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Preface

Audience: As teachers and students of Combinatorial Optimization, we have often looked

for material that illustrates the elegance of classical results on matchings, trees, matroids

and �ows while at the same time highlights methods that have continued application. With

the advent of approximation algorithms, some techniques from exact optimization such as

the primal-dual method have indeed proven their staying power and versatility. In this

book, we describe what we believe is a simple and powerful method that is iterative in

essence, and useful in a variety of settings.

The core of the iterative methods we describe relies on a fundamental result in linear

algebra that the row rank and column rank of a real matrix are equal. This seemingly

elementary fact allows us via a counting argument to provide an alternate proof of the

above-mentioned classical results; the method is constructive and the resulting algorithms

are iterative with the correctness proven by induction. Furthermore, these methods gener-

alize to accommodate a variety of additional constraints on these classical problems that

render them NP-hard - a careful adaptation of the iterative method leads to very e�ective

approximation algorithms for these cases.

Our goal in this book has been to highlight the commonality and uses of this method

and convince the readers of the generality and potential for future applications. We have

used an elementary presentation style that should be accessible to anyone with introductory

college mathematics exposure in linear algebra and basic graph theory. Whatever advanced

material in these areas we require, we develop from scratch along the way. Some basic

background on approximation algorithms such as is provided in the various books and

surveys available on this subject will be useful in appreciating the power of the results we

prove in this area. Other than the basic de�nition of an approximation algorithm and the

understanding of polynomial-time complexity, no further technical background is required

from this typically more advanced subject.

An important secondary goal of the book is to provide a framework and material

for introductory courses in combinatorial optimization at the upper-class undergraduate

and beginning graduate levels. We hope the common approach across the chapters gives a
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comprehensive way to introduce these topics for the �rst time. The more advanced applica-

tions are useful illustrations for graduate students of their potential for future application

in their research.

History: This book is inspired by the application of the iterative method in the �eld

of approximation algorithms and its recent adaptations to prove performance guarantees

for problems with two objectives. This adaptation showed us how the proof technique

can be used to re-prove several classical results in combinatorial optimization and also

in approximation algorithms in a uni�ed way. The book owes its origin to the paper by

Jain [91] describing a 2-approximation algorithm for a large class of minimum-cost network-

design problems in undirected networks. While there are other earlier illustrations of the

method in the literature, it is Jain's work that inspired the adaptation that led to the

results in this monograph.

Jain's result itself was a breakthrough when it appeared, and demonstrated the

power of his iterative rounding method to prove this result that was conjectured based on

a long line of earlier papers that applied a di�erent primal-dual method to these problems.

In this sense, his method was a purely primal attack on the problem. His method was

extended by Lau, Naor, Salavatipour and Singh [110] to degree-bounded network design

problems. The adaptation of this method by Singh and Lau [154] to the degree-bounded

minimum-cost spanning tree problem surprisingly involves no rounding at all! Instead,

variables whose value are set to one in the linear programming relaxation are selected and

the program is modi�ed carefully to continue to yield this property. This explains the title

of this monograph and also hints at how this adaptation now allows one to prove exact

results since we no longer have to round any variables and lose optimality.

Acknowledgments: We are grateful to the many organizations whose support

have enabled this work: US National Science Foundation, Research Grants Council of

Hong Kong, Microsoft Research, Kyoto University RIMS, the Qatar Foundation, Carnegie

Mellon University - Pittsburgh and Doha, McGill University and the Chinese University

of Hong Kong. We are also grateful to our families for their support of this endeavor. We

hope you will enjoy reading this monograph as much as we did writing it.

Dedications: Lau dedicates this work to his parents, his wife Pui Ming and their

children Ching Lam, Sing Chit and Ching Yiu. Ravi dedicates this work to the memory

of his late brother, R. Balasubramaniam, who encouraged him to write a book. Singh

dedicates this work to his parents.
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1

Introduction

† In this �rst chapter we motivate our method via the assignment problem. Through

this problem we highlight the basic ingredients and ideas of the method. We then give

an outline of how a typical chapter in the rest of the book is structured, and how the

remaining chapters are organized.

1.1 The Assignment Problem

Consider the classical assignment problem: Given a bipartite graph G = (V1 ∪ V2, E) with

|V1| = |V2| and weight function w : E → R+, the objective is to match every vertex in V1
with a distinct vertex in V2 to minimize the total weight (cost) of the matching. This is

also called the minimum weight bipartite perfect matching problem in the literature, and

is a fundamental problem in combinatorial optimization. See Figure 1.1 for an example of

a perfect matching in a bipartite graph.
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Fig. 1.1. The solid edges form a perfect matching in the bipartite graph.

