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Abstract—Wireless mesh networks are popular as a cost-
effective means to provide broadband connectivity to largeuser
populations. A mesh network placement providescoverage, such
that each target client location has a link to a deployed mesh
node, and connectivity, such that each mesh node wirelessly
connects directly to a gateway or via intermediate mesh nodes.
Prior work on placement assumes wireless propagation to be
uniform in all directions, i.e., an unrealistic assumptionof circular
communication regions. In this paper, we present approximation
algorithms to solve the NP-hard mesh node placement problem
for non-uniform propagation settings. The first key challenge
is incorporating non-uniform propagation, which we address by
formulating the problem input as a connectivity graph consisting
of discrete target coverage locations and potential mesh node
locations. This graph incorporates non-uniform propagation by
specifying the estimated signal qualityper link. Secondly, our
algorithms are the first to minimize the number of deployed
mesh nodes with constant-factor approximation ratio in thenon-
uniform propagation setting. To achieve this, we formulatethe
Degree-Constrained Terminal Steiner tree problem and present
approximation algorithms which leverage prior results on the
Steiner tree problem. Third, it is impractical to measure all
possible potential mesh links, and therefore deployment planning
must rely on estimations. To address this challenge, we extend
our algorithm to iteratively measure the links in the solution
Steiner tree, refining the graph input on a per-link basis in
order to ensure the deployed network is not disconnected.
Finally, we use propagation measurements at 35,000 locations
in the deployed GoogleWiFi network to investigate placement
in a realistic, non-uniform propagation environment. Under this
measured propagation setting, our algorithms result in up to 80%
fewer mesh nodes than current algorithms and only require an
average of 3 measurements per deployed mesh node to ensure
backhaul connectivity.

I. I NTRODUCTION

Wireless mesh networks provide broadband Internet access
to large contiguous areas through the placement of mesh
nodes [9]. Mesh deployment requires selecting the number and
locations to place mesh nodes such that the target region is
fully covered and the mesh nodes are inter-connected in order
to forward traffic to Internet gateway points. Unfortunately,
prior placement studies address neither the realistic, outdoor
physical-layer environments where propagation is non-uniform
nor the case when estimations must be used due to the
impracticality of measuring all potential mesh links. This
work presents two mesh node placement algorithms: 1) an
approximation algorithm to find a placement that is no more
than a constant factor larger than the optimal size, and 2) an
iterative heuristic to choose a small number of measurements
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so as to minimize the deployed nodes and guarantee mesh
node inter-connectivity.

The first contribution of this paper is to formulate the
mesh node placement (MNP)problem’s input as a general
connectivity graph, combining target coverage locations with
discrete potential mesh node locations into a single input
graph. This is the first MNP formulation to consider the non-
uniform propagation scenario by specifying connectivity based
on per-link estimated signal quality, as opposed to prior work
[11], [17], [4] which consider the idealized uniform propa-
gation scenario. In other words, we ensure network coverage
using arbitrary coverage regions for each mesh node location,
instead of a circular disc. Because of the impracticality of
measuring all possible potential links before deployment,we
use physical-layer estimation techniques [6], [15] to specify
the potential links in the input connectivity graph. Propagation
modeling, though, introduces estimation errors, and our for-
mulation allows measurement-driven refinement of the input
connectivity graph on a per-link basis, eliminating possible
estimation errors on selected links.

The mesh node placement problem is NP-hard and we con-
sequently design polynomial-time approximation algorithms
to choose mesh placements, i.e., algorithms with provable
bounds on worst-case performance. The first contribution of
our algorithms is the use of a Steiner tree framework [3], [10]
to jointly satisfy client coverage, mesh connectivity, and mesh
capacity constraints. Specifically, we present a new problem
formulation, termed theDegree-Constrained Terminal Steiner
tree (DCTST) problem. The DCTST problem selects mesh
nodes (i.e. Steiner Points) to build a tree which spans all
selected mesh nodes (connectivity) with the constraints of
bounded vertex degree (capacity) and the requirement that all
target client locations are connected as leafs of the tree (cover-
age), thereby jointly satisfying mesh network constraints. We
then present a DCTST algorithm and prove that it finds a
solution tree of weight no more than 3.5 times the optimal.
Building on this result, our first approximation algorithm,
Minimize-Nodes, minimizes the number of deployed mesh
nodes with a constant-factor approximation ratio proportional
to the capacity bound of the mesh nodes and at most a
small constant factor violation of degree bounds. Thus, while
prior algorithms [4] also have constant factor approximation
ratios, our results represent the first that apply in the non-
uniform propagation setting and in the case of known gateway
locations. We ensure connectivity with known gateways via
adding shortcut edges to the input graph between all pairs of
gateways, representing the wired infrastructure’s connectivity.



The second algorithm,Measure-and-Place, minimizes the
number of deployed nodes while also using a small number
of measurements to ensure that all selected backhaul links are
connected. The key idea of this algorithm is iterative DCTST
construction combined by refinement of the input connectivity
graph via measurements of selected backhaul links.

