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Abstract

Robust optimization has traditionally focused on uncer-
tainty in data and costs in optimization problems to formu-
late models whose solutions will be optimal in the worst-
case among the various uncertain scenarios in the model.
While these approaches may be thought of defining data- or
cost-robust problems, we formulate a new “demand-robust”
model motivated by recent work on two-stage stochastic op-
timization problems. We propose this in the framework of
general covering problems and prove a general structural
lemma about special types of first-stage solutions for such
problems: there exists a first-stage solution that is a mini-
mal feasible solution for the union of the demands for some
subset of the scenarios and its objective function value is
no more than twice the optimal. We then provide approxi-
mation algorithms for a variety of standard discrete cover-
ing problems in this setting, including minimum cut, min-
imum multi-cut, shortest paths, Steiner trees, vertex cover
and un-capacitated facility location. While many of our re-
sults draw from rounding approaches recently developed for
stochastic programming problems, we also show new appli-
cations of old metric rounding techniques for cut problems
in this demand-robust setting.

∗Supported in part by NSF grants CCF-0430751 and ITR grant CCR-
0122581 (The ALADDIN project).

†Work was done while the author was at Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, USA.

1 Introduction

Robust optimization has roots in both Decision The-
ory [14, 16] as well as Mathematical Programming [4].
While minmax regret approaches were advanced in the for-
mer field as conservative decision rules, robust optimization
was discussed along with stochastic programming [3] as an
alternate way of tackling data uncertainty.

More recent attempts at capturing the concept of ro-
bust solutions in optimization problems include the work of
Rosenblatt and Lee [21] in facility design problem, Mulvey
et al. [17] in mathematical programming, and most recently,
Kouvelis and Yu [12] in combinatorial optimization; here
robust means “good in all or most versions”, a version be-
ing a plausible set of values for the data in the model. Even
more recent work along similar lines is advocated by Bertsi-
mas et al. [1, 2]. A recent annotated bibliography available
online summarizes this line of work [18].

1.1 A new model of “demand-robustness”

In this paper, we take a different approach in our model
of uncertainty. We do not address uncertainty in the form
of inaccuracy in the data itself; rather we address the un-
certainty in a subset of the constraints that the problem is
required to satisfy. As a simple example, consider the two
alternate formulations of the shortest path problem from a
root node r under the data-robust and the demand-robust
formulations. In the more traditional data-robust formula-
tion, the other terminal node t to which the shortest path
from r must be built is specified in advance. However,
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the costs of the edges in the graph may change as stipu-
lated either in a set of discrete scenarios, or by intervals
within which each edge cost lies. The data-robust formula-
tion models the problem of finding a path P from r to t such
that over all possible settings of the data (edge-costs) among
the scenarios, the maximum value of the cost of P is mini-
mized by taking this path. In the demand-robust model we
consider, the costs of edges are specified in advance. Each
scenario now specifies which terminal tk must be connected
to r via the shortest path. Furthermore, in the scenario k
specified by terminal tk, all the edge costs are costlier by a
specified factor σk. The problem is now modelled as one of
choosing a few edges to buy today at the current specified
(non-inflated) cost and then, for each scenario k, completing
the current solution by adding more edges (at costs inflated
by σk) to form a path from r to tk. The objective is to min-
imize the maximum value of the first stage costs plus the
second stage completion costs over all possible scenarios k.

1.2 Relation to Stochastic Programming

The roots of our new model have strong links to the
class of two-stage stochastic programming problems with
recourse, for which some approximable versions were stud-
ied in recent work [9, 5, 11, 19, 23]. These two-stage mod-
els (e.g., from [9]) have a very similar structure: costs are
specified today and the demands occurring tomorrow (along
with their respective inflation factors) are specified by a
probability distribution. The goal is to purchase some an-
ticipatory part of the solution in the first stage so that the
expected cost of the solution over all possible scenarios
is minimized. While the expected value minimization is
reasonable in a repeated decision-making framework, one
shortcoming of this approach is that it does not sufficiently
guard against the worst case over all the possible scenarios.
Our demand-robust model for such problems is a natural
way to overcome this shortcoming by postulating a model
that minimizes this worst-case cost.

1.3 Model and Notation

We define an abstract covering problem in the demand-
robust two-stage model with finite number of scenarios. Let
U be the universe of clients (or demand requirements), and
let X be the set of elements that we can purchase. Ev-
ery scenario is a subset of clients and is explicitly speci-
fied. Let S1, S2, . . . , Sm ⊂ U be all the scenarios. For
every scenario Sk, let sol(Sk) denote the sets in 2X which
are feasible to cover Si: the covering formulation require
that A ⊆ B and A ∈ sol(Sk) ⇒ B ∈ sol(Sk). The
cost of an element x ∈ X in the first stage is c0(x). In
the kth scenario, it becomes costlier by a factor σk i.e.
ck(x) = σkc0(x). In the second stage, one of the scenar-

ios is realized i.e. one of the subsets Si materializes and
the corresponding requirements need to be satisfied. Now,
a feasible solution specifies the elements X0 to be bought
in the first stage, and for each k, a set of elements Xk to be
bought in the recourse stage if scenario k is realized, such
that X0 ∪ Xk contains a feasible solution for client set Sk.
The cost of covering scenario k is c0(X0) + ck(Xk). In the
demand-robust two-stage problem, the objective is to mini-
mize the maximum cost over all scenarios. Note that we pay
for all the elements in X0 even though some of them may
not be required in the solution for any one fixed scenario.