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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One approach to the assignment problem is to model it as a linear programming

problem. A linear program is a mathematical formulation of the problem with a system

of linear constraints which can contain both equalities and inequalities, and also a linear

objective function that is to be maximized or minimized. In the assignment problem, we

associate a variable xuv for every {u, v} ∈ E. Ideally, we would like the variables to take

one of two values, zero or one (hence in the ideal case, they are binary variables). When

xuv is set to one, we intend the model to signal that this pair is matched; when xuv is set

to zero, we intend the model to signal that this pair is not matched. The following is a

linear programming formulation of the assignment problem.

minimize
∑
u,v

wuv xuv

subject to
∑

v:{u,v}∈E

xuv = 1 ∀u ∈ V1∑
u:{u,v}∈E

xuv = 1 ∀ v ∈ V2

xuv ≥ 0 ∀ {u, v} ∈ E

The objective function is to minimize the total weight of the matching, while the two sets

of linear equalities ensure that every vertex in V1 is matched to exactly one vertex in V2
in the assignment and vice-versa.

A fundamental result in the Operations Research literature [86] is the polynomial

time solvability (as well as the practical tractability) of linear programming problems.

There is also a rich theory of optimality (and certi�cates for it) that has been developed

(see e.g., the text by Chvatal [36]). Using these results, we can solve the problem we have

formulated above quite e�ectively for even very large problem sizes.

Returning to the formulation however, our goal is to �nd a "binary" assignment of

vertices in V1 to vertices in V2, but in the solution returned, the x-variables may take

fractional values. Nevertheless, for the assignment problem, a celebrated result that is

a cornerstone of combinatorial optimization [37] states that for any set of weights that

permit a �nite optimal solution, there is always an optimal solution to the above LP

(linear program) that takes binary values in all the x-variables.

Such integrality results of LPs are few and far between, but reveal rich underlying

structure for e�cient optimization over the large combinatorial solution space [150]. They

have been shown using special properties of the constraint matrix of the problem (such

as total unimodularity), or of the whole linear system including the right hand side (such

as total dual integrality). This book is about a simple and fairly intuitive method that

is able to re-prove many (but not all) of the results obtained by these powerful methods.

One advantage of our approach is that it can be used to incorporate additional constraints
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that make the problem computationally hard, and allow us to derive good approximation

algorithms with provable performance guarantee for the constrained versions.

1.2 Iterative Algorithm

Our method is iterative. Using the following two steps, it works inductively to show that

the LP has an integral optimal solution.

• If any xuv is set to 1 in an optimal solution to the LP, then we take this pair as matched

in our solution, and delete them both to get a smaller problem, and proceed to the next

iteration.

• If any variable xuv is set to 0 in an optimal solution, we remove the edge (u, v) to again

get a smaller problem (since the number of edges reduces by 1) and proceed to the next

iteration.

We continue the above iterations till all variables have been �xed to either 0 or 1.

Given the above iterative algorithm, there are two claims that need to be proven. Firstly,

that the algorithm works correctly, i.e., it can always �nd a variable with value 0 or 1

in each iteration and secondly, the matching selected is an optimal (minimum weight)

matching. Assuming the �rst claim, the second claim can be proved by a simple inductive

argument. The crux of the argument is that in each iteration our solution pays exactly

what the fractional optimal solution pays. Moreover, the fractional optimal solution when

restricted to the residual graph remains feasible for the residual problem. This allows us to

apply an inductive argument to show that the matching we construct has the same weight

as the fractional optimal solution, and is thus optimal. For the �rst claim, it is not clear

a-priori that one can always �nd a variable with value 1 or 0 at every step. Indeed the

example in Figure 1.2 shows that there might not be such a variable at some fractional

optimal solution. However, we use the important concept of the extreme point (or vertex)

solutions of linear program to show that the above iterative algorithm works correctly.

De�nition 1.2.1 Let P = {x : Ax = b, x ≥ 0} ⊆ Rn. Then x ∈ Rn is an extreme point

solution of P if there does not exist a non-zero vector y ∈ Rn such that x+ y, x− y ∈ P .

Extreme point solutions are also known as vertex solutions and are equivalent to

basic feasible solutions. These concepts are de�ned in Chapter 2. Pictorially extreme

point solutions are the corner points of the set of feasible solutions. The following basic

result shows that there is always an optimal extreme point solution to bounded linear

programs.

Lemma 1.2.2 Let P = {x : Ax = b, x ≥ 0} and assume that the optimum value min{cTx :

x ∈ P} is �nite. Then for any feasible solution x ∈ P , there exists an extreme point

solution x′ ∈ P with cTx′ ≤ cTx.
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Fig. 1.2. In Figure (a), the fractional solution which places 1
2 on all the edges is an optimal

fractional solution but not an extreme point solution. The fractional solution in Figure (a) is the
convex combination of the integral solutions in Figure (b) and Figure (c).

The following Rank Lemma is an important ingredient in the correctness proofs of

almost all iterative algorithms in this monograph (see Chapter 2).

Lemma 1.2.3 (Rank Lemma) Let P = {x : Ax = b, x ≥ 0} and let x be an extreme

point solution of P such that xi > 0 for each i. Then the number of variables is equal to

the number of linearly independent constraints of A, i.e. the rank of A.