Finally, we evaluate the performance of the presented algo-
rithms, comparing with state-of-the-art two-phase algorithms
that use geometric disc covering [4]. To consider realistic
propagation settings, we use signal strength measurements
from 35,000 locations and 150 mesh nodes in the GoogleWiFi
network. Our algorithms result in 80% fewer deployed mesh
nodes and demonstrate that non-uniform propagation benefits
deployment by necessitating half as many deployed mesh
nodes as in the uniform propagation setting. Further, we
find that with expected levels of physical-layer estimation
errors, the Measure-and-Place algorithm requires an average
of 2.5 measurements per deployed mesh node in order to
guarantee connectivity, i.e., three orders of magnitude fewer
measurements than a complete measurement survey.

The rest of this paper is organized as follows. Section II
defines the mesh node placement problem. Section III presents
new placement algorithms and Section IV then evaluates the
proposed placement algorithms. Finally, Section V describes
related work, and Section VI summarizes.

II. PLACEMENT FORMULATION

The objective of the mesh node placement problem is
to minimize the number of deployed mesh nodes with the
constraint of full coverage of the target area and connectivity
to the Internet. This section first describes a graph-theoretic
specification of potential physical-layer links, used as input
to the placement problem. We then describe the three general
constraints of coverage, connectivity, and capacity, which an
operational wireless mesh network must satisfy.

A. Input Connectivity Graph

We formulate the input to themesh node placementprob-
lem as a connectivity graph with nodes corresponding to
discrete locations and edges between locations that indicate
the existence of usable links. This formulation considers non-
uniform propagation settings because the input graph encodes
the signal quality of each link independently, as opposed
to prior geometric covering approaches which assume one
coarse-grained propagation parameter (path loss exponent) for
all nodes. More formally, we define theinput connectivity
graph G = (V, E), where both target coverage locations
and potential mesh node locations form a unified connectivity
graph, as described next.

The nodes in the proposed input graph assume the target
area is a discrete setC of target coverage locations. The set
C consists of physical coordinates representing target areas
where client coverage is desired, analogous to the area to be
covered in a geometric formulation. For evaluation purposes,
we discretize the target coverage grid to 5 meter spacing, such
that no client can be farther from a covered grid point than the
accuracy of propagation estimation, and we can include only
regions the operator seeks to provide service.

The second aspect of the input vertices is the set of
potential mesh node locations,M , which is assumed known.
Discrete locations for mesh nodes follows naturally from
practical constraints on deployment, such as the availability of
lamp posts or other infrastructure for mesh node installation.
The vertex set of the input connectivity graph is defined as
V = M ∪ C, the union of potential mesh node locations and
coverage locations.

B. Non-Uniform Propagation

The input connectivity graphG consists of the set of links,
E, corresponding to the potentially usable set of links. Edges
are usable if the estimated or measured signal strength is above
a signal strength thresholdθa for access tier links orθb for
backhaul tier links.

Specifying each link individually enables us to encode non-
uniform propagation. In other words, each potential mesh node
location can represent an arbitrary coverage region shape.
Figure 1 plots nine examples of measured coverage regions
[15], illustrating the degree of non-uniform propagation en-
countered in practice. The exact physical-layer connectivity,
represented as the signal strength on each possible link, is
prohibitively expensive to obtain for all pair-wisepotential
mesh node and target coverage locations. Instead, graphG
captures realistic propagation behavior by allowing each link
to be estimated individually by a state-of-the-art propagation
modeling approach [6], [15]. These techniques require a small
amount of training measurements in order to use environment
information to more accurately predict propagation. This data-
driven approach to estimating each possible link’s signal
quality contrasts with prior work, which estimates one range
for all access tier links and one range for all backhaul tier links,
i.e., the unrealistic uniform propagation assumption. Note that
uniform propagation is a special case of the more general non-
uniform formulation.

Fig. 1. Nine example coverage regions measured in the GoogleWiFi network
in Mountain View, CA, demonstrating non-uniform propagation. Each mesh
node location is indicated by ’x’s. For scale reference, thetop-middle region
has average radius of 160 meters.

C. Coverage Constraint

The access tier provides single-hop connectivity from client
devices to a mesh node. Correspondingly, thecoverage con-
straint requires clients at all target locations inC to be able
to connect to at least one mesh node at the specified signal



strength thresholdθa. More formally, letP ⊂ M be the set of
locations selected for mesh node placement. We then require
for all locationsc ∈ C that there exists at least one edge (link)
in E between locationc and one of the mesh nodes inP .

A challenge in formulating the coverage constraint is that it
is usually impractical to measure all possible mesh node and
coverage location links, hence theestimatedsignal strength
values used to construct the input graph edges. Moreover, most
city-wide network scenarios specify a desired level of coverage
for their target area, e.g., 95% outdoor coverage. Therefore, we
require a probabilistic coverage constraint, where a fraction of
client locations must obtain signal strength above the threshold
θa. For this work, we assume the signal strength estimation
accuracy and the coverage requirement is 95%. Note that due
to the plurality of access tier links available at a coverage
location, there is also a probability that an alternative mesh
node is reachable at the desired signal strengthθa. Our results
indicate that with 95% of links accurately estimated, less than
3% of target locations are not covered, over 97% of target
locations receive coverage. In this formulation, the signal
strength metric measures the quality of a link, which restricts
the scope from considering congestion and contention effects,
and we assume channel assignment is handled separately to
enhance spatial reuse.

