
Improved Approximation Ratios for Traveling
Salesperson Tours and Paths in Directed Graphs

Uriel Feige1 and Mohit Singh2,�

1 Microsoft Research and Weizmann Institute
uriel.feige@weizmann.ac.il

2 Tepper School of Business, Carnegie Mellon University
mohits@andrew.cmu.edu

Abstract. In metric asymmetric traveling salesperson problems the in-
put is a complete directed graph in which edge weights satisfy the triangle
inequality, and one is required to find a minimum weight walk that visits
all vertices. In the asymmetric traveling salesperson problem (ATSP) the
walk is required to be cyclic. In asymmetric traveling salesperson path
problem (ATSPP), the walk is required to start at vertex s and to end
at vertex t.

We improve the approximation ratio for ATSP from 4
3 log3 n �

0.84 log2 n to 2
3 log2 n. This improvement is based on a modification of

the algorithm of Kaplan et al [JACM 05] that achieved the previous best
approximation ratio. We also show a reduction from ATSPP to ATSP
that loses a factor of at most 2 + ε in the approximation ratio, where
ε > 0 can be chosen to be arbitrarily small, and the running time of the
reduction is polynomial for every fixed ε. Combined with our improved
approximation ratio for ATSP, this establishes an approximation ratio
of ( 4

3 + ε) log2 n for ATSPP, improving over the previous best ratio of
4 loge n � 2.76 log2 n of Chekuri and Pal [Approx 2006].

1 Introduction

One of the most well studied NP-hard problems in combinatorial optimization
is the minimum Traveling Salesperson (TSP) problem [8]. The input to this
problem is a graph with edge weights, and the goal is to find a cyclic tour of
minimum weight that visits every vertex exactly once. In the symmetric version
of the problem, the graph is undirected, whereas in the asymmetric version the
graph is directed. In the metric version of the problem the input graph is a com-
plete graph (with anti-parallel edges in the directed case), and the edge weights
(denoted by w) satisfy the triangle inequality w(u, v)+w(v, w) ≥ w(u, w). (Most
often, not all edge distances are given explicitly, but rather they can be com-
puted efficiently. For example, they may be shortest path distances between
the given points in some input graph, or the distances between points in some
normed space.) In the non-metric version a cyclic tour might not exist at all,
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and deciding whether such a tour exists is NP-hard (being equivalent to Hamil-
tonicity). In the metric version of the problem a cyclic tour always exists, and
we shall be interested in polynomial time approximation algorithms that find
short cyclic tours. The performance measure of an algorithm is its approxima-
tion ratio, namely, the maximum (taken over all graphs) of the ratio between
the weight of the cyclic tour output by the algorithm (or the expected weight,
for randomized algorithms) and the weight of the shortest cyclic tour in the
given graph. Throughout, we use n to denote the number of vertices in the input
graph, and the approximation ratio is often expressed as a function of n.

In this paper we shall be dealing only with metric instances of TSP. In this
case, every tour that visits every vertex at least once can be converted into
one that visits every vertex exactly once (by skipping over redundant copies of
vertices), without increasing the weight of the tour. A cyclic tour that visits
every vertex at least once will simply be called a tour, and the TSP problem is
equivalent to that of finding the shortest tour.

For symmetric TSP, the well known algorithm of Christofides [6] achieves
an approximation ratio of 3/2. Despite much effort, no better approximation
algorithm is known, except for some special cases [1,2]. Considerable efforts have
been made to improve over the 3/2 approximation ratio using approaches based
on linear programming relaxations of TSP. Specifically, a linear programming
bound of Held and Karp [9] is conjectured to provide a 4/3 approximation ratio.
In terms of negative results, it is known that there is some (small) ε such that
symmetric TSP is NP-hard to approximate within a ratio of 1 + ε (see [13] for
explicit bounds on ε).

The asymmetric TSP (ATSP) problem includes the symmetric version as a
special case (when anti-parallel edges have the same weight), and hence, is no
easier to approximate. The known hardness of approximation results are of the
form 1+ ε, with a slightly larger ε than for the symmetric case (see [13]). There
are known examples for which the Held-Karp lower bound for ATSP is a factor
of 2 away from the true optimum [4] (whereas for symmetric TSP this lower
bound is at most a factor of 3/2 from the optimum [15,14]).

Frieze, Galbiati and Maffioli [7] designed an approximation algorithm for
ATSP with approximation ratio O(log n). Blaser [3] notes that the approxi-
mation ratio proved in [7] is precisely log2 n (with leading constant 1), and then
designs an algorithm for which he shows an approximation ratio of 0.999 log2 n.
Subsequently, Kaplan et al [10] designed an algorithm with approximation ra-
tio 4/3 log3 n � 0.842 log2 n (using a technique that they apply to other re-
lated problems as well). In this paper, we provide a modest improvement in the
leading constant of the approximation ratio. We show that the analysis of the
algorithm of Kaplan et al [10] is not tight and it achieves a better ratio of
0.79 log2 n. We then give an improved algorithm which returns a solution with ap-
proximation ratio of 2

3 log2 n. This result is summarized in the following
theorem.