1.2.1 Contradiction Proof Idea: Lower Bound > Upper Bound

We give an outline of the proof that at each iteration there exists a variable with value

0 or 1. Suppose for contradiction that 0 < xuv < 1 for every edge {u, v} ∈ E. We

use this assumption to derive a lower bound on the number of variables of the linear

program. Let n be the remaining vertices in V1 (or V2, they have the same cardinality)

at the current iteration. Then each vertex in V1 must have two edges incident on it, since∑
v∈V2:(u,v)∈E xuv = 1 and xuv < 1 for each (u, v) ∈ E. Thus the total number of edges is

at least 2n. This is a lower bound on the number of variables of the linear program, since

we have one variable for each edge.

On the other hand, using the Rank Lemma, we derive an upper bound on the number

of variables of the linear program. In the linear program for bipartite matching, we have

only 2n constraints (one for each vertex in V1 ∪ V2). Moreover, these 2n constraints

are dependent since the sum of the constraints for vertices in V1 equals the sum of the

constraints for vertices in V2. Hence, the number of linearly independent constraints is at

most 2n−1. By the Rank Lemma, the number of variables is at most 2n−1. This provides
us an upper bound on the number of variables. Since our upper bound is strictly smaller

than the lower bound, we obtain the desired contradiction. Therefore, in an extreme point

solution of the linear program for bipartite matching, there must exist a variable with value

0 or 1, and thus the iterative algorithm works. The number of iterations can be simply
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bounded by the number of edges in the bipartite graph. We give a formal proof of the

above outline in Chapter 3.

1.2.2 Approximation Algorithms for NP-hard Problems

The above framework can be naturally adapted to provide an approximation algorithm via

the iterative method. In particular, for this, the iterative algorithm above typically has

one or both of two additional steps: Rounding and Relaxation.

(i) Rounding: Fix a threshold α ≥ 1. If there is a variable xi that has a value of at

least 1
α in the optimal extreme point solution then pick the corresponding element

in the solution being constructed.

(ii) Relaxation: Fix a threshold β. If there is a constraint
∑

i aixi ≤ b such that∑
i ai ≤ b+ β then remove the constraint in the residual formulation.

For the bipartite matching problem, we will see how the iterative algorithm presented

above can be adapted to give approximation algorithms for the generalized assignment

problem in Chapter 3. Other generalizations include the budgeted allocation problem in

Chapter 3 and the hypergraph matching problem in Chapter 9.

1.3 Approach Outline

We now give an overview of the structure of the rest of the monograph. Early chapters in

the book contain two main components: the �rst deals with proving the integrality of the

LP relaxation of a well-studied problem, while the second shows how the iterative proof

of integrality can be extended to design approximation algorithms for NP-hard variants of

these basic problems. Both components follow the natural outline described below.

(i) Linear Programming Formulation: We start by giving a linear programming

relaxation for the optimization problem we study. If the problem is polynomially

solvable, this relaxation will be one with integral extreme points and that is what

we will set out to show. If the problem is NP-hard, we state an approximation

algorithmic result which we then set out to prove.

(a) Solvability: Sometimes the linear programming relaxation we start with

will be exponential in size. We then show that the linear program is solv-

able in polynomial time. Usually, this would entail providing a polynomial

time separation oracle for the program using the formalism of the ellipsoid

method [81]. Informally, the separation oracle is a procedure that certi�es

that any given candidate solution for the program is either feasible or not,

and in the latter case provides a separating hyperplane which is a violated in-

equality of the formulation. In programs with an exponential number of such
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inequalities that are implicity described, the design of the separation oracle

is itself a combinatorial optimization problem, and we sketch the reduction

to one.

(ii) Characterization of Extreme Point Solution: We then give a characterization

result for the optimal extreme point solutions of the linear program based on the

Rank Lemma (Lemma 1.2.3). This part aims to show that any maximal set of

linearly independent tight constraints at this extreme point solution can be captured

by a sparse structure. Sometimes the proof of this requires the use of the uncrossing

technique [37] in combinatorial optimization, which will be introduced in Chapter 4.

(iii) Iterative Algorithm: We present an iterative algorithm for constructing an in-

tegral solution to the problem from an extreme point solution. The algorithm has

two simple steps.

(a) If there is a variable in the optimal extreme point solution that is set to a

value of 1, then include the element in the integral solution.

(b) If there is a variable in the optimal extreme point solution that is set to a

value of 0, then remove the corresponding element.

In each of the above cases, at each iteration, we reduce the problem and

arrive at a residual version, then we recompute an optimal extreme point solution

and iterate the above steps until all variables have been set this way. In designing

approximation algorithms we also use the rounding and relaxation steps as stated

earlier.

(iv) Analysis: We then analyze the iterative algorithm. This involves arguing the

following two facts. First, we establish that the algorithm runs correctly and second,

that it returns an optimal solution.

(a) Correctness: We show that the iterative algorithm is correct by arguing

that there is always an 1-element or a 0-element to pick in every iteration.

This crucially uses the characterization of tight constraints at this optimal

extreme point solution. The argument here also follows the same contradic-

tion proof idea (lower bound > upper bound): We assume for a contradiction

that there is no 1-element or 0-element and get a large lower bound on the

number of nonzero variables in the optimal extreme point solution. On the

other side, we use the sparsity of the linearly independent tight constraints

to show an upper bound on the number of such constraints. This then con-

tradicts the Rank Lemma that insists that both these numbers are equal,

and proves that there is always an 1- or 0-element.