As an example, the demand-robust “rooted” min-cut
problem has X = the edge set of an undirected graph,
a specified root and each Sk specified by a terminal tk.
sol(Sk) is the set of all edge sets that separate tk from r.
As another example, in the demand-robust “rooted” Steiner
tree problem, we have X = the edges of an undirected
graph, a specified root r and each scenario Sk specified by
a set of terminals {tk1 , tk2 , . . .}. sol(Sk) is the set of all edge
sets that connect all terminals {tk1 , tk2 , . . .} to the root r.

1.4 Results

In this paper, we formulate demand-robust versions of
commonly studied covering problems in optimization in-
cluding minimum cut, minimum multi-cut, shortest paths,
Steiner trees, vertex cover and un-capacitated facility loca-
tion, and provide approximation algorithms for these prob-
lems. Our results are summarized in Figure 1. While
many of our results draw from rounding approaches re-
cently developed for stochastic programming problems, we
also show new applications of old metric rounding tech-
niques for cut problems in this demand-robust setting.

1.5 Contributions

One of the main contributions of this paper is to frame
the demand-robust problems and show how this leads to in-
teresting versions of well-studied problems in combinato-
rial optimization. In Section 2, we show how a natural LP
formulation of the demand-robust version of the minimum-
cut problem can be rounded within a logarithmic factor us-
ing ideas for rounding multi-cut problems [8, 13]. In Sec-
tion 3, we also show how a demand-robust version of the
multi-cut problem can also be approximated using further
ideas by taking care of a constant fraction of the demands
per scenario in each iteration of an iterative method (also
used in [13] for the feedback arc set problem). One of
the unanticipated outcomes of these new algorithms for the
demand-robust versions of the cut problems is that we get
the same guarantees for the two-stage stochastic versions of
these problems, thus giving first poly-logarithmic approxi-
mations for them as well (See Section 3.2).
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Problem Deterministic Approximation Stochastic Approximation Demand-robust Approximation

Steiner Tree 1.55 [20] 3.55 [9], 30 [10] 30∗

Vertex Cover 2 (Primal-dual) 2 [19] 4∗

Facility Location 1.52 [15] 5 [19], 3.04 [23] 5∗

Min Cut 1 O(log m)∗ O(log m)∗

Min Multi-Cut O(log r) [8] O(log rm log log rm)∗ O(log rm log log rm)∗

Figure 1. Result Summary . ∗ denotes results in this paper. In the table, m, n and r denote the number of scenarios, number of
nodes and maximum number of pairs per scenario respectively.

In Section 4, we prove a simple structural lemma about
special classes of first-stage solutions to robust covering
problems: Informally, this states that there is a first-stage
solution that is a minimal feasible solution for the union of
demands for a subset of the scenarios in the specification
of the problem whose total cost is no more than twice that
of the optimal. This result holds for a large class of cover-
ing problems including vertex cover, minimum (multi)cut,
Steiner trees and facility location. However, in that section
we mainly apply it to the robust Steiner tree problem to for-
mulate a more structured LP relaxation which is the start-
ing point for applying the methods in [10], finally giving us
the constant-factor approximation result for robust Steiner
trees.

In Section 5, we point out how techniques previously
developed for two-stage stochastic problems that work by
charging the first-stage and second-stage parts of the solu-
tion independently to the corresponding lower bounds in the
relaxation to arrive at the final performance guarantee, can
be used to derive analogous results for the robust versions
of such problems. This remark applies to all covering prob-
lems addressed by Shmoys and Swamy [23] such as vertex
cover and the rounding methods of Ravi and Sinha [19] for
facility location.

Our paper opens up the investigation on a new class of
robust models, and leaves much to be done in this area.

2 Robust Min-cut Problem

Problem Definition We are given an undirected graph
G = (V,E) with a root r. The kth scenario consists of
a single terminal tk. Edge costs c0(e) in the first stage and
σkc0(e) in the recourse stage if the kth scenario is realized.
Here σk is the inflation factor for the kth scenario.

The objective is to find a set of edges E0 to be bought in
the first stage and for each k, a set Ek to be bought in the
recourse stage if scenario k is realized, such that removing
E0 ∪ Ek from the graph G disconnects r from the terminal
tk. The objective is to minimize the maximum cost over all
scenarios. The complexity of robust min-cut (as formulated
above) is still open.