Theorem 1. Given a complete directed graph G = (V, E) with a weight function
w satisfying triangle inequality, there exists a polynomial time algorithm which
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returns a Hamiltonian cycle of weight at most 2
3 log2 n · OPT where OPT is the

weight of the minimum weight Hamiltonian cycle.

Another interesting variant of the ATSP problem is the asymmetric traveling
salesman path problem in which we are not required to find a Hamiltonian
cycle of minimum weight but a Hamiltonian path between two specified ver-
tices s and t. Lam and Newman [12] gave an O(

√
n)-approximation algorithm

to the problem. Chekuri and Pal [5] used the 2Hn-approximation algorithm
of Kleinberg and Williamson [11] for the ATSP problem in combination with
an augmentation lemma to obtain a 4Hn-approximation algorithm for the AT-
SPP problem. We show that ATSPP problem can be approximated nearly as
well as the ATSP problem by showing a general reduction which converts an
α-approximation algorithm for the ATSP problem into a (2+ε)α-approximation
algorithm for the ATSPP problem. This involves generalizing and strengthening
the augmentation lemma of [5] and using it to obtain a dynamic programming
based algorithm for the ATSPP problem which we show in the following result.

Theorem 2. Given a complete directed graph G = (V, E) with a weight function
w satisfying triangle inequality, vertices s and t and an α-approximation algo-
rithm to the ATSP problem, there exists an algorithm which returns a Hamilto-
nian path from s to t of weight at most (2 + ε)α · OPT where OPT is the weight
of the minimum weight Hamiltonian path from s to t. The running time of the
algorithm is polynomial in the size of the graph for any fixed ε > 0.

Observe that it is trivial to obtain an α-approximation for the ATSP from an
α-approximation to ATSPP problem. The above theorem shows that both these
problems can be approximated to nearly the same factor. Along with the Theo-
rem 1 and Theorem 2, we have the following corollary.

Corollary 1. Given a complete directed graph G = (V, E) with a weight func-
tion w satisfying triangle inequality, vertices s and t and a fixed ε > 0, there
is a polynomial time algorithm which returns a Hamiltonian path from s to t of
weight at most (4

3 + ε) log2 n · OPT where OPT is the weight of the minimum
weight Hamiltonian path from s to t.

In Section 2 we prove Theorem 2 and in Section 3 we prove Theorem 1.

2 From ATSP to ATSPP

In this section we show that an α-approximation algorithm AlgTSP for the ATSP
problem with metric weights can be used to obtain a (2 + ε)α-approximation al-
gorithm for the ATSPP problem with metric weights.

First a few definitions. Given a graph G = (V, E) we call a (s, t)-walk in G
spanning if it visits every vertex of G at least once. Vertices and edges can appear
more than once on a walk. A tour is an (s, s)-walk which is spanning. Observe that
a tour is independent of vertex s. Given a directed path P and vertices u and v
on P such that v occurs after u on P , we denote P (u, v) to be the sub-path of P
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starting at u and ending at v. Given two paths P and Q, we say that Q respects
the ordering of P , if Q contains all vertices of P , and for every two vertices u and
v in P , u appears before v in Q iff u appears before v in P .

In an instance I = (G, w, s, t) of the ATSPP problem we are given a directed
graph G with a weight function w on edges which satisfies the triangle inequality
and the task is to find a minimum weight Hamiltonian path from s to t. In an
instance I = (G, w) of ATSP the task is to find a minimum weight Hamiltonian
cycle.

Observe that as the weights satisfy triangle inequality, any spanning (s, t)-
walk can be “shortcutted” to obtain a Hamiltonian path from s to t of no
greater weight, and every tour can be “shortcutted” into Hamiltonian Cycle
of no greater weight. Hence, it is enough to find a spanning (s, t)-walk for the
ATSPP problem and a tour for the ATSP problem.

2.1 Overview

Here we present an overview of our reduction from ATSPP to ATSP. For every
fixed ε > 0, this reduction works in polynomial time, and transforms a factor α
approximation algorithm for ATSP into a factor (2 + ε)α approximation for
ATSPP.

Let s denote the starting vertex and t denote the ending vertex for ATSPP,
and let OPT denote the weight of the minimum weight spanning path from s
to t. Assume for simplicity that the value of OPT is known. Without loss of
generality, we assume that for every pair of vertices (u, v) the graph contains an
edge (u, v) whose weight is the shortest distance from u to v.