(b) Optimality: We �nally show that the iterative algorithm indeed returns

an optimal solution using a simple inductive argument. The crux of this

argument is to show that the extreme point solution induced on the residual

problem remains a feasible solution to this residual problem.
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For the NP-hard variants of the problems we study, our goal is to show that the

above framework can be naturally adapted to provide an approximation algorithm via the

iterative method. In particular, recall that the iterative algorithm above typically has one

or both of two additional steps: Rounding and Relaxation.

(i) Rounding: Fix a threshold α ≥ 1. If there is a variable xi which in the optimal

extreme point solution has a value of at least 1
α then include the corresponding

element in the solution.

Adding this rounding step does not allow us to obtain optimal integral solution

but only near-optimal solutions. Using the above step, typically one obtains an

approximation ratio of α for covering problems addressed using this framework.

(ii) Relaxation: Fix a threshold β. If there is a constraint
∑

i aixi ≤ b such that∑
i ai ≤ b+ β then remove the constraint in the residual formulation.

The iterative relaxation step removes a constraint and hence this constraint

can be violated in later iterations. But the condition on the removal of the con-

straints ensures that the constraint is only violated by an additive amount of β.

This step enables us to obtain additive approximation algorithms for a variety of

problems.

To summarize, for designing approximation algorithms, we �rst study the exact op-

timization problem in the above framework. We then use the above two steps in various

combinations to derive strong approximation algorithms for constrained versions of these

exact problems. In the last few chapters we �nd a few examples of approximation algo-

rithms that do not strictly �t this framework (e.g. multicriteria versions, cut problems,

bin packing) but the overall approach for these problems remains the same.

1.4 Context and Applications of Iterative Rounding

One goal in presenting the collections of results in this book is to convince the reader that

iterative rounding is an e�ective tool in proving results in optimization. As with any tool,

a key question is when is this tool applicable and what are the alternates?

The iterative method for exact optimization used a rank-based argument of the

sparsity of the solution to argue integrality of a proposed linear programming formulation

of the underlying problem. In Section 13.2, we detail the earliest application we know of

this method to prove Steinitz's result on rearrangements.

As we mentioned in the introduction, the iterative method for approximation al-

gorithms was introduced in the work of Jain on the survivable network design problem.

For this minimum-cost subgraph selection problem, Jain formulated a covering linear pro-

gram and showed how any extreme point always has a positive variable of value at least

half; he did this by using the sparsity of the extreme point solution, that followed from

a rank-based argument. In this context, the iterative method is a speci�c version of the
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deterministic rounding paradigm applied to LP relaxations for NP-hard problems. Thus

it �ts in the broader context of a variety of other LP rounding methods for the design of

approximation algorithms including randomized rounding, primal-dual methods and La-

grangean relaxations. Among these methods, iterative rounding is particularly applicable

in solving multi-objective problems where a base problem is complicated by more than one

objective function: Examples include the bipartite matching problem complicated by addi-

tional load constraints at each node to give the NP-hard Generalized Assignment problem,

or the minimum spanning tree problem complicated by degree constraints on nodes gives

the NP-hard bounded-degree MST problem. An understanding of the iterative method

applied to the base problem is then a useful guide to extending its application to the

constrained multi-objective versions.

1.5 Book Chapters Overview

In the next chapter, we develop all the preliminaries needed in the following chapters.

We discuss linear programs, and their polynomial time solvability using the separation

oracle. We also outline the important Rank Lemma and other properties about extreme

point solutions. We also discuss the LP duality theorem and the complementary slackness

conditions, and some basic facts about submodular functions and graphs.

A �rst stream of chapters study problems in undirected graphs. In Chapter 3, we give

the �rst example to illustrate the iterative method on bipartite matching and vertex cover

problems. We also show how the proof for the bipartite matching leads to approximation

algorithms for the generalized assignment problem and the budgeted allocation problem. In

Chapter 4, we study the classical spanning tree problem and its extension to the minimum

bounded degree spanning tree problem. This chapter introduces the uncrossing technique

in combinatorial optimization. In Chapter 5, we generalize the arguments for undirected

spanning trees to bases of matroids as well as to the common bases in the intersection of

two matroids, and also to the minimum bounded degree matroid basis problem and the

maximum common independent set problem in the intersection of k matroids. We also

show integrality of the dual of matroid and matroid intersection problems which lead to

certain min-max results.

A second stream of chapters study problems in directed graphs. In Chapter 6, we

study the directed rooted spanning tree (or arborescence) problem, along with a degree-

bounded version, and then generalize the method developed here to a rooted k-connected

subgraph problem providing a self-contained proof of a result of Frank and Tardos [58]. This

is developed further in Chapter 7 to showing the integrality of submodular �ow problems.

For this last problem, we again complement the proof of exact LP characterization with a

description of an approximation algorithm for the degree-bounded version built upon the

proof of the exact counterpart. For the submodular �ow problem, we also give a proof of

the integrality of its dual.