D. Connectivity Constraint

The backhaul tier connects each mesh node to a gateway, di-
rectly or via multi-hop paths through other mesh nodes. When
gateway locations are unknown or not yet selected, we account
for any possible gateway configuration with the constraint that
each mesh node must have a path to all other mesh nodes.
This full connectivity ensures gateway reachability regardless
of a gateway’s location. Correspondingly, theconnectivity
constraintrequires that the undirected graph derived from the
vertices inP is connected, where an edge exists between two
chosen mesh node locations if the estimated signal strengthis
greater than the thresholdθb for backhaul links. In the second
case where gateway locations are known, we require there
to be a path from each target coverage location to at least
one gateway. Section III describes how our algorithm ensures
connectivity if gateway locations are known a priori.

E. Capacity Constraint

Wireless bandwidth is shared amongst all clients, and as a
result, it is often desirable to limit the number of potential
sharers of the scarce wireless spectrum. Our formulation
enforces this by imposing a maximum degreebv on the
connectivity of a mesh node, where the vertex boundbv is
homogeneous for all mesh node locations. Intuitively, we are
restricting the number of locations each mesh node serves,
and the degree bound also limits the number of other mesh
nodes that each mesh node is connected to. This constraint
will be critical in the proof of a the bound on our algorithm’s
worst-case performance. More complete capacity formulations
take into account heterogeneous user demands and interference
[16], but we do not consider these scenarios in this paper.

III. PLACEMENT ALGORITHMS

This section introduces the Degree-Constrained Terminal
Steiner tree (DCTST) problem and presents our two proposed

placement algorithms. The novel features of our algorithms
are 1) a discrete-graph input formulation to incorporate non-
uniform propagation, and 2) minimizing deployment size with
a constant-factor approximation ratio proven using our new
DCTST problem formulation.

A. Steiner Tree Framework

The Degree-Constrained Terminal Steiner tree problem is a
special case of the Steiner tree problem in graphs [14]. The
Steiner tree problem in graphs involves finding a minimum
weight tree that spans the regular vertices in the input graph.
In contrast to a simple spanning tree, though, there is an
additional set of discrete vertices, termedSteiner Points, that
are selectively added to further decrease the total weight of
the solution spanning tree. We design our algorithms upon a
framework where the regular vertices represent target coverage
locations and the Steiner Points map to the potential mesh
node installation locations. We build a modified Steiner tree,
a Degree-Constrained Terminal Steiner tree, where all regular
vertices (coverage locations) are required to be a leaf in the
solution Steiner tree, mirroring the fact that client devices do
not act as traffic relays in a mesh network. We also add an
additional constraint on the maximum degree of any Steiner
point, capturing the limit on the number of clients a mesh
node can simultaneously serve. An example DCTST is shown
in Figure 2.

The construction of a DCTST on the input connectivity
graph solves the challenge of jointly providing target coverage
and mesh connectivity as follows. Like prior work, connec-
tivity is satisfied by requiring the chosen mesh locations to
form a tree that spans all mesh nodes, connecting the backhaul
tier. Unlike prior work, we satisfy the coverage constraintby
requiring the spanning tree to also include all target client
coverage locations as leafs in the tree. Additionally, the degree
constraint enforces a capacity limitation, such that no single
mesh node serves a disproportionately large area. A DCTST
construction algorithm outputs the set of chosen Steiner Points,
which we use to indicate node deployment locations that
satisfy coverage, capacity, and connectivity constraints.

The Degree-Constrained Steiner tree problem in graphs has
been shown to be NP-hard and recent research has developed
polynomial time approximation algorithms for Steiner tree
problems with degree bounds. The DCTST is also NP-hard
because the terminal constraint enforces two different degree
bounds: terminals have degree of exactly one and Steiner
Points have degree at mostbv. The current best known degree-
constrained Steiner tree algorithm [10] has constant factor
approximation ratio of2, and this work is the first to show
results for the DCTST formulation, i.e. with both degree and
terminal constraints.

DCTSTs provide a framework for mesh node placement,
upon which we build our resulting placement algorithms. First,
we present the algorithmMinimize-Nodes, which finds the
minimum number of deployed mesh nodes. This algorithm
operates on an input graph of estimated link signal strengths.
Secondly, we build an enhanced algorithm,Measure-and-
Place, that uses the first algorithm as an inner loop and
iteratively refines the input connectivity graph to ensure that



Example Degree−Constrained Terminal Steiner Tree
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Fig. 2. Example Degree-Constrained Terminal Steiner tree.Mesh nodes
(Steiner Points) form solid red backhaul graph and coveragelocations connect
to tree with dashed blue lines. Also shown are potential meshnode locations
(shown as x’s) that were not chosen by the DCTST algorithm.

all backhaul links are measured above the acceptable signal
strength threshold.