Let d(t, s) denote the distance from t to s in the input graph (this distance
might be infinite). The difficult case is when OPT < d(t, s), and this is the
case that we will address in this overview. In the first phase of the reduction,
we modify the input graph as follows. We remove all edges entering s and all
edges exiting t, and put in an edge (t, s) of weight min[d(t, s), OPT ]. We update
the shortest path distance between all pairs of vertices not involving s and t to
reflect the existence of this new edge.

Observe that the new graph has a ATSP tour of weight at most 2OPT . In
the second stage we use the approximation ratio for ATSP to find a simple tour
(with no repeated vertices) of weight at most 2αOPT . Observe that in this tour
s follows immediately after t, because the only edge leading out of t leads into s.
Remove the edge (t, s) from the tour, which now becomes a spanning (s, t) path
of weight at most (2α − 1)OPT .

Unfortunately, we are not done at this point. The problem is that the weight
of an edge (u, v) of the path might be shorter than its corresponding weight in
the original graph, due to the fact that the shortest path distance between (u, v)
decreased when we added the edge (t, s). We replace every such problematic edge
(u, v) with the path u − t − s − v. Now the edge (t, s) reappears in our spanning
path. Since the edge (t, s) might have weight more than OPT in the original
graph, the spanning path that we have does not correspond to a spanning path
of the same weight in the original graph.
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In the next phase of our reduction, we remove all copies of (t, s) from the
spanning path. This results in breaking the path into a collection of paths from
s to t, such that every vertex (other than s and t) appears on exactly one of
these paths. If the number of paths is r, then the sum of weights of all the paths
is at most (2α − r)OPT , because altogether we removed r copies of (t, s).

The last stage of our reduction uses the following structural lemma which
generalizes and strengthens the augmentation lemma of [5].

Lemma 1. For every collection of k paths P1, . . . , Pk between s and t such that
no vertex appears in more than one path (some vertices might not appear on any
of the paths), there is a single path between s and t that visits all vertices in
∪k

i=1Pi, respects the order of each of the original paths, and weighs no more than
the weight of the original paths plus k times the weight of minimum ATSPP.

The proof of this lemma appears in section 2.3.
Having established the lemma, we can limit ourselves to finding an ATSPP

that respects the order of the vertices on the paths, and then get a (2α − r +
r)OPT = 2αOPT approximation ratio. Such a path can be found by dynamic
programming in time roughly nr. If r is constant, this results in a polynomial
time 2α approximation for ATSPP.

To make the algorithm polynomial also when r is not constant, we lose (1+ ε)
in the approximation ratio (the running time will be exponential in 1/ε). Rather
than merging all paths simultaneously, merge only k paths at a time, where
k = 1/ε. Doing so using dynamic programming takes time roughly nk, costs k
times OPT, and decreases the number of paths by k − 1.

Now, we expand on the overview given above. Before giving the algorithm
and proof of Theorem 2 we first prove the structural result in Lemma 1.

2.2 Proof of Lemma 1

Proof of Lemma 1: Let P denote the optimal ATSPP from s to t. We maintain
a path Q starting from s and prefix paths Qi of paths Pi with the property that
Q visits the vertices of ∪iQi and respects the order of each Qi. In each iteration
we will extend Q and at least one of Qi maintaining the above property. For
each path Pi, we maintain a vertex fronti which is the next vertex to be put in
order, that is, the successor of Qi in Pi. We maintain an invariant that all front
vertices, except possibly frontj , occurs on P (v, t) where v is the last vertex on
Q and frontj is the front of path Pj which contains v. We initialize Q = (s) and
Qj = (s) and frontj to be the second vertex in Pj for each j. The invariant is
trivially satisfied at initialization.

Now, we describe an iteration. Let v be the last vertex of Q and Pj be the
path containing v. Let u = fronti be the first vertex on path P (v, t) (sub-path
of P starting at v and ending at t) among all front vertices. First we assume
that i �= j and describe the updates. Let w be the last vertex on Pj which oc-
curs on P (s, u), i.e., each vertex occurring after w on Pj occurs after u on P . Now,
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extend Q ← Q-Pj(v, w)-P (w, u). We update Qj = Qj-Pj(v, w), Qi = Qi-(u). We
also update frontj to be vertex succeeding w in Pj and fronti to be the vertex
succeeding old fronti in Pi. In this case we say that we jumped out of path Pj to
Pi using the sub-path P (w, u) of the optimal path P . Observe that last vertex of
Q is u. The front vertices of all paths, except for Pi and Pj , do not change and
each of them occur after u by the choice of u as the first front vertex on path
P (v, t). Hence, the invariant is satisfied for all paths except possibly for path Pj

(we do not need to check for path Pi as it contains u). The new frontj cannot
occur on P (s, v) else it would have chosen instead of w and hence it occurs after
v on P proving the invariant in this case as well.