We then present a few more advanced chapters applying the iterative method. In
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Chapter 8, we apply the iterative method to general problems involving network matrices

as constraint matrices (with integral right hand sides) and their duals. We then show

the application of network matrices to derive integrality of the duals of various linear pro-

grams encountered in earlier chapters (such as those for matroid bases, matroid intersection

and submodular �ow). In Chapter 9, we address the generalization of perfect and maxi-

mum matchings in bipartite graphs to general graphs, and also address higher dimensional

matching problems. We then present a common generalization of Jain's 2-approximation

algorithm for the survivable network design problem (SNDP), and a result of Boyd and

Pulleyblank on 1-edges in the Held-Karp relaxation for the Symmetric Traveling Sales-

man Problem (STSP) in Chapter 10. This chapter also generalizes Jain's result to degree

bounded network design problems. In Chapter 11, we extend the application of the method

to constrained optimization problems such as partial covering and multicriteria problems.

In Chapter 12, we add the primal-dual complementary slackness conditions to the iterative

method to derive approximation results for some cut problems. In Chapter 13 we present

some early examples of iterative methods, including the Beck-Fiala theorem on discrepancy

and Karmarkar-Karp algorithm for bin packing. Most chapters contain selected historical

notes as well as exercises.

1.6 Notes

Polyhedral combinatorics, the compact polyhedral description of important combinatorial

optimization problems, is a fundamental and unifying tool in algorithms, combinatorics

and optimization. A highlight of this line of research is the pioneering work by Jack

Edmonds [44]; we refer the reader to the book [150] and the historical survey [148] by

Schrijver for an encyclopedic treatment of this subject.

Two closely related methods for proving integrality of polyhedra that are widely

covered in Schrijver's book deserve mention: Total Unimodularity (TU) and Total Dual

Integrality (TDI). Informally, TU matrices are constraint matrices such that for integral

right hand sides, the linear programming relaxations provide integral solutions (whenever

the solutions exist and are �nite). Alternately, using the relation between extreme points

solutions and basic feasible solutions to LPs developed in the next chapter, these matrices

are those for which every square submatrix has determinant value zero, plus one or minus

one. The class of Network matrices that we will study in Chapter 8 is an important example

of such TU matrices. Total Dual Integrality involves both the constraint matrix and the

right hand side: a system of inequalities de�ned by a constraint matrix and right hand

side vector is TDI if for all integer objective coe�cients, the dual program has an integral

solution (whenever it exists and is �nite). If a system is TDI for an integral right hand

side, then the polyhedon described by the system is integral hence giving another way of

providing characterizations of integral solutions to combinatorial optimization problems.

A popular example of an integral characterization that arises from a TDI system is the

16



description of matchings in general graphs that we develop using our alternate iterative

method in Chapter 9.

An implicit use of the iterative method is found in the alternate proof of Steinitz's

theorem due to Grinberg and Sevastyanov [156, 79, 12]. Earlier uses of the iterative re-

laxation method can be traced back to the proof of a discrepancy theorem by Beck and

Fiala [22] and the approximation algorithm for the bin packing problem by Karmarkar

and Karp [93]. In approximation algorithms, the �rst explicit use of the iterative rounding

method is due to Jain [91].

An iterative approach similar to the one we describe is used in bounding quantities

of interest in randomly chosen combinatorial objects and is termed the "semi random

method". For more details, see the books by Alon and Spencer [2] or Molloy and Reed [122].
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2

Preliminaries

† In this chapter we discuss linear programming and basic facts about extreme point so-

lutions to linear programs. We then brie�y discuss solution methods for linear programs,

particularly stating the su�ciency of �nding a separation oracle for the program to be able

to solve it. We then state some concepts from graph theory which are used throughout

the book. The last part of the chapter discusses submodular and supermodular func-

tions. These functions give a general tool for modeling a variety of optimization problems.

Excellent introductory textbooks or surveys in all three areas are available for further

reference [20, 89, 160].

2.1 Linear Programming

Using matrix notation, a linear program is expressed as follows.

minimize cTx

subject to Ax ≥ b

x ≥ 0

If x satis�es (Ax ≥ b, x ≥ 0), then x is a feasible solution. If there exists a feasible

solution to the linear program, it is feasible; otherwise it is infeasible. An optimal solution

x∗ is a feasible solution such that cTx∗ = min{cTx s.t. Ax ≥ b, x ≥ 0}. The linear program
is unbounded (from below) if ∀λ ∈ R,∃ feasible x such that cTx < λ.

There are di�erent forms in which a linear program can be represented. However,

all these forms are equivalent to the form we consider above and can be converted into one

another by simple linear transformations (see e.g., [36]).

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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2.1.1 Extreme Point Solutions to Linear Programs

In this subsection, we discuss basic properties about extreme point solutions (De�ni-

tion 1.2.1). First, we have the following de�nition.

De�nition 2.1.1 Let P be a polytope and let x be an extreme point solution of P then

x is integral if each co-ordinate of x is an integer. The polytope P is called integral if

every extreme point of P is integral.