Integer Program Formulation We formulate an integer
linear program for the problem as follows.

min z
z ≥ ∑

e c0(e)(x0
e + σkxk

e) ∀ k
(x0 + xk)(P ) ≥ 1 ∀ r-tk path P,∀ k

xk
e ∈ {0, 1} ∀ e, k

Relaxing the integrality constraints to xk
e ≥ 0 gives us

the linear programming relaxation. While the LP formula-
tion given here has an exponential number of constraints, it
can be solved efficiently by the ellipsoid algorithm where
the separation oracle is just a shortest path computation.

2.1 Algorithm

We start by solving the LP relaxation. Let x̃0
e and x̃k

e

denote the values of the variables in the fractional optimal
solution. Let LPopt denote the optimum value of the LP
relaxation. To round the fractional LP solution, we use the
region growing technique of Garg et al. [8]. We would like
to stress that the notion of volume used here is different from
the LP volume used in [8]. Moreover, in our problem the LP
gives a different metric on the graph for each scenario.

We start by making a copy of the graph G = (V,E) for
the first stage and all the second stage scenarios. We denote
the copies by G0, G1, . . . , Gm. Edge e costs c0(e) in the
graph G0 and σkc0(e) in the graph Gk. First we give some
notation to use in our algorithm description. Let distk be
the shortest path metric defined by the following lengths on
the edges: lk(e) = x̃0

e + x̃k
e , ∀ e ∈ E. Let Bk(tk, ρ) denote

a ball of radius ρ around the terminal tk in the metric distk.
We define the volume Vk(tk, ρ) of the ball as

Vk(tk, ρ) :=
LPopt

m
+

∑
e∈Bk(tk,ρ)

c0(e)(x̃0
e + x̃k

e)

+
∑

e∈δ(Bk(tk,ρ))

c0(e)(ρ − distk(tk, e))

Here distk(tk, e) denotes the metric distance between
tk and the closer endpoint of edge e. Note that the vol-
ume Vk(tk, ρ), for any ρ, is not same as the LP volume.
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Algorithm Robust-Min-cut

1. Let G0, G1, . . . , Gm be copies of G = (V,E).
Initialize E0, E1, . . . , Ek ← φ.

2. Repeat the following:

(a) Find a terminal tk that is connected to r in
the graph Gk ∩ G0 = (V,E \ (E0 ∪ Ek)).

(b) Find a radius ρ < 1/2 for which
Vk(tk, ρ)/Ck(tk, ρ) is minimum.

(c) If V 0
k (tk, ρ) ≥ 1

2Vk(tk, ρ),

• E0 ← E0 ∪ δ(Bk(tk, ρ))
• Remove δ(Bk(tk, ρ)) from G0.

Else V 1
k (tk, ρ) > 1

2Vk(tk, ρ),

• Ek ← Ek ∪ δ(Bk(tk, ρ))
• Remove δ(Bk(tk, ρ)) from Gk.

Until all the terminals are separated from r.

However, it is bounded above by LPopt, which facilitates
Claim 2.1. We split the volume among first and recourse
stage contributions as being the part of the volume con-
tributed by first-stage and second-stage variables respec-
tively.

V 0
k (tk, ρ) =

LPopt

m
+

∑
e∈Bk(tk,ρ)

c0(e)x̃0
e

+
∑

e∈δ(Bk(tk,ρ))

c0(e)(min{ρ − distk(tk, e), x̃0
e})

and

V 1
k (tk, ρ) =

∑
e∈Bk(tk,ρ)

c0(e)x̃k
e

+
∑

e∈δ(Bk(tk,ρ))

c0(e)(max{0, ρ − distk(tk, e) − x̃0
e})

Observe that V 0
k (tk, ρ) + V 1

k (tk, ρ) = Vk(tk, ρ). We define
the cost of the edges crossing the boundary of the ball as
Ck(tk, ρ) :=

∑
e∈δ(Bk(tk,ρ)) c0(e).

Claim 2.1 The analysis technique of Garg et. al [8] can be
used to show that there exists a radius ρ < 1/2 such that
the following holds in the step 2b of the above algorithm:

Ck(tk, ρ) ≤ 2 log m · Vk(tk, ρ). (2.1)

We will show that the total cost paid in any scenario is at
most 4 log m · LPopt. We argue about the cost of the first
stage solution and the cost in the recourse stage respectively
in the next two lemmas.

Lemma 2.2 Cost of the edges E0 is at most 4 log m ·
(LPopt +

∑
e c0(e)x̃0

e).