Now if i = j, we do not use any sub-path of P and do not jump out of Pi.
Let w be the last vertex on Pi occurring on P (s, u). We extend Q by using a
sub-path of Pi as follows: Q ← Q-Pi(v, w). We update Qi = Qi-Pi(v, w). We also
update fronti to be vertex succeeding w in Pi. We now show that the invariant
holds in this case as well. The last vertex of Q is w which is on Pi. Also, w occurs
on P (s, u) but frontj for any j �= i occurs after u on P by the choice of u. Hence,
the invariant holds in this case as well.

s t

a1

a4 a5 a7

b4 b5

c4 c5

s t
a4 b5 a5 c5a7

s a4

a6 a8

s t

a1

a4 a5 a7

b4 b5

c4 c5

s
t

a4 b5 a5 c5a7

s a4

a6 a8

b6b6

a5 a6 a7 b5

P1

P2

P3

P

Q Q

Q1

Q2

Q3

P

Q1

Q2

Q3

(a) (b)

Fig. 1. In (a), we have paths P1 = (s, a1, . . . , t), P2 = (s, b1, . . . , t), P3 = (s, c1, . . . , t),
Hamiltonian path P . Q is the current path which respects the ordering of each Qi

where Q1 = (s, a1, . . . , a4), Q2 = (s, b1, . . . , b4), Q3 = (s, c1, . . . , c4). Also front1 = a5,
front2 = b5, front3 = c5. Observe that b5 is the first front vertex in P (a4, t). Also, a7 is
the last vertex on P1 which is on P (a4, b5). Hence, we extend Q by adding the sub-path
P1(a4, a7) and P (a7, b5). Q1 is extended till a7 and Q2 till b5. This is shown in (b).

In every step either one or two paths advance their front vertex (either path
i or both path i and path j, using the notation of the above explanation). We
iterate till Q ends at t. Clearly, the property that Q visits the vertices of ∪iQi in
the order of each Qi is maintained in each update. See Figure 1 for an example.
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We now claim that the total weight of the path Q found is no more than
the sum of weights of individual paths, plus k times the weight of the optimal
ATSPP solution P . To show this we first argue that the sub-paths of Pi in Q
are edge-disjoint for each i. We then show that for any path Pi all jumps out of
Pi use disjoint sub-paths of the ATSPP P . Hence, any edge of P can be used at
most k times.

The first claim follows from the fact that any subpath of Pi used in Q starts at
one vertex before the current fronti and ends at one vertex before the new fronti.

Now we prove the second claim. Observe that if we jump out of u and v on
Pi and u occurs before v in Pi then the jump at u occurs before the jump at v.
Also, v cannot lie on the sub-path of P which is traversed after jumping from
Pi at u as otherwise we would jump out at v and not at u. Now, we claim that
u lies before v in P and hence u cannot lie on the sub-path of P traversed after
jumping from v (which contains nodes occurring after v in P ). Indeed, let w
be the front vertex of Pj where the jump sub-path starting from u ends. By
definition u is the furthest vertex of Pi which precedes w on P . Hence, v lies
after w on P and therefore after u. As no two jumps out of Pi have a common
vertex, they are clearly edge-disjoint. �

We give the following example showing that the Lemma 1 is tight when k = 2.
The paths to be put in order are P1 = (s, a1, a2, . . . , a2n, t) and P2 =

(s, b1, b2, . . . , b2n, t) while the optimal ATSPP P = (s, a1, b2, b1, a3, a2, b4, b3, a5,
a4, . . . , t) as shown in Figure 2.

s t

a1
a2 a3 a4 a5

b1
b2 b3 b4 b5

s ta1 b2 b1 a3 a2 b4 b3 a5

s ta1 b2 b1 b2 b1 a3 a2 a3 a2 b4 b3

P1

P2

P

Q

Fig. 2. Tight Example

The weight of the edges (a2i+1, a2i) and (b2i, b2i−1) is one for all 1 ≤ i ≤ n. The
weight of the edges (a2i, a2i+1) and (b2i−1, b2i) is two for all 1 ≤ i ≤ n. The weight
of rest of the edges in P1 ∪P2 ∪P is zero. Observe that w(P1) = 2n, w(P2) = 2n
and w(P ) = 2n. The minimum weight spanning walk Q which respects the or-
dering of both P1 and P2 must be Q = (s, a1, b2, b1, b2, b1, a3, a2, a3, a2, b4, . . . , t)
and w(Q) = 2n + 2n + 2 · 2n = 8n which is exactly w(P1) + w(P2) + 2 · w(P ).
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We do not know whether Lemma 1 is tight when k > 2, though there are
examples in which any path that spans ∪iPi and respects the ordering of each
path Pi must weigh at least

∑k
i=1 w(Pi)+(k−1)·w(P ), where P is the minimum

ATSPP. Details omitted due to space limitations.