We now show basic properties about extreme point (or vertex) solutions. Most proofs

are quite standard and we give a short sketch. The reader is referred to standard texts on

Linear Programming (e.g. Chvatal [36]) for details. We now prove Lemma 1.2.2. We state

it again for completeness.

Lemma 2.1.2 Let P = {x : Ax ≥ b, x ≥ 0} and assume that min{cTx : x ∈ P} is �nite.
Then for every x ∈ P , there exists an extreme point solution x′ ∈ P such that cTx′ ≤ cTx,
i.e., there is always an extreme point optimal solution.

Proof The idea of the proof is to show by how we can move from a current optimal solution

to one that has more zero components or more tight constraints and is thus closer to being

an extreme point solution.

Consider x such that it is optimal but not an extreme point solution. That implies

there exists y ̸= 0 such that x+ y ∈ P and x− y ∈ P . Therefore,

A(x+ y) ≥ b, x+ y ≥ 0

A(x− y) ≥ b, x− y ≥ 0

Let A= be the submatrix of A restricted to rows which are at equality at x, and b=

be the vector b restricted to these rows. Thus we have A=x = b=. Hence, we must have

A=y ≥ 0 and A=(−y) ≥ 0. Subtracting, we get A=y = 0. Since x is optimal, the following

holds.

cTx ≤ cT (x+ y)

cTx ≤ cT (x− y)
⇒ cT y = 0

Moreover, since y ̸= 0, without loss of generality assume there exists j such that

yj < 0 (if not then use −y). Consider x + λy for λ > 0 and increase λ until x + λy is no

longer feasible due to the non-negativity constraints on x. Formally, let

λ∗ = min{ min
j:yj<0

xj
−yj

, min
i:Aix>bi,Aiy<0

Aix− bi
−Aiy

}

We now show that x+λ∗y is a new optimal solution with one more zero coordinate or

one extra tight constraint. Since x+ y ≥ 0 and x− y ≥ 0, if xi = 0 then yi = 0. Therefore,

the coordinates that were at 0, remain at 0. Moreover A=(x+y) = A=x = b since A=y = 0,

hence tight constraints remain tight. Since we assume that min{cTx : x ∈ P} is �nite, λ∗
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is �nite and the solution x+ λ∗y has one more zero coordinate (when λ∗ = (xj)/(−yj)) or
one extra tight constraint (when λ∗ = (Aix− bi)/(−Aiy)).

Proceeding this way, we can convert any optimal solution to one that is also an

extreme point solution, proving the claim.

The next theorem relates extreme point solutions to corresponding non-singular

columns of the constraint matrix.

Lemma 2.1.3 Let P = {x : Ax ≥ b, x ≥ 0}. For x ∈ P , let A= be the submatrix of

A restricted to rows which are at equality at x, and let A=
x denote the submatrix of A=

consisting of the columns corresponding to the nonzeros in x. Then x is an extreme point

solution if and only if A=
x has linearly independent columns (i.e., A=

x has full column rank).

Proof (⇐) If x is not an extreme point solution, we will show that A=
x has linearly

dependent columns. By the hypothesis, there exists y ̸= 0 such that A=y = 0 (see the proof

of the previous theorem). Therefore A=
y (the columns where y has a nonzero coordinate)

has linearly dependent columns. By the observation made at the end of the previous proof,

xj = 0⇒ yj = 0. Therefore, A=
y is a submatrix of A=

x . Therefore, the columns of A=
x are

linearly dependent.

(⇒) We want to show that if A=
x has linearly dependent columns then x is not

an extreme point solution. By the hypothesis, there exists y ̸= 0 such that A=
x y = 0.

Complete y to an n-dimensional vector by setting the remaining coordinates to 0. Now

by construction, A=y = 0. Moreover, by construction yj = 0 whenever xj = 0. Note that

there exists ϵ > 0 such that x+ ϵy ≥ 0 and x− ϵy ≥ 0. Also x+ ϵy and x− ϵy are feasible

since A(x + ϵy) = Ax + ϵAy ≥ b and A(x − ϵy) ≥ b for small enough ϵ > 0. Hence, x is

not an extreme point solution.

We now prove the important Rank Lemma. We restate the Lemma (in canonical

form) for completeness.

Lemma 2.1.4 (Rank Lemma) Let P = {x : Ax ≥ b, x ≥ 0} and let x be an extreme

point solution of P such that xi > 0 for each i. Then any maximal number of linearly

independent tight constraints of the form Aix = bi for some row i of A equals the number

of variables.

Proof Since xi > 0 for each i, we have A=
x = A=. From Lemma 2.1.3 it follows that A=

has full column rank. Since the number of columns equals the number of non-zero variables

in x and row rank of any matrix equals the column rank†, we have that row rank of A=

equals the number of variables. Then any maximal number of linearly independent tight

constraints is exactly the maximal number of linearly independent rows of A= which is

exactly the row rank of A= and hence the claim follows.