Proof: In the algorithm, we include the edges δ(Bk(tk, ρ))
in E0 when 2V 0

k (tk, ρ) ≥ Vk(tk, ρ). Therefore, the cost of
the edges of δ(Bk(tk, ρ)) is bounded above by 4 log m ·
V 0

k (tk, ρ). In other words, each unit of volume inside
Bk(tk, ρ) gets a charge of 4 log m. Since we remove the
ball Bk(tk, ρ) from graph G0, each edge in G0 is charged
at most once. Therefore the total cost of edges in E0 is
bounded by

c(E0) ≤ 4 log m
∑

k V 0
k (tk, ρ)

≤ 4 log m(LPopt +
∑

e c0(e)x̃0
e).

Lemma 2.3 Cost of the edges Ek is at most 4 log m ·∑
e σkc0(e)x̃k

e .

Proof: Note that the only time we include edges in Ek is
when V 1

k (tk, ρ) > 1
2 Vk(tk, ρ). Buying edge e in Gk costs

σk times higher. Therefore the costs of the edges in Ek can
be bounded as follows:

c(Ek) ≤ σkCk(tk, ρ) ≤ 4 log m · σkV 1
k (tk, ρ)

≤ 4 log m
∑

e σkc0(e)x̃k
e .

Theorem 2.4 The Algorithm Robust-Min-Cut produces an
O(log m)-approximate solution to the robust min-cut prob-
lem.

Proof: Using Lemmas 2.2 and 2.3 the total cost of any
scenario k can be bounded as follows:

c(E0)+c(Ek) ≤ 4 log m

(
LPopt +

∑
e

c0(e)(x̃0
e + σkx̃k

e)

)

≤ 8 log m · LPopt

Therefore the maximum cost over all scenarios is
O(log m) LPopt as well.

2.2 Robust Min-cut in Trees

In the special case when the input graph G is a tree, we
give a polynomial time exact algorithm for the robust min-
cut problem. The algorithm uses the following fact cru-
cially: if a terminal tk is not separated from the root r by
the first stage solution, then we need to buy only one edge
in the kth scenario in the recourse stage.

Theorem 2.5 There is a polynomial-time exact algorithm
for the robust min-cut problem on a tree.
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Proof: The algorithm for robust min-cut on trees is as
follows. “Guess” c to be the maximum second-stage cost of
an edge to be cut in recourse stage. Since for each terminal,
we need to remove only a single edge to separate it from
the root, there are m choices for this maximum cost (m is
the number of scenarios). All terminals tk, that have first-
stage min-cut cost less than c

σk
are cut in the recourse stage.

The rest of the terminals are separated from the root by a
minimum cost cut in the first stage.

One of the guesses of c is the correct one, for which we
will find a solution that pays at most c in the recourse stage.
Furthermore, the first stage min-cut cost for every terminal
tk that is cut in the first stage by this solution is greater than
c

σk
. Thus, any optimal solution separates tk from the root

in the first stage. Hence, the algorithm returns an optimal
solution.

3 Robust Multi-cut

The robust multi-cut problem is a generalization of the
robust min-cut problem. The problem is defined on a graph
G = (V,E). Here the kth scenario consists of pairs of
terminals {(sk

1 , tk1), (sk
2 , tk2), . . .}. We want to find a set of

edges E0 to buy in the first stage and Ek to buy in the re-
course stage if scenario k is materialized such that E0 ∪Ek

separates each of the pairs {(sk
1 , tk1), (sk

2 , tk2), . . .}. Edge e
costs c0(e) in the first stage and σkc0(k) in the scenario k
of the recourse stage. The objective is to minimize the max-
imum cost over all scenarios.

We first describe an O(log2 rm) algorithm for robust
multi-cut problem, where r is the maximum number of pairs
in any scenario. The algorithm is similar to the one for ro-
bust min-cut.

We formulate an integer linear program for the robust
multi-cut problem as follows.

min z
z ≥ ∑

e(c0(e)x0
e + σkc0(e)xk

e) ∀ k
(x0 + xk)(P ) ≥ 1 ∀ sk

i -tki paths P,∀ k, i
xk

e ∈ {0, 1} ∀ e, k

Relaxing the integrality constraints to xk
e ≥ 0 gives us

the LP relaxation. Let x̃0
e and x̃k

e denote the optimal frac-
tional solution. The rounding procedure is similar to the
rounding procedure for robust min-cut. As before, we main-
tain m graphs G1, G2, . . . , Gm, one for each scenario. We
also maintain G0 for the first stage solution. Each of these
graphs are initialized as copies of G = (V,E). However,
we need to modify the ball growing procedure. In robust
min-cut problem, when a boundary of a ball Bk(tk, ρ) is re-
moved from the graph G0, there are no terminal pairs left
inside the ball. This property no longer holds for the robust
multi-cut problem. Therefore, we recursively apply the al-
gorithm inside each component of the graph formed after

removing the boundary. We give a sketch of the algorithm
here.