2.3 Algorithm for ATSPP

In this section, we prove Theorem 2. We show that the algorithm AlgPath in
Figure 3 gives the guarantee as claimed in Theorem 2.

Input: An instance I = (G, w, s, t) of ATSPP, an α-approximation algorithm
AlgTour to ATSP, and a parameter ε > 0.

1. By trying O( log n
ε

) options, obtain a value of g such that (1− ε
8 )·OPT ≤ g ≤ OPT .

2. Remove all edges incident into s and also edges incident out of t. Include the
edge (t, s) with the weight as g. Let this modified graph be Ĝ and the modified
weight function ŵ. Let KG = (V, E(KG)) be the complete directed graph on V .
Compute m̂w : E(KG) → R+, the metric completion of the ŵ, i.e., m̂w(u, v) is
the shortest distance from u to v under the weight function ŵ.

3. Find the α-approximate solution C given by AlgTour on the complete graph KG
under the weight function m̂w. Let T be the tour obtained in Ĝ after replacing
each edge (u, v) by its corresponding shortest path in Ĝ.

4. Let r be the number of times edge (t, s) is chosen in T . Remove all copies of
(t, s) to decompose T into a collection of r (s, t)-paths P = {P1, . . . , Pr} which
together span V . Shortcut these paths to ensure that each vertex except s and t
is in exactly one of them.

5. Return Q = Weave(G,P , ε).

Output: A (2 + ε)α-approximate solution to I.

Fig. 3. Algorithm AlgPath

Figure 4 describes the algorithm Weave which given a collection of (s, t)
paths P returns a single (s, t) path Q which respects the order of each path
Pi ∈ P and is of small weight. This is used as a subroutine in the algorithm
AlgPath.

Lemma 2. Given a collection of r (s, t)-paths P = {P1, . . . , Pr} and a pa-
rameter ε > 0, algorithm Weave(P , s, t, ε) returns a single (s, t)-path spanning
all vertices in P and respecting the order of vertices of weight no more than∑r

i=1 w(Pi) + (1 + ε/8)r · OPT , where OPT is the weight of the optimal (s, t)-
spanning path. The running time of the algorithm is O(n

1
ε +O(1)).

Proof. In any iteration, if we replace paths P1, . . . , Pk by Q, then Lemma 1
guarantees that such a path exist of weight no more than w(Q) ≤

∑k
i=1 w(Pi)+
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Input: A collection P = {P1, . . . , Pr} of r (s, t)-paths, and a parameter ε > 0.

1. If r = 1 return P1. Otherwise let k = min{ 9
ε
, r}.

2. Use dynamic programming to a find a minimum weight path P ′ that spans the
vertices of (P1, . . . , Pk) and respects the order of each of the paths P1, . . . Pk. This
can be done by inductively computing the weight of the minimum weight (s, v)-
path that spans all vertices of Q1, . . . Qk and ends at v, where for each 1 ≤ i ≤ k,
Qi is some prefix path of Pi, and v is the last vertex on one (or more) of the Qi.
For every choice of Q1, . . . Qk and v, a minimum weight corresponding path can
be found by examining at most k previously computed weights that correspond
to paths in which one of the Qi is shorter by one vertex.

3. Let P ′ = P ∪ P ′ \ {P1, . . . , Pk}.
4. Return Weave(G,P ′, ε).

Output: (s, t)-path Q spanning vertices in P , which respects the order of each path
Pi ∈ P and of weight at most

∑r
i=1 w(Pi) + (1 + ε/8)r · OPT , where OPT is the

weight of the optimal (s, t)-spanning path.

Fig. 4. Algorithm Weave

k · OPT which the dynamic program will find. Hence, in each iteration, the
number of paths reduce by k − 1 and the weight of the new collection of paths
increases by k·OPT . Hence, the total increase in weight is at most (l+r−1)OPT
where l is the number of iterations. But l ≤ 
 r

9/ε−1� ≤ εr
8 + 1 for ε < 1. Hence,

the weight of Q is at most
∑r

i=1 w(Pi) + (1 + ε/8)r · OPT .
The running time of the algorithm is a polynomial in n times the number of

possible choices of prefix lengths in step 2 of algorithm Weave(P , s, t, ε). This
number is O(n

1
ε ). �

Now, we prove Theorem 2.

Proof. First, we show that one out of a polynomial number of guesses satisfies
the conditions of Step 1. Indeed, the algorithm can first find a lower bound L
and upper bound U such that U ≤ nL(a trivial n-approximation would suffice).
We start by setting g = U and running the algorithm. We then decrease g by
factor of (1 − ε

8 ) and run it again. We iterate in such a manner till the value of
g reaches L. Observe that each guess of g will yield a feasible solution and we
can return the best solution obtained. Also, the total number of guesses needed
is log1− ε

8

L
U = O( log n

ε ). Hence, we assume that we have the guess which satisfies
the conditions of Step 1 of the algorithm.