† Important check: If you are rusty on why this statement is true, a crisp proof of the equality of the row rank and
column rank can be found in the short note due to Andrea and Wong [4] that is available on the web.
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Next, we highlight various methods of solving linear programs. First we introduce the

concept of basic feasible solutions and show their equivalence to extreme point solutions.

Basic feasible solutions form a key ingredient in the Simplex algorithm which is the most

widely used algorithm for solving linear programs in practice.

2.1.1.1 Basic Feasible Solution

Consider the linear program

minimize cTx

subject to Ax ≥ b

x ≥ 0

By introducing slack variables sj for each constraint, we obtain an equivalent linear

program in standard form.

minimize cTx

subject to Ax+ s = b

x ≥ 0

s ≥ 0

Henceforth, we study linear program in standard form: {min cx : Ax = b, x ≥ 0}.
Without loss of generality, we can assume that A is of full row rank. If there are dependent

constraints, we can remove them without a�ecting the system or its optimal solution.

A subset of columns B of the constraint matrix A is called a basis if the matrix of

columns corresponding to B, i.e. AB, is invertible. A solution x is called basic if and only

if there is a basis B such that xj = 0 if j /∈ B and xB = A−1
B b. If in addition to being

basic, it is also feasible, i.e., A−1
B b ≥ 0, it is called a basic feasible solution for short. The

correspondence between bases and basic feasible solutions is not one to one. Indeed there

can be many bases which correspond to the same basic feasible solution. The next theorem

shows the equivalence of extreme point solutions and basic feasible solutions.

Theorem 2.1.5 Let A be a m × n matrix with full row rank. Then every feasible x to

P = {x : Ax = b, x ≥ 0} is a basic feasible solution if and only if x is an extreme point

solution.

Proof (⇒) If x is a basic feasible solution, then AB is invertible. Since Ax is a submatrix

of AB (it is a proper submatrix if some basic variable is at 0), Ax has linearly independent

columns. Therefore, by Lemma 2.1.3, x is an extreme point solution.

(⇐) If x is an extreme point solution, then by Lemma 2.1.3, Ax has linearly inde-

pendent columns. Now we can add columns to Ax from A to convert it into an invertible

matrix AB. Note that since Ax = b, ABxB + ANxN = b, where AN and xN denote the
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non-basic parts of A and x respectively. By construction of AB, xN = 0 and so xB = A−1
B b.

So x is a basic feasible solution with AB as the basis.

2.1.2 Algorithms for Linear Programming

The simplex algorithm solves linear programs to get a basic feasible optimal solution.

It works by starting at any basic feasible solution and moving to a neighboring basic

feasible solution which improves the objective function. The convexity of the linear program

ensures that once the simplex algorithm ends at a local optimum basic feasible point, it

has achieved the global optimum as well. Many variants of the simplex algorithm have

been considered, each de�ned by which neighboring basic feasible solution to move in case

there are more than one improving basic feasible points in the neighborhood. Although

the simplex algorithm works e�ciently in practice, there are examples where each variant

of the simplex algorithm runs in exponential time. Again, for more details, see e.g. [36].

Polynomial-time algorithms for solving linear programs fall in two categories: ellip-

soid algorithms [95] and interior point algorithms [92]. We refer the reader to Nemhauser

and Wolsey [130] and Wright [164] for details about these algorithms. Both these algo-

rithms solve linear programs to obtain near optimal solution in polynomial time. Moreover,

there are rounding algorithms [130] which, given a su�ciently near optimal solution to a

linear program, return an optimal extreme point solution.

Theorem 2.1.6 There is an algorithm which returns an optimal extreme point solution to

a linear program. Moreover, the running time of the algorithm is polynomial in the size of

the linear program.

2.1.3 Separation and Optimization

In this book, we will also encounter linear programs where the number of constraints is

exponential in the size of the problem (e.g., in the spanning tree problem in Chapter 4,

we will write linear programs where the number of constraints is exponential in the size

of the graph) and it is not obvious that one can enumerate them, let alone solve them in

polynomial time. We use the notion of separation to show that many exponentially sized

linear programs can be solved in polynomial time.

De�nition 2.1.7 Given x∗ ∈ Rn and a polytope P = {x : Ax ≥ b, x ≥ 0}, the separation
problem is the decision problem whether x∗ ∈ P . The solution of the separation problem

is the answer to the membership problem and in case x∗ /∈ P , it should return a valid

constraint Aix ≥ bi for P which is violated by x∗, i.e., Aix
∗ < bi.

The following theorem of Grotschel, Lóvasz and Schrijver [81] shows that polynomial

time separability is equivalent to polynomial time solvability of a linear program; we state
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it in a form that is convenient for combinatorial optimization problems. The basis of this

equivalence is the ellipsoid algorithm.

Theorem 2.1.8 Given a full-dimensional polytope P and a polynomial-time separation

oracle for P , one can �nd an optimal extreme point solution to a linear objective function

over P (assuming it is bounded) via the Ellipsoid algorithm that uses a polynomial number

of operations and calls to the separation oracle.

Clearly, one can solve the separation problem by checking each constraint but for

problems where the number of constraints is exponential in size such a method is too slow.