B. Algorithm Minimize-Nodes

For the first algorithm, we minimize the number of de-
ployed mesh nodes with constant-factor approximation ratio
by solving the DCTST problem. Our approach contrasts with
prior work on placement algorithms which achieve constant-
factor approximation only in uniform propagation scenarios
[4], whereas our bounds apply to the more general case of non-
uniform propagation. The mesh node placement problem can
also be formulated as a version of thenode-weightedSteiner
tree problem, but we do not take this approach because the
best known node-weighted algorithms have logarithmic worst-
case bounds [13]. Instead, we focus on theedge-weighted
formulation and show that a constant-factor approximationcan
be achieved for thenode minimizationproblem.

A set of gateway locations in the mesh network is often
known a priori due to physical and practical constraints on the
locations of wired connections. With known gateway positions,
the mesh connectivity constraint requires that each target
coverage location have a path to at least one gateway node
(thereby connecting to the Internet). We augment the input
connectivity graph in two ways. First, we add one additional
node to the graph representing the wired Internet, with equally
weighted edges to each gateway location. This new node is
designated as a terminal node, requiring it be spanned by a
Steiner tree. As a result, all valid Steiner trees must include
the gateway node locations as they are the only nodes with
edges to the Internet node. Second, we also add zero-weight
edges between each gateway location, causing all gateways to
be chosen as a mesh node by our algorithms. Thetriangle
inequality is not violated as no triangles can be drawn with
two zero-weight edges; observe that edges between a gateway
and other mesh nodes are considered equivalent to an edge
between two mesh nodes.

Table I presents the Minimize-Nodes algorithm pseudocode,
which builds the appropriate input connectivity graph and then
builds a DCTST in order to select the mesh node deployment

locations. The time complexity of this polynomial-time algo-
rithm is dominated by that of the DCTST algorithm, which
itself is dominated by the underlying Steiner tree algorithm’s
complexity. The best-known algorithm [10] solves the problem
using an iterative LP rounding technique. We next prove a
constant-factor approximation ratio for the node minimization
objective, where the constant factor is function of the node
capacity (i.e. degree bound).

C. Constant Factor Approximation Ratio

In an instance of the DEGREECONSTRAINED TERMINAL

STEINER TREE (DCTST) problem, we are given a complete
graphG = (V, E) with metric d : V × V → R on the edges,
a set of terminalsC ⊆ V , degree boundsbv for each vertex
v ∈ V \ C and the task is to a find a minimum weight tree
which spansC such that the degree of each vertexv ∈ V \C
is at mostbv and each vertex inC is a leaf. LetdegT (v)
indicate the degree of vertexv in treeT and letd(T ) indicate
the total weight of the edges in treeT .

We prove the following theorem regarding the DCTST
problem.

Theorem 1 There exists a polynomial time algorithm which
given an instance of theDEGREECONSTRAINED TERMINAL

STEINER TREE problem returns a Terminal Steiner treeF of
weight no more than7

2
times the weight of the optimal tree.

Moreover, the degreedegF (v) of each vertexv ∈ V \ C in
tree F is at most2bv + 6.

Prior work by Lau and Singh presented algorithmic results
for the degree constrained Steiner tree problem, i.e. with no
terminal constraint. The following theorem is from [10], and
we use this result to prove Theorem 1.

Theorem 2 There is a polynomial time algorithm which given
an instance of the degree constrained Steiner tree problem
returns a Steiner treeT of weight no more than twice the
optimal such that the degree bound of each vertex is violated
by at most an additive constant3.

Proof of Theorem 1: Given an instance of the DCTST
problem, we formulate an instance of the degree constrained
Steiner tree problem where we set the degree bound of each
vertex v ∈ C to be 1 and for each vertexv /∈ C to be
bv. Moreover, we remove all edges(u, v) where u, v ∈ C.
Observe that such an edge is not used by an optimal solution.
Hence,T ∗, the optimal solution to DCTST, remains a feasible
solution to the instance of the degree constrained Steiner tree
problem. Using Theorem 2, we obtain a treeT whose weight
is at most2d(T ∗) such thatdegT (v) ≤ 4 for eachv ∈ R and
degT (v) ≤ bv + 3 for eachv ∈ V \ C. Observe thatT is
not a terminal Steiner tree since some vertices inC need not
be leaves. Letv ∈ C be such a vertex, and let the neighbors
of v in T be u1, . . . , uk wherek ≥ 2 and ui ∈ V \ C for
each1 ≤ i ≤ k. Let (v, uk) be the edge incident atv in
T with largest weight. Replace the edges incident atv by
edges{(v, u1), (u1, u2), . . . , (uk−1, uk)}. The weight of the
new edges equalsd(v, u1) + d(u1, u2) + · · · + d(uk−1, uk).



Now, by the triangle inequality and the property of arithmetic
averages, we have that

d(v, u1) + d(u1, u2) + · · · + d(uk−1, uk) ≤

d(v, u1) + d(v, u1) + d(v, u2) + · · · + d(v, uk) =

2d(v, u1) + 2d(v, u2) + · · · + 2d(v, uk−1) + d(v, uk) ≤

2k − 1

k
[d(v, u1) + · · · + d(v, uk)]

which is at most7
4
[d(v, u1) + · · · + d(v, uk)] since k ≤ 4.