Now, observe that KG = (V, E(KG)) with the weight function m̂w satisfies
the triangle inequality. Also, the optimal Hamiltonian cycle in KG weighs exactly
OPT + g where OPT is the weight of optimal (s, t)-spanning path in G under
w. Hence, we must have that weight of Hamiltonian cycle C found by AlgTour
is m̂w(C) ≤ α(OPT + g) ≤ 2αOPT as g ≤ OPT . If the edge (t, s) is chosen
in T r times then removing all copies of (t, s) decomposes T into a collection
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of r (s, t)-paths P1, . . . , Pr which together span V and such that
∑r

i=1 w(Pi) ≤
2α · OPT − rg. Now in Step 5, algorithm Weave returns a single (s, t)-spanning
path Q of weight at most

∑r
i=1 w(Pi) + (1 + ε/8)r · OPT from Lemma 2. Also,

rg ≤ α(OPT + g) and g ≥ (1 − ε/8) · OPT imply that r ≤ (2 + ε/8)α ≤ 4α for
ε < 1. Hence, the weight of Q,

w(Q) ≤
r∑

i=1

w(Pi) + (1 + ε/8)r · OPT ≤ 2α · OPT − rg + (1 + ε/8)r · OPT

≤ 2α · OPT +
ε

4
r · OPT ≤ (2 + ε)α · OPT

where the last two inequalities follow from the fact that g ≥ (1− ε/8) ·OPT and
r ≤ 4α. �

3 An Improved Approximation Algorithm for ATSP

Kaplan et al [10] show an 4 log2 n
3 log2 3 � .842 log2 n-approximation for the ATSP

problem. It is the current best known algorithm as well. In this section, we
first show that their analysis is not tight and can be improved to log2 n

log2 (
√

2+1)
�

.787 log2 n-approximation. Then, we show an improved algorithm which gives a
better approximation guarantee of 2

3 log2 n.
A subgraph of the input graph is called Eulerian if the indegree of each vertex

is equal to its outdegree. A connected Eulerian subgraph has an Eulerian tour
that visits every edge exactly once, and moreover, such a tour can be found
efficiently. When edge weights of the original graph satisfy the triangle inequality,
standard shortcutting arguments show that there exists a tour of weight no more
than the weight of any Eulerian subgraph. Hence in what follows, we will ensure
that we return a connected Eulerian subgraph which has low weight. Also note
that for any Eulerian graph the connected components are exactly the strongly
connected components.

3.1 Improving the KLSS Analysis

The KLSS algorithm [10] starts from using the following linear program LP-
ATSP that enforces sub-tour elimination constraints for subsets of size two.

min
∑

e∈E

cexe

∑

e∈δ+(v)

xe =
∑

e∈δ−(v)

xe = 1 ∀v ∈ V

x(u,v) + x(v,u) ≤ 1 ∀u, v ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E
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Here δ+(v) is the set of edges going out of v and δ−(v) is the set of edges going
into v. The above LP-ATSP is a relaxation of the ATSP problem, because for
every Hamiltonian cycle, assigning xe = 1 iff edge e belongs to the Hamiltonian
cycle is a feasible solution of the LP.

The following is the key lemma used in the KLSS [10] algorithm. The lemma
is based on decomposing the optimal solution to LP-ATSP to get the following
guarantee.

Lemma 3. [10] Given an edge-weighted directed graph G, there exists a poly-
nomial time algorithm which using the optimal solution to LP-ATSP finds two
cycle covers C1 and C2 such that

1. C1 and C2 do not share any 2-cycle.
2. w(C1) + w(C2) ≤ 2 · OPT where OPT is the weight of the optimal solution

to LP-ATSP.

Their algorithm proceeds as follows

1. Find two cycle covers given by Lemma 3. Choose F to be one of C1, C2 and
C3 = C1 ∪ C2 which minimizes the potential function w(F )

log2(ni/c(F )) , where ni

is the number of nodes in the current iteration and c(F ) is the number of
components in F .

2. For each connected component pick one representative vertex. Delete the
rest of the vertices and iterate till at most one component is left.

Let the number of steps taken by the algorithm be p and let F1, . . . , Fp be
the edges selected in each iteration. Return the solution ∪p

i=1Fp. The following
claim is implicit in Kaplan et al.

Claim 1. [10] If w(Fi)
log2(ni/c(Fi))

≤ αOPT , then the above algorithm is α log2 n-
approximation.

Proof. Using the fact that np = 1, n1 = n and ni+1 = c(Fi), we obtain that the
weight of the edges included is

p∑

i=1

w(Fi) ≤
p∑

i=1

log2
ni

c(Fi)
· α · OPT ≤ α · OPT

p∑

i=1

log2
ni

ni+1
= α · OPT · log2 n

In their paper, Kaplan et al [10] show that α = 4
3 log2 3 suffices. We show that

1
log2

√
2+1

suffices. We need another claim proven in Kaplan et al.