We find disjoint balls Bk(sk
i , ρ) and Bk(tki , ρ′) around

sk
i and tki respectively. The radii ρ, ρ′ ≤ 1/4 are cho-

sen such that the cost of the edges crossing the bound-
ary of a ball is within O(log rm) factor of the volume in-
side the ball. If V 1

k (sk
i , ρ) ≥ 1

2Vk(sk
i , ρ) then we include

δ(Bk(sk
i , ρ)) in the edge set Ek and remove δ(Bk(sk

i , ρ))
from the graph Gk. Else if V 1

k (tki , ρ′) ≥ 1
2Vk(tki , ρ′) in-

clude δ(Bk(tki , ρ′)) in Ek and remove δ(Bk(tki , ρ′)) from
the graph Gk.

Otherwise, consider the number of unseparated terminal
pairs (from all scenarios) in Bk(sk

i , ρ) and Bk(tki , ρ′). As-
sume without loss of generality, Bk(sk

i , ρ) is the ball with
smaller number of unseparated terminal pairs. We include
the edges δ(Bk(sk

i , ρ)) in E0 and remove δ(Bk(sk
i , ρ))

from G0. We run the algorithm recursively inside each of
the components formed.

This algorithm is similar to the divide-and-conquer al-
gorithm for Feedback Arc Set problem due to Leighton and
Rao [13]. It divides the graph G0 in various components and
recurses inside each component. In order to bound the ap-
proximation factor of the algorithm, we need to prove that
the depth of the recursion tree is small and the algorithm
pays only a small cost at each level of the recursion.

Lemma 3.1 Depth of the recursion of the above algorithm
is bounded by log (rm).

Proof: Each time our algorithm makes a recursive call, the
number of terminal pairs inside the ball is at most half as
many as the total number of terminal pairs in all scenarios.
Since the total number of terminal pairs we started with is
bounded by rm, the recursion depth is at most log2 rm.

Using an argument similar to that of Lemma 2.2 we can
bound the cost of the algorithm paid for edges in G0 as fol-
lows.

Lemma 3.2 In each level of recursion, each unit of volume
in the graph G0 gets a charge of O(log rm).

Theorem 3.3 There is a polynomial-time O(log2 rm)-
approximation algorithm for the robust multi-cut problem.

Proof: Each unit of volume in the graph Gk is charged
at most once and receives a charge of O(log rm). On
the other hand, each unit of volume in the graph G0 gets
a charge of O(log rm) for O(log rm) levels of recursion.
Therefore the total cost paid by the algorithm for edges
in G0 is O(log2 rm · OPT ), where OPT is the optimum
value of the LP relaxation. Hence, the total cost paid in
any scenario is O(log2 rm · OPT ) + O(log rm · OPT ) =
O(log2 rm · OPT ).
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3.1 Improved approximation

We now show how to improve the approximation fac-
tor to O(log rm log log rm) using the ideas from [6, 7, 22].
We modify our divide-and-conquer algorithm as follows.
For a terminal sk

i , we find a ball Bk(sk
i , ρ) such that

Ck(sk
i , ρ) ≤ Vk(sk

i , ρ) · 4 log (Vk/Vk(sk
i , ρ)) log log Vk,

where Vk =
∑

e c0
e(x

0
e + xk

e) is the total volume. The anal-
ysis technique from [6] shows that such a radius ρ exists.

To bound the total cost of the algorithm, we note that
each unit of volume in the recourse stage graph Gk gets a
charge of O(log rm log log rm) at most once. On the other
hand each unit of volume in graph G0 gets charged multiple
times. Given a graph G and solution to robust multi-cut
problem (x0, x1, . . . , xm), let the total first stage volume of
graph G, V0 =

∑
e c0

e ·x0
e. Also, let cost(V0) denote the cost

of the first stage solution constructed by the above recursive
solution with total first stage volume V0. We bound the cost
paid using the following recurrence relation:
cost(V0) ≤ cost(V 0

k (sk
i , ρ)) + cost(V0 − V 0

k (sk
i , ρ)) +

4 log (Vk/Vk(sk
i , ρ)) log log Vk · V 0

k (sk
i , ρ).

Solving this recurrence, we get that the cost paid for the
first stage edges is O(V0 · log rm log log rm). Hence
the total cost paid by the algorithm is bounded by
O(log rm log log rm) · LPopt which proves the following
theorem.

Theorem 3.4 There exists a O(log rm log log rm)-
approximation to the robust multi-cut problem.

3.2 Stochastic Min-Cut and Multi-Cut

The stochastic min-cut problem is defined as follows:
We are given a graph G = (V,E) with a cost function c0

on the edges and a root node r. We are also given a col-
lection S1, . . . , Sm of m scenarios with pk being the prob-
ability of occurrence of scenario Sk. For each scenario Sk,
there exists a node tk and we demand that r and tk must
be separated if scenario Sk appears in the recourse stage.
Edge e costs c0(e) in the first stage and σkc0(e) if scenario
Sk appears in the recourse stage. The objective function to
minimize the sum of the first-stage cost and the expected re-
course stage cost. Stochastic multi-cut is similarly defined
to be the stochastic counterpart of robust multi-cut problem.