Applying this procedure at each terminal vertex, we
obtain a terminal Steiner treeF of weight no more than
7

4
w(T ) ≤ 7

2
w(T ∗) as claimed. Moreover, each edge incident

at a vertexv ∈ V \ C is replaced by at most two edges
incident at vertexv. Hence, the degree ofv is at most
2(bv + 3) = 2bv + 6 in F as claimed. �

Next, we show that the DCTST formulation can also be used
to minimize the number of deployed mesh nodes. Recall that
DCTST is anedge-weighted problem, whereas theMinimize-
Nodesplacement algorithm seeks to minimize the number of
deployednodes. There are two key points used to show that the
constant-factor approximation holds for our algorithm: 1)the
fact that each target coverage location is connected to exactly
one mesh node in the treeT and 2) mesh nodes have a fixed
capacity that can be expressed by a degree boundbv.

We take advantage of the first fact by assigning allusable
(estimated to be above threshold) access tier edges the same
weight. In other words, the estimated signal strength values
are not used as edge weights, but rather used to determine
which edges are usable.

For a network withn target coverage locations, the coverage
constraint requires each of then locations to have exactly one
link in the solution DCTST. We set all usable access tier edges
to have uniform weights (i.e., normalized to one), resulting in
a constant weightn in all valid solutions. Similarly, the total
weight due to backhaul links is(m−1) wherem is the number
of deployed mesh nodes in the final solution. Letn∗ andm∗

represent the values ofn andm in the optimal solution. From
Theorem 1, our DCTST algorithm’s approximation ratio is3.5,
which we write as the bound on the ratio of our solution edge
weight to the optimal edge weight:

m + n

m∗ + n∗
≤ 3.5

As per the previous observation that the number of access
tier edges in all valid DCTSTs is identical, letn = n∗.
Rearranging terms:

m

m∗
≤ 3.5 + 2.5

n

m∗
(1)

The rightmost term in the above equation would grow linearly
with the size of the input. To address this, we recall that
the capacity constraintbv enforces an upper bound on the
degree of all the nodes in the Steiner tree:(n/m) ≤ bv. As a
result, the rightmost term in Equation (1) is a constant upper
bounded by the number of coverage locations supported per
mesh node. By choosing edge weights where the backhaul
edges have twice the weight of the access edges, we are able to
preserve the triangle inequality and further halve the value of

the constant in the above equation from2.5 to 1.25. Theorem 3
now follows.

Theorem 3 Minimize-Nodes is a polynomial time algorithm
to find the minimum number of mesh nodes to deploy with
approximation ratio of1.25bv and degree violation of at most
2bv + 6.

Create connectivity graphG from input SNR graphH , s.t.
Backhaul tier edges exist if SNR estimate> θb

Access tier edges exist if SNR estimate> θa

If gateway locations known,
augmentG with shortcuts between gateways

Set backhaul tier edge weight to2
Set access tier edge weight to1

Run DCTST algorithm onG
Output chosen Steiner PointsP

TABLE I
ALGORITHM M INIMIZE -NODES

While the above algorithm has a constant-factor approxi-
mation ratio for a givenbv, it is important to note that this
constant may be large, depending on the capacity of mesh
nodes. In other words, an increased mesh node capacity will
result in a larger value for the constant in the approximation
ratio. We note that this is the first constant-factor approxima-
tion for the placement problem with non-uniform propagation,
and our practical-case evaluations in Section IV show that
our algorithm outperforms prior techniques by up to 80%.
Therefore, while choosing the capacity bound impacts the
worst-case bound, our empirical results indicate the practical
performance is high over a wide range of values ofbv.

D. Algorithm Measure-and-Place

The algorithm Measure-and-Placeaddresses the uncer-
tainty in the estimation of the input link graph and the
corresponding fact that all link signal strengths cannot be
known without measurements. To do this, we enhance the
Minimize-Nodes algorithm presented previously with addi-
tional interactive measurements in order to ensure all backhaul
links in the solution DCTST aremeasuredto be above the
threshold. In other words, we avoid relying on estimated link
signal strengths for the critical backhaul links of the deployed
network.

There are two challenges in using interactive measurement
feedback: how to keep small the number of links to measure
and how to use the specific measurement data to inform
the final placement decision. Note that we differentiate this
feedback with any training measurements used in the initial
signal strength estimation process. We address the problem
of keeping measurement overhead low by measuring each
backhaul link in the minimum weight DCTST chosen with
the Minimize-Nodes algorithm. As a result, we only measure
links that are estimated to be above threshold and picked as
candidate backhaul links by our algorithm. At each iteration,



the number of measurements taken does not exceed one less
than the number of selected mesh nodes. Note that we focus
on measuring backhaul links as they aggregate traffic from the
access tier and are therefore more performance critical, though
the same methodology extends to measuring selected access
tier edges as well.

With measurement information obtained, we then address
the challenge of how to utilize the measurement results to
iteratively refine the input graph and achieve our objective.
Our key technique is to not only remove poor links, but also
to decrease the weight on above-threshold links, increasing the
chances that these links will be chosen in the next iteration
of our algorithm. More specifically, letMl represent the
measured signal strength on linkl, let w represent the default
backhaul edge weight, and letǫ be a small, positive constant
whereǫ ≪ w. Then, for each link measured, we modify the
input graph edge weight in one of the following four ways:

1) If link l is unmeasured and estimated belowθb, remove
edge from graph (equivalent to weight= ∞).