Claim 2. [10] In any iteration, if C1 and C2 are the cycle covers found then
c(C1) + c(C2) + c(C3) ≤ ni where ni is the number of nodes in graph at this
iteration.

Claim 3. In any iteration i, if Fi is chosen then w(Fi)
log2(ni/c(Fi))

≤ αOPT for
α = 1

log2 (
√

2+1)
.
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Proof. Observe that α is at most the value of the following optimization problem.
Here, wi corresponds to w(Ci)/OPT and ci corresponds to c(Ci)/ni. These
scalings do not affect the value of α.

max z (1)

z ≤ wj

log2
1
cj

∀ 1 ≤ j ≤ 3 (2)

w1 + w2 ≤ 2 (3)
w3 = w1 + w2 (4)

c1 + c2 + c3 ≤ 1 (5)
c3 ≤ cj ∀ j = 1, 2 (6)

cj ≤ 1
2

∀ j = 1, 2 (7)

wj , cj ≥ 0 ∀ j = 1, 2, 3 (8)

In the above program constraints (2) correspond to z denoting the best po-
tential of the three solution C1, C2 or C3. Constraints (3)-(4) claim that sum of
weights of C1 and C2 is exactly the weight of C3 which is most 2OPT . Vari-
ables ci correspond to c(Ci)/ni and hence constraint (5) follows from Claim 2.
Constraint (6) is valid as C3 = C1 ∪ C2 and hence will have fewer components.
Moreover, as each cycle has length at least two, c(Ci) ≤ ni/2.

Let (z∗, w∗, c∗) denote the optimum solution. The objective value is a non-
decreasing function of w3 and hence, without loss of generality, we assume w∗

3 =
2. We also claim that w∗

1 = w∗
2 = 1 and c∗1 = c∗2. Indeed if that is not the

case, then we construct another solution w′
1 = w′

2 = 1, w′
3 = w∗

3 and c′1 = c′2 =
c1+c2

2 , c′3 = c∗3. Let z′ = minj=1,2,3
w′

j

log2
1

c′
j

. Observe that (z′, w′, c′) is a feasible

solution as it satisfies all constraints (2) − (8). Now, we claim that

w′
2

log2
1
c′
2

=
w′

1

log2
1
c′
1

≥ min{ w∗
1

log2
1
c∗
1

,
w∗

2

log2
1
c∗
2

}

Suppose the above relation does not hold. Then using the fact that w′
1 = w′

2 =
1 and c′1 = c′2 = c∗

1+c∗
2

2 for each i = 1, 2 we must have 1
log2

2
c∗
1+c∗

2

<
w∗

i

log2
1

c∗
i

.

Cross multiplying and summing over i = 1, 2, we have

log2
1
c∗1

+ log2
1
c∗2

< (w∗
1 + w∗

2) · log2
2

c∗1 + c∗2
Using the fact w∗

1 + w∗
2 = 2 and the fact that logarithm is an increasing

function, we have

log2
1

c∗1 · c∗2
< 2log2

2
c∗1 + c∗2

=⇒ 1
c∗1 · c∗2

<

(
2

c∗1 + c∗2

)2

which violates the AM-GM inequality that
( c∗

1+c∗
2

2

)2 ≥ c∗1 · c∗2 which holds since
c∗1, c

∗
2 ≥ 0.
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Hence, we have z′ = minj=1,2,3
w′

j

log2
1

c′
j

≥ min{min{ w∗
1

log2
1

c∗
1

,
w∗

2
log2

1
c∗
2

},
w′

3
log2

1
c′
3

} =

z∗. Thus, we assume without loss of generality that w∗
1 = w∗

2 = 1 and c∗1 = c∗2.
Under these condition observe that all three inequalities z∗ ≤ w∗

j

log2
1

c∗
j

must

hold at equality. Now, solving we obtain that c∗1 = c∗2 =
√

2 − 1, c∗3 = 3 − 2
√

2
and z∗ = 1

log2 (
√

2+1)
. �

3.2 Modifying the KLSS Algorithm

Here we explain how we can change the algorithm of KLSS to obtain an improved
guarantee of 2

3 log2 n. The algorithm is very similar. Each time we find the cycle
covers C1 and C2 as given by Lemma 3. Instead of selecting the best of C1, C2
or C3 = C1 ∪ C2, we decompose C3 into two Eulerian subgraphs.

The following is the key Lemma used for the decomposition. For every con-
nected component of C3, we can apply the following lemma.

Lemma 4. Let C be a connected directed graph with at least three vertices in
which every vertex has in-degree 2 and out-degree 2. C is allowed to have parallel
edges but no self loops. Then there are either two (vertex disjoint) cycles of
length 2 or one cycle of length at least 3 such that removing the edges of these
cycles from C leaves C connected.