In this book, as we consider LP formulations with an exponential number of constraints,

we will often provide e�cient separation oracles showing that the linear program for the

problem is solvable in polynomial time.

2.1.4 Linear Programming Duality

Linear programming duality is a key concept to certify and characterize optimal solutions

to linear programs. Consider the following primal linear program in the standard form:

minimize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≥ bi ∀ 1 ≤ i ≤ m

xj ≥ 0 ∀ 1 ≤ j ≤ n

The corresponding dual program is

maximize
m∑
i=1

biyi

subject to
m∑
i=1

aijyi ≤ cj ∀ 1 ≤ j ≤ n

yi ≥ 0 ∀ 1 ≤ i ≤ m

It is not di�cult to show that the optimal value of the primal linear program is at least

the optimal value of the dual linear program, and thus any dual feasible solution provides

a lower bound on the optimal value of the primal program. This is called the weak LP

duality theorem, whose proof also follows from the derivation of the complementary slack-

ness conditions below. A fundamental result in linear programming is the strong duality

theorem, which shows that the optimal value of the primal linear program is actually equal

to that of the dual linear program.

Theorem 2.1.9 (Strong Duality Theorem) If the primal linear program has an optimal

solution, so does its dual, and the respective optimal costs are equal.
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Many combinatorial min-max theorems can be derived from the strong duality the-

orem. For example, we will see in Chapter 3 the min-max theorem for bipartite matching,

and in Chapter 5 for the min-max theorem for matroid intersection. We refer the reader to

any textbook on linear programming (e.g. [36]) for the proof of the strong duality theorem.

2.1.4.1 Complementary Slackness Conditions

The complementary slackness conditions provide a characterization for an optimal primal

solution x and an optimal dual solution y. We will use the complementary slackness

conditions in Chapter 12.

Primal complementary slackness conditions:

Either xj = 0 or

m∑
i=1

aijyi = cj .

Dual complementary slackness conditions:

Either yi = 0 or

n∑
j=1

aijxj = bi.

These conditions can be derived as follows:
n∑
j=1

cjxj ≥
n∑
j=1

( m∑
i=1

aijyi
)
xj

=

m∑
i=1

( n∑
j=1

aijxj
)
yi

≥
m∑
i=1

biyi,

where the �rst inequality is by the constraints in the dual linear program, the second

equality is by interchanging the order of the summations, and the third inequality is by

the constraints in the primal linear program. Note that this shows the weak duality the-

orem. Since x and y are optimal solutions, by the strong duality theorem, we have that∑n
j=1 cjxj =

∑m
i=1 biyi, and thus equality must hold throughout. The primal comple-

mentary slackness conditions follow from the �rst inequality holding as an equality, while

the dual complementary slackness conditions follow from the last inequality holding as an

equality.

2.2 Graphs and Digraphs

Most problems addressed in this book are on networks connecting nodes with edges or

links. We de�ne graph theoretic concepts which will be encountered in later chapters.
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Given an undirected graph G = (V,E) and a set S ⊆ V , we denote δG(S) or δE(S) be the
set of edges which have exactly one endpoint in S. For a vertex v ∈ V , δG({v}) is simply

denoted by δG(v). We also denote dG(v) or dE(v) to be degree of v, i.e., |δG(v)|. For sets
X,Y ⊆ V , we denote EG(X,Y ) to be the set of edges which has exactly one endpoint in X

and one in Y . We also denote EG(X,X) by EG(X). Observe that δG(X) = EG(X,V \X).

We also denote |δG(X)| by dG(X). The subscript G or E is sometimes dropped from the

notation if the graph G is clear from the context. A subgraph H of G is spanning if it

contains all the vertices of G, connected if there is a path between any two vertices of H,

a tree if it is acyclic and connected. An important concept is a spanning tree, subgraph

which is both spanning and a tree. Observe that a spanning tree is a also a minimally

spanning connected subgraph.

Given a directed graph D = (V,A) and a set S ⊂ V , we denote δinD (S) to be the set

of arcs whose head is in S but tail is not in S. Similarly, δoutD (S) is the set of arcs whose

tail is in S but the head is not in S. For a vertex v ∈ V , we denote δinD ({v}) as δinD (v) and

δoutD ({v}) as δoutD (v). The in-degree of v, |δinD (v)| is denoted by dinD (v) and the out-degree

of v, |δoutD (v)| is denoted by doutD (v). The degree of v, dD(v) is the sum of its in-degree and

out-degree. For sets X,Y ⊆ V , we denote ED(X,Y ) to be the set of arcs whose tail is

in X and the head is in Y . Observe that δoutD (X) = ED(X,V \ X). We denote |δinD (X)|
and |δoutD (X)| by dinD (X) and doutD (X) respectively. A subgraph H of D is called strongly

connected if there is a directed path from each vertex of H to every other vertex, weakly

connected if the underlying undirected graph is connected, acyclic if there is no directed

cycle in H. H is called an arborescence if the underlying graph is a spanning tree and

the graph has only one vertex with no in-edges which is called the root. If the root of an

arborescence is the vertex r