherry blossoms of the Japanese Yoshino variety bloom along the Tidal Basin, March 19, 2012, in Washington, DC, with the Jefferson Memoria
CO M P 364 LeCtu re 25 to the rear. This season celebrates the 100-year anniversary of the gift of the cherry trees from Japan to Washlngton DC. (Paul J. Richards/AF
- Getty Images)

March 26th, 2012 ,
Mathieu Perreault DyJ[hOﬂ and SQLite

Monday, 26 March, 12

VWhat we know so far

e Database is the main structure (only one database at a time)

e A database contains many tables, each with a column
structure.
e.g. gene_id, gene_name, gene_length for table genes

e A table can contain multiple records, each represented by a
row.

e \We can access the different columns of a record to get/set the
data.

Monday, 26 March, 12

Database structure

recordi record? record?
<column1_value>, <column2_value> coll_value>, <col2_value>,<col3_value> <columni_value>, <column2_value>

record? record?

record?
<columni_value>, <column2_value> col1_value>, <col2_value>,<col3_value>

<columni_value>, <column2_value>

record3
<column1_value>, <column2_value>

Monday, 26 March, 12

Getting the content from a database

e Opening the database

¢ \/lew the tables in a database

e VView the fields (columns) in a table

e \View all the records (rows) in a table

e \View "some* of the records according to
some filtering rule

e Full SQLite Syntax reference: http://
www.sqlite.org/lang.html

Monday, 26 March, 12

http://www.sqlite.org/lang.html
http://www.sqlite.org/lang.html
http://www.sqlite.org/lang.html
http://www.sqlite.org/lang.html

Creating new content in a database

e Opening the database

e Create a table in the database

¢ |nsert records in the database

e Update records in the database

e Delete records according to a specific condition

e Delete tables

e Full SQLite Syntax reference: http://www.sqlite.org/lang.html

Monday, 26 March, 12

http://www.sqlite.org/lang.html
http://www.sqlite.org/lang.html

A word about PRIMARY KEY

e A primary key in a table ensures that the specified column will have a distinct
value for each record

e Only one primary key is allowed per table.

e [t could be an INTEGER, TEXT, etc.

¢ \When specifying a column definition (such as when creating a table), just add
PRIMARY KEY:

CREATE TABLE grades (student _id INTEGER PRIMARY KEY, grade REAL);

* PRIMARY KEY AUTOINCREMENT Will increase the key for you, no need to
specifically insert it.

Monday, 26 March, 12

Detfault value

e You can also specify default values if you have special needs

e You simply need to add it to the column definition (for example, when
creating a table)

e For example, specifying a default value of 100.0

CREATE TABLE grades (student id INTEGER PRIMARY KEY, grade REAL DEFAULT
100.0);

Monday, 26 March, 12

Database structure

record record record
1, “E.coli” 50, 2012-03-16,0.65 1,1,0.50

record?2 record?2 record?2
2, “BRCA” 51, 2012-03-16,0.70 2.2 0.65

record3
3, 2,0.80

Monday, 26 March, 12

Joined at the hip (or: JOIN clauses)

e Sometimes you will have tables that complement other tables
e [t’'s one advantage of SQLite, no need to store redudant information

* No need to store gene_name every time you make a measurement on the
gene!

e To query for this information, we will need to tell SQLite that two fields from
different tables are really talking about the same thing!

e Not sufficient to name them the same (e.g. gene_id)

Monday, 26 March, 12

Joined at the hip (or: JOIN clauses)

e The JOIN clause can be added to the source:

e SELECT [columns] FROM tablel JOIN table2 ON
tablel.field foo=table2.field bar WHERE [condition];

e This says: “I’m selecting records in table 1, but bring in extra information
about those records from table 2”

e The extra information can be used in the WHERE clause:

SELECT * FROM genes JOIN microarray ON genes.gene id=microarray.gene_id WHERE
microarray.amplitude>0.6;

e Can augment the results:

SELECT microarray.amplitude, genes.gene _name FROM genes JOIN microarray ON
genes.gene_id=microarray.gene_id;

Monday, 26 March, 12

Today: SQLite in Python

e SQLite is included in Python (how convenient!)

¢ You can write code that interacts with SQLite.

e The power of Python, combined with SQLite, makes for a great program.

Monday, 26 March, 12

SQLite in Python

e Four things need to happen for Python to interact with SQL.ite

e Import the sqglite module
import sqlite3

e Connect to the database (or create one) with a given name

connection = sqlite3.connect(‘database.sql’)

e (Get a cursor to the database:

cursor = connection.cursor()

e Execute queries on the cursor:
cursor.execute(‘SELECT * FROM ...”)

Monday, 26 March, 12

SQLite in Python

e Once a query has been executed on the cursor, some data might be
available, e.g. if you made a SELECT query.

* cursor.fetchone() will return one record at a time.

* cursor.fetchall() will return all matching records at once in a Python
list.

* You have to test if the result is None before using it.

* Don’t forget to call connection.commit() to commit the changes!

Monday, 26 March, 12