We show that a simple modification to the approximation
algorithms for robust min-cut and multi-cut yields approxi-
mation algorithms for the stochastic version of the problems
with same performance guarantees.

The region growing argument is not directly applicable
to the stochastic min-cut problem for the following reason:
the “volume” V of a ball defined in the proof of robust min-
cut is different from the cost of the LP solution in the ball
unlike the algorithm of Garg et al. [8] for the deterministic

multi-cut. In the case of robust min-cut or multi-cut, the
volume is bounded by cost of the LP solution. Thus, we
could claim that there exists a radius ρ ≤ 1

2 such that the
cost of the cut Ck(tk, ρ) is at most O(log m) · Vk(tk, ρ) in
the robust min-cut problem. But this is not true in the case
of stochastic min-cut problem. Here, we do some prepro-
cessing before applying the region growing argument.

For all scenarios in S := {i | σipi ≤ 1
m2 }, we intro-

duce the constraint in the LP that cut for these scenarios
will be completely a recourse stage solution. We claim
that this transformation does not affect the optimum solu-
tion by a large factor: in an optimum solution if we buy all
the first stage edges helping scenarios in S during the re-
course stage as well, the extra edges bought incur a cost of
at most

∑
i∈S σipi · OPT ≤ |S|

m2 OPT ≤ OPT
m . Hence, we

can ignore these scenarios while constructing our first stage
solution.

Now, when we apply the region growing algorithm for
the rest of the scenarios. The total volume in the graph is
at most V =

∑
k

∑
e c0(e)(x0

e + xk
e). The cost of the LP

solution is at least∑
k,e c0(e)(x0

e + σkpkxk
e) ≥ ∑

k,e c0(e)(x0
e + 1

m2 xk
e)

≥ 1
m2

∑
k,e c0(e)(x0

e + xk
e)

Hence, V ≤ m2 · c(LP ). Now, we can show using the
techniques of Garg et al. [8] that there exists a radius ρ ≤ 1

2
such that Ck(tk, ρ) ≤ 4 log m·Vk(tk, ρ). Hence, by running
the same algorithm described above for the robust min-cut
losing an extra factor of 2, we obtain the following theorem.

Theorem 3.5 There exists a polynomial time algorithm
which returns an O(log m) approximate solution to the
stochastic min-cut problem.

A similar transformation for the stochastic multi-cut
problem will yield the following theorem.

Theorem 3.6 There exists a polynomial time algorithm
which returns an O(log rm log log rm) approximate solu-
tion to the stochastic multi-cut problem.

4 Special types of first-stage solutions and
Steiner trees

In this section, we prove that for any robust two-stage
problem there is an approximate first stage solution with
a special structure: it is a minimal feasible solution for a
subset of scenarios and can be without much cost overhead
extended to a complete solution in the second stage. We use
this structural result to obtain a constant factor approxima-
tion for the robust Steiner tree problem.
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4.1 A Structural Lemma for the First Stage Solu-
tion

Lemma 4.1 Given any problem Π in the robust two-stage
model, there exists a first stage solution X̃0 and a subset
S ⊆ {S1, . . . , Sm} of scenarios, such that X̃0 is a minimal
feasible solution for scenarios in S. Furthermore, it can
be extended to a solution for the remaining scenarios in the
second stage and the cost of the final solution is at most
2 · OPT .

Proof: Consider an optimal integral solution to the robust
problem : let X∗

0 be the first stage solution and X∗
i be the

recourse stage solution in scenario i. Also, let X∗
0i be the

part of first stage solution used in scenario i i.e. it is a min-
imal subset of X∗

0 such that X∗
0i ∪X∗

i is a feasible solution
for scenario i. We construct an alternate first stage solution
X̃0, such that it is a union of feasible solutions for a sub-
set of scenarios. X̃0 will contain elements from the optimal
first stage solution X∗

0 , and also from the optimal recourse
stage solutions X∗

1 , . . . , X∗
m. Let A denote the elements of

X∗
0 in X̃0. We construct X̃0 as follows.

1. Initialize A ← φ and B ← φ.

2. For each scenario i = 1, 2, . . . ,m, repeat the fol-
lowing

(a) X ′
0i = X∗

0i \ A.

(b) If c0(X ′
0i) ≥ c0(X∗

i ), then A ← A ∪ X ′
0i

and B ← B ∪ X∗
i .