2) If link l is unmeasured and estimated aboveθb, set edge
weight tow.

3) If measurementMl ≥ θb, set edge weight to(w − ǫ).
4) If measurementMl < θb, remove edge from graph.

Table II outlines the operation of the Measure-and-Place
algorithm.

We set ǫ to a small, positive number in order to give
preference in the next iteration to the links measured above
the acceptable threshold. Also, by makingǫ small, we do
not significantly change the magnitude of the weights in the
resulting Steiner tree, but rather use the modified weights
as a tie-breaking mechanism. Therefore, a smallǫ value
does not impact the relative size of terms in Equation (1).
This enhanced placement algorithm minimizes the number of
deployed mesh nodes, subject to the measurement information
available. The full version of this problem would be to jointly
minimize the number of deployed nodes and measurements,
but this formulation does not have any provable algorithmic
bounds. The Measure-and-Place algorithm completes when all
backhaul links in the solution DCTST have been measured and
confirmed to be above thresholdθb. Note that to ensure the
algorithm finds a valid solution, the algorithm can lower the
performance thresholdsθa andθb when the only usable links
were incorrectly estimated as low quality links.

IV. PLACEMENT EVALUATION

This section evaluates the performance of our proposed
placement algorithms,Minimize-Nodes and Measure-and-
Place. We compare the proposed placement algorithms with
geometric covering algorithms in a non-uniform propagation
setting based on measured propagation data from the currently
deployed GoogleWiFi mesh network.

A. Evaluation Methodology

The input to the placement algorithms consists of a topology
of potential mesh node locations and target coverage locations,
signal strength estimations for each location pair, and signal
strength conformance thresholdsθa (access tier) andθb (back-
haul tier). The physical-layer connectivity graph used in our

Mark all backhaul edges in input graphG as unmeasured
Initial solution node setP = ∅, treeT = ∅

Do {
Use Minimize-Nodes algorithm (see Table I),

obtaining solution nodesP and spanning treeT
Measure all un-measured backhaul edges inT
Update edge weights inG

} while (∃e ∈ T , s.t. e is backhaul andMe < θb )
Output solutionP andT as measurement-validated

TABLE II
ALGORITHM MEASURE-AND-PLACE

evaluation matches the measured coverage regions shapes in
the deployed GoogleWiFi network (see Figure 1 for examples).

We evaluate algorithms on a regular city-block topology,
the GoogleWiFi network in Mountain View, CA [15]. Figure
3 shows the potential mesh node locations in part of the
7.25 km2 urban neighborhood considered. In this topology,
a potential mesh node location is at each street light post
and target coverage locations are chosen uniformly with 5
meter spacing. The density of potential mesh node locations
is approximately 200 locations per km2. We also evaluated
our algorithms with randomly generated topologies and the
findings are similar.
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Fig. 3. GoogleWiFi neighborhood topology with circles indicating potential
mesh node locations, i.e. lamp posts. Target coverage locations (not shown)
are uniformly spaced through the region.

For evaluation purposes, the DCTST algorithm uses a
heuristic version of the Steiner tree algorithm [14], which
improves computational efficiency on the studied topologies.
The placement algorithm we compare against is a two-phase
geometric algorithm [11], [17]. Two-phase algorithms first
satisfy the coverage constraint by solving the geometric disc
covering problem, and then add nodes to ensure connectivity
by building a graph Steiner tree (not a DCTST). Specifically,
we implement the discrete disc covering algorithm used in
[17]. We then use a basic Steiner tree algorithm [14] to satisfy
the connectivity constraint by letting the mesh nodes chosen in
the covering phase be the regular vertices and then choosing



additional mesh nodes (Steiner Points) to build a connected
backhaul tier.

The disc covering algorithm is not intended for non-uniform
propagation settings, therefore in all evaluations, we choose
the disc radius giving the best result where the network is
covered with least number of mesh nodes. In the uniform
propagation case, the input connectivity graphG derives signal
strength values using only the general path loss exponent from
the GoogleWiFi measurement data.

B. Non-uniform Propagation Setting

To evaluate our algorithms with realistic propagation val-
ues, we employ measurements from a coverage study [15]
in the GoogleWiFi network in Mountain View, CA. These
measurements consist of signal strength readings taken at
35000 locations from a car-based laptop with external antenna.
Using the terrain information from an economic zoning map
results in propagation prediction accuracy of approximately
90%, and we then use this to estimate the propagation at any
given potential mesh node location in the city. The average
path loss value observed is3.7, the average shadowing value
is 8dB, and the reference SNR is measured to be60 dB at
10 meters distance. There is considerable variation in the path
loss exponent on different paths, between a value of 2 (line-
of-sight) and above 6 (very poor propagation).