Proof. The edges in C can be partitioned into C1 and C2 such that each of them
induces on C a directed graph with in-degree 1 and out-degree 1. (This was used
in Kaplan et al, and the proof of this fact follows easily from the fact that every
d-regular bipartite graph is a union of d perfect matchings.) Each of C1 and C2
is a collection of cycles that spans all vertices of C. Let ci be the number of
cycles in Ci, for i ∈ {1, 2}. We now proceed with a case analysis.

Case 1. c1 �= c2. Assume in this case without loss of generality that c2 > c1.
One by one, add the cycles of C2 to C1. When the process begins, the number of
connected components is c1. When it ends, the number of connected components
is 1 (because then we have C). Every cycle of C2 added in the process either
reduces the number of connected components, or leaves it unchanged. The in-
equality c2 ≥ (c1 − 1)+ 2 shows that the addition of at least two of the cycles of
C2 left the number of connected components unchanged. These two cycles can
be removed from C while still keeping C connected.

Case 2. c1 = c2. Let H denote a bipartite graph in which every cycle of C1 is
a left hand side vertex, every cycle of C2 is a right hand side vertex, and two
vertices are connected by an edge if the corresponding cycles share a vertex.
Note that H is connected (because C is.) We consider three subcases.

1. H has a vertex of degree at least 3. Hence some cycle (say, cycle C∗ of C2)
connects at least three cycles (of C1). The argument of the case c2 > c1 can
be extended to this case, by making C∗ the first cycle of C2 that is added
to C1. The number of connected components drops by at least 2 in the first
iteration, ensuring that at least two other cycles from C2 do not cause a drop
in number of connected components.
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2. H has a vertex of degree 1 and no vertex of degree more than 2. Then H is a
path (because H is connected). If the path is of length 1, it follows that both
C1 and C2 are single cycles (of length at least 3) that span the whole of C,
and hence either one of them may be removed while keeping C connected.
If the path is of length more than 1, then removing the two cycles that
correspond to the endpoints of the path keeps C connected (observe that
all vertices of the two removed cycles are contained in the set of vertices of
their respective neighboring cycles in H).

3. All vertices in H have degree 2. Then H is a cycle. If either C1 or C2 contain
a cycle of length 3 or more, then this cycle can be removed while keeping
H (and hence also C) connected. If all cycles in C1 and C2 are of length 2,
then it must be the case that C can be decomposed into two anti-parallel
cycles (each of length |C| ≥ 3), and removing any one of them keeps C
connected. �

Now, we modify the algorithm in the following manner. Let C5 be the set of
cycles chosen from each component of C3 without disconnecting each of the
components as given by Lemma 4. Observe that C5 need not be a cycle cover.
Let C4 = C3 \ C5.

Instead of picking the best of C1, C2 or C3 as in Kaplan et al, in each it-
eration we pick the best of C4 or C5 according to the same potential function
w(F )/(log2 ni/c(F )) where ni is the number of vertices in the current graph. The
rest of the algorithm remains the same. We pick a single representative vertex
from each of the connected components of F , delete all vertices and recurse.

Observe that c(C4) = c(C3) as the number of components in C3 and C4 are
equal. Also, c(C5) ≤ ni − 2c(C3) as we pick at least 2-cycles of size 2 or a cycle
of a size at least 3 from each of the component of C3.

Claim 4. In any iteration i, if Fi is chosen then w(Fi)
log2(ni/c(Fi))

≤ αOPT for
α = 2/3.

Proof. Observe that α is the at most the value of the following optimization
problem. Here, wi corresponds to w(Ci)/OPT and ci corresponds to c(Ci)/ni.
These scalings do not affect the value of α.

max z

z ≤ wj

log2
1
cj

∀ j ∈ {4, 5}

w4 + w5 ≤ 2
c4 = c3

c5 ≤ 1 − 2c3

wj , cj ≥ 0 ∀ j = 4, 5

At the optimum solution we must have z = w4
log2

1
c4

= w5
log2

1
c5

otherwise we can

change w4 and w5 so as to make them equal without violating the feasibility
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and not decreasing the objective function. Also, we must have w4 + w5 = 2 and
c5 = 1−2c3. Using these equalities, we have that w4 = 2 log2 c4

log2(c4(1−2c4))
which gives

that the objective function to maximize is w4
− log2 c4

= −2
log2(c4(1−2c4))

which gets
maximized when c4(1 − 2c4) gets maximized. But c4(1 − 2c4) has a maximum
value of 1/8 at c4 = 1/4. This implies that at the optimum solution we have
w4 = 4

3 , w5 = 2
3 , c4 = 1

4 , c5 = 1
2 and z = 2

3 . �

Now, proof of Theorem 1 follows from Claim 1 and Claim 4.
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