3. X̃0 ← A ∪ B.

Our new first stage solution X̃0 = A ∪ B. Note that
A ⊆ X∗

0 . Therefore, c0(A) ≤ c0(X∗
0 ). Also, all elements

in B are charged to disjoint parts of A. Thus, by construc-
tion c0(B) ≤ c0(A) which implies c0(X̃0) ≤ 2 · c0(X∗

0 ).
Clearly, X̃0 is a feasible solution for a subset of scenarios
and it is minimal due to optimality of X∗

0 , X∗
1 , . . . , X∗

m and
the minimality of X∗

0i for each i. Furthermore, we claim
that X̃0 can be extended to a feasible solution for all scenar-
ios in the second stage such that the cost of final solution is
at most 2 · OPT .

Consider some scenario which is not covered in the first
stage by X̃0, say i. This implies that when scenario i
was considered in the above sequence, c0(X ′

0i) < c0(X∗
i ).

Thus, we can buy X ′
0i in the recourse stage and charge it

to the cost of X∗
i . Let the new recourse stage solution be

X̃i = X∗
i ∪ (X ′

0i \ A). Hence, ci(X̃i) ≤ 2 · ci(X∗
i ) as

ci(x) = σi · c0(x). Thus, the final cost of the new solution
is
max

i
{c0(X̃0) + ci(X̃i)} ≤ max

i
2 · (c0(X∗

0 ) + ci(X∗
i ))

≤ 2 · OPT

The above structural result about the first-stage solution
of a covering problem in the robust two-stage model also
holds for the problem in the stochastic two-stage model.
Starting with an integral optimum solution to the stochastic
version of the problem (say X∗

0 , X∗
1 , . . . , X∗

m), the special
solution can be constructed as in the procedure described
above. Let the constructed solution be X0, X1, . . . , Xm.
From the proof of Lemma 4.1, we have that ci(Xi) ≤
2 · ci(X∗

i ), i = 0, 1, . . . ,m. Thus, the stochastic objec-
tive for the new solution is,

c0(X0) +
m∑

i=1

pici(Xi) = c0(X0) +
m∑

i=1

piσic0(Xi)

≤ 2(c0(X∗
0 ) +

m∑
i=1

piσic0(X∗
i ))

Thus, the above lemma gives an alternate proof for a sim-
ilar lemma in [10] that proves that there is a connected first-
stage solution for the stochastic Steiner tree problem which
costs at most thrice the optimal.

4.2 Robust Steiner Tree

We use the structural lemma proved above to give a con-
stant factor approximation for the robust Steiner tree prob-
lem. The problem is defined on a graph G = (V,E) with
a root vertex r and a cost function c on the edges. In the
second stage one of the m scenarios materializes. The kth

scenario consists of a set Sk ⊆ V of terminals and an infla-
tion factor σk. An edge e costs c0(e) in the first stage and
ck(e) = σkc0(e) in the kth scenario of the second stage. A
solution to the problem is a set of edges E0 to be bought
in the first stage and a set Ek in the recourse stage for each
scenario k. The solution is feasible if E0 ∪ Ek contains a
Steiner tree connecting Sk ∪ {r}. The cost paid in the kth

scenario is c0(E0) + σk · c0(Ek). The objective is to mini-
mize the maximum cost over all scenarios.

The structural lemma (Lemma 4.1) shows that there is
a first stage solution which is feasible for some subset of
the scenarios. For the robust Steiner tree problem, it means
there is a tree solution for the first stage that can be extended
to a final solution within twice the cost of the optimum so-
lution. Therefore, we formulate the problem with the ad-
ditional constraint that the first stage solution should be a
tree. This means that the path from any terminal to the root
consists of a portion of only recourse edges, followed by a
portion consisting of only first-stage edges. The flow-based
IP formulation for the robust Steiner tree problem is shown
in (4.2)-(4.8).
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min z (4.2)

∀ k, z ≥
∑
e∈E

c0(e) · (x0
e + σk · xk

e) (4.3)

∀ t ∈ Sk,∀ k,
∑

e∈δ+(t)

(r0
e(t) + rk

0 (t)) ≥ 1 (4.4)

∀ v /∈ {t, r}, ∀ t ∈ Sk,∀ k,∑
e∈δ+(v)

r0
e(t) + rk

e (t) =
∑

e∈δ−(v)

r0
e(t) + rk

e (t) (4.5)

∑
e∈δ−(v)

r0
e(t) ≤

∑
e∈δ+(v)

r0
e(t) (4.6)

∀ e,∀ t ∈ Sk,∀ k,

rk
e (t) ≤ xk

e (4.7)

rk
e (t), xk

e ∈ {0, 1} (4.8)