To generate the physical-layer connectivity graphs in the
studied topologies, each potential mesh node location is
marked at locations approximately every 40 meters along
streets, corresponding to street lamp locations. For each lo-
cation, we then generate the estimated signal strength values
using the modified path loss equations (see Equations 1 and 2
in [15]) to estimate signal strength as a function of distance and
intervening terrain features. The true measured signal strengths
cannot be estimated perfectly, and hence we add shadowing
as a zero-mean Gaussian random variable for each link to
represent the true propagation value. The amount of standard
deviation then determines the likelihood that the estimate
incorrectly indicates if the link is above or below threshold.
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Fig. 4. Comparison of placement algorithm performance on GoogleWiFi
topology with varying levels of non-uniform propagation. The x-axis is
normalized to the measured propagation: 0 represents uniform propagation
and 2 indicates that non-uniformity is increased by a factorof 2×.

We first evaluate how non-uniform propagation impacts our
algorithms and the resulting network size. Figure 4 varies

the non-uniformity of propagation and plots the deployment
size resulting from Minimize-Nodes and a Disc Covering
algorithm. The x-axis represents the degree of non-uniformity
and is calculated by variably dampening or exaggerating the
difference between each link’s propagation and the median
propagation in our data set. More specifically, for all links, we
find the average path loss, which then allows us to compute
for each link the difference in path loss from the average.
We then weight this difference to lessen or enhance the level
of non-uniformity. Observe that a weight of zero leads to
uniform propagation and a weight of one leads to the actual
measured propagation. The average (median) coverage range
is kept constant and therefore the disc covering algorithm’s
result does not change.

With non-uniform propagation, the DCTST algorithm out-
performs disc covering by up to 80%, whereas disc covering
is slightly (less than 2%) better in the uniform propagation
setting. This result is not surprising, as both algorithms were
designed for different propagation settings, and even with
small amounts of non-uniformity, our proposed algorithm
outperforms disc covering. Note that there is an accuracy and
cost tradeoff when increasing the disc radius in non-uniform
settings. For the measured propagation setting (x-axis value of
1), a disc covering solution of the same size as our DCTST
solution (168 nodes) results in approximately4× as many
coverage holes, i.e. 95% coverage versus 80.6% coverage.

The more surprising result in Figure 4 is that the magnitude
of the DCTST solution size decreases significantly as non-
uniformity increases, indicating that non-uniform propagation
in the GoogleWiFi topology is advantageous in network plan-
ning. The reason for this is first that mesh nodes provide
coverage to larger areas in non-uniform propagation settings,
largely due to the fact that area covered is a function of
radius squared. Also, because propagation is based on terrain
features, the DCTST algorithm takes advantages of well-
placed node locations (e.g., no obstacles nearby). Secondly, the
pattern of potential locations in the GoogleWiFi topology fur-
ther increases the benefit of non-uniform propagation because
the links between street lamps are strongly line-of-sight.As a
result, in non-uniform settings, each mesh node has a larger
degree of connectivity to its neighboring mesh node locations.
We consider settings where only one of the access or backhaul
tiers have uniform propagation and find that approximately
70% of the gain is from non-uniform propagation at the access
tier.

We next to examine the impact on the availability of po-
tential mesh node locations, using a subset of the GoogleWiFi
topology. Figure 5 plots the resulting network size using the
algorithm Minimize-Nodes and the disc covering algorithm.
The performance difference between Minimize-Nodes and the
disc covering algorithm increases as the density of available
locations increases. This occurs because the disc covering
algorithm is limited by the inaccuracy of using circles to
approximate non-uniform coverage regions. Even with the
larger networks from disc covering, the number of coverage
holes is3× higher than in the network constructed by the
algorithm Minimize-Nodes. When the number of potential
mesh node locations reaches a factor of5× the number ulti-
mately deployed, additional potential locations have negligible
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Fig. 5. Comparison of placement algorithm performance on GoogleWiFi
topology as a function of the density of available mesh node locations.

benefit.
Figure 6 plots the resulting network size when varying the

coverage footprint size, i.e., the thresholdθa of the access tier,
with three different values of the backhaul link transmission
range. A smaller access tier range leads to the coverage
becoming the limiting factor in deployment planning. Figure
6 also plots the placement size of a coverage-only network,
i.e., without the requirement of backhaul connectivity. Note
that the backhaul range of 158 meters is the default value
used in the GoogleWiFi scenario and access tier ranges are
most often smaller than backhaul. In these practical cases,
our results indicate that the mesh network with a backhaul
tier requires no more than 15% more nodes than a coverage-
only network. This suggests that the mesh network is a
more effective broadband wireless architecture than an outdoor
WLAN (coverage only) due to the small number of additional
nodes needed versus the cost of installing wired connections.
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Fig. 6. Comparison of placement algorithm performance on GoogleWiFi
topology with varying access tier ranges and backhaul (BH) ranges to show
how network hardware influences placement.

We next consider the performance of the second proposed
algorithm, Measure-and-Place, restricting our results toa
smaller section of the GoogleWiFi topology. For comparison,
we also use a greedy measurement algorithm to ensure back-
haul connectivity, where each measured link with sufficient
signal strength is always kept as part of the solution Steiner

tree. We investigate the performance of these algorithms as
a function of backhaul link shadowing, which is a zero-mean
Gaussian random variable modeling variation of link qualities.
Higher shadowing values correspond to less accurate signal
strength estimation.

Figure 7 plots the number of measurements needed to
ensure backhaul connectivity using the Measure-and-Place
algorithm and the number of deployed mesh nodes resulting
from the Measure-and-Place algorithm. As seen, the itera-
tive measurement algorithm requires approximately3× more
measurements than the number of deployed mesh nodes.
The greedy measurement algorithm requires slightly fewer
measurements because it always keeps a link measured to
be above threshold. As a consequence, though, it requires
a larger number of deployed nodes, as it does not adjust
the DCTST at each iteration to balance the measurements
and network size. With the Measure-and-Place algorithm,
the number of measurements needed is of the same order
as the number of deployed mesh nodes. For reference, an
exhaustive measurement study of all links shorter than 500
meters requires1000× more measurements.

0 2 4 6 8 10 12
0

50

100

150

Shadowing Standard Deviation (dBm)

# 
M

ea
su

re
m

en
ts

 

 

Greedy Measurements
Measure−and−Place

0 2 4 6 8 10 12

36

38

40

42

Shadowing Standard Deviation (dBm)

D
ep

lo
ye

d 
N

od
es

 

 

Greedy Measurements
Measure−and−Place

Fig. 7. The number of feedback measurements required to ensure back-
haul tier connectivity using algorithm Measure-and-Placein the GoogleWiFi
topology.

V. RELATED WORK

Prior work on placement algorithms for wireless mesh
networks has focused on heuristic algorithms. Integer pro-
gramming [2] and greedy heuristics [5] have been proposed to
choose locations for mesh nodes, but these approaches have
no provable bounds on worst case performance and do not
consider non-uniform propagation. Similarly, the problemof
backbone construction for multi-hop ad hoc networks also
requires solving coverage and connectivity constraints. In
the context of these networks, a two-phase, disc covering
approximation algorithm [17] has been presented, but only
for the uniform propagation setting.

There has been much work on the closely related problem
of placing relay nodes in a two-tier sensor network scenario
[20]. Previous papers have taken a geometric approach to
solving the coverage problem using a disk-covering algorithm,
and then separately ensuring backhaul connectivity [11]. Most
recently, a two-phase polynomial time approximation scheme



has been proposed for relay node placement in uniform
propagation scenarios [4]. In contrast, our proposed algorithms
jointly solve coverage and connectivity and apply to the more
general non-uniform propagation case. Other approximation
algorithms for relay placement in the uniform propagation
setting have been proposed to satisfy connectivity with con-
strained node placement [12] or to provide redundancy through
the placement of two nodes at each deployment location [21].

Wireless LAN and cellular networks present a related base
station placement problem, though proposed approximation
algorithms [18] do not require the connectivity constraint
seen in mesh networks. For placement in WLAN scenarios,
heuristic algorithms [7] and integer programming techniques
[8] have been proposed for non-uniform propagation scenar-
ios, but these algorithms do not provide worst-case bounds
and do not address the problem of reducing the number of
measurements needed. Similarly, algorithms for cellular base
station placement for various objectives have been presented
using heuristic algorithms or integer programs [19].

Graph Steiner tree problems have been studied extensively
and are closely related to the MNP problem. The graph Steiner
tree problem involves finding a minimum weight spanning tree
over the set of terminals and a chosen subset of Steiner Points.
Prior two-phase placement algorithms have used Steiner tree
algorithms to solve the connectivity constraint, after using
the geometric facility location problem [1] for coverage. The
Degree-Constrained Steiner tree problem adds an upper bound
on the degree of any node in the Steiner tree, and has
been solved using LP rounding techniques that result in an
approximation ratio of2 and a degree constraint violation of
no more than3 [10]. The node weighted version of the degree
constrained Steiner tree has a best-known algorithm with
logarithmic approximation ratio [13]. The Terminal Steiner
tree problem is a special-case of the Steiner tree problem
where all the terminal nodes are required to be leafs in the
solution spanning tree. The best known algorithm for the
Steiner tree problem has approximation ratio of1.55 [14],
and the edge-weighted Terminal Steiner tree problem has
approximation ratio of3.1 [3]. These algorithms, though, do
not allow a constant-factor approximation ratio for the mesh
node placement problem because they do not have a degree
constraint.

VI. CONCLUSIONS

This paper presents a new graph-theoretic formulation
and approximation algorithms for the mesh node placement
problem. We first formulate the placement problem for non-
uniform propagation scenarios as a graph-theoretic problem,
in contrast to prior geometric disc covering formulations.
The key advantage of this formulation is that it allows for
per-link signal strength specification using either realistic
physical-layer propagation models or measurement results. We
then present mesh placement algorithms tojointly solve for
coverage, capacity, and connectivity constraints, through the
construction of a Degree-Constrained Terminal Steiner tree
on an input connectivity graph consisting of both coverage
locations and potential mesh node locations. As a result, our al-
gorithm is the first-known constant factor approximation ratio
algorithm for the problem of minimizing deployment size. The

Minimize-Nodes algorithm minimizes deployed nodes using
the estimated signal strength values in the input graph and
then the Measure-and-Place algorithm iteratively measures a
small number of backhaul links in the solution DCTST. As
a result, our algorithm ensures that the backhaul-tier is fully
connected in the final deployment without requiring an exhaus-
tive measurement study. We then evaluate the performance of
our algorithms, showing an 80% improvement in measured
non-uniform propagation settings.
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