This formulation is similar to one used by Gupta et al.
in [10], where they give a constant factor approximation for
the stochastic Steiner tree problem. The x0 variables are in-
dicators for the edges in the first stage, and, x1, x2, . . . , xk

are the indicators for recourse stage edges. For a termi-
nal t in scenario k, the variable rk

e (t) indicates whether
edge e is used in the recourse portion of t’s path to the
root, and r0

e(t) indicates whether it is used in the first-stage
portion of the path. These flow variables are directed; for
e = (u, v), the variable rk

uv(t) denotes the flow of com-
modity t along a recourse edge in the direction u to v.
Given these directed flow variables, the cut-sets are de-
fined as δ+(S) = {e = (u, v) : u ∈ S, v /∈ S} and
δ−(S) = δ+(V \ S). Note, however, that the edge installa-
tion variables xk

e refer to undirected edges.
Consider the LP relaxation of the above IP formulation

obtained by dropping the integrality constraints. Let zIP be
the cost of the optimum IP solution, z̃ be the optimum LP
solution and OPT be the optimum solution of the original
instance. From Lemma 4.1, we know that zIP ≤ 2OPT .
The fractional LP solution can be rounded using the same
rounding scheme as that of Gupta et al. [10]. Thus, the fol-
lowing lemma can be derived from [10].

Lemma 4.1 ([10]) Let z̃, x̃0, x̃1, . . . , x̃k be a fractional so-
lution to the linear relaxation of the IP in (4.2)-(4.8). It can
be rounded to obtain an integral solution T 0, T 1, . . . , T k,
such that T 0 ∪ T i connects Si ∪ {r}, ∀ i. Furthermore,
c0(T 0) ≤ 15 · ∑

e∈E c0(e) · x0
e and ∀i, ci(T i) ≤ 15 ·∑

e∈E ci(e) · xi
e.

Theorem 4.2 The Robust Steiner Tree Problem can be ap-
proximated within a factor of 30 in polynomial time.

Proof: Lemma 4.1 shows that the optimum fractional so-
lution of the LP relaxation can be rounded to an integral so-
lution such that cost of each scenario is increased by at most
a factor of 15. Thus, zIP ≤ 15 · z̃ ≤ 30 · OPT . Hence,
we obtain a 30-approximation for the Robust Steiner Tree
problem.

5 Other Robust Optimization Problems

In this section, we consider some other combinatorial
problems in the two-stage robust model and give approxi-
mation algorithms for them.

5.1 Covering Problems of Shmoys and
Swamy [23]

Two-stage stochastic set covering problems were studied
in a general setting by Shmoys and Swamy in [23], where
they showed how a ρ-approximation algorithm for the sin-
gle stage problem gives a 2ρ-approximation for the corre-
sponding two stage stochastic version. The key idea is to
observe that every element will be at least half-covered by
the first- or second-stage sets that contain it. By scaling up
both first- and second-stage by a factor of two, and using the
rounding algorithm on both scaled solutions, one obtains a
solution with the promised guarantee. A major contribution
of [23] is a polynomial-time approximation scheme to solve
the two-stage stochastic programs even though the underly-
ing problem may be #P -complete.

A simple application of the above method to polynomial-
sized robust problems gives a simple 2ρ- approximation al-
gorithm for covering problems allowing a ρ-approximate
single stage rounding method.

Consider the demand-robust version of minimum vertex
cover: nodes have different costs in the first stage and in
each of the scenarios in the second stage, while each sce-
nario consists of a subgraph of the complete graph on the
nodes. The goal is to choose some vertices in the first
stage and for every scenario, augment the chosen set at the
second-stage costs to form a vertex cover of the edges in
this scenario. A simple corollary of the above observation
along with the classical 2-approximation rounding result for
regular vertex cover gives the following simple result.

Theorem 5.1 The demand-robust vertex cover problem can
be approximated within a factor of 4.

5.2 Robust Facility Location

In this problem we are given a set of facilities F and a
set of clients S1, S2, . . . , Sm for each scenario. A metric
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cij specifies the distances between every client and every
facility. Facility i has a first-stage opening cost of f0

i , and
a recourse cost of fk

i in scenario k. Note that in this case
we can handle general second stage costs unlike the model
stated earlier where the second stage costs change by certain
inflation factors σ1, σ2, . . . , σm.

Our approximation algorithm proceeds along the lines of
the LP-rounding algorithm due to Ravi and Sinha [19]. The
algorithm in [19] rounds a fractional solution such that the
cost of each scenario in the integral solution is bounded by
5 times its cost in the fractional solution. Thus, the same
techniques give a 5-approximation for robust facility loca-
tion.1

Theorem 5.2 The demand-robust facility location problem
can be approximated within a factor of 5.

6 Conclusion and Open Problems

In this paper, we introduce a new model called demand-
robustness and give approximation algorithms for some
combinatorial problems in this model. There seems to be
an interesting parallel between stochastic and robust set-
tings. For example, the rounding techniques for the stochas-
tic Steiner tree problem can be adapted to the robust version
of the same problem. Similarly, the rounding technique
used for robust min-cut and multi-cut can be adapted to
stochastic min-cut and multi-cut with a slight modification.
It would be interesting to prove a general result showing
that a ρ-approximation for a stochastic optimization prob-
lem leads to a O(ρ)-approximation for the robust version of
the problem and vice-versa.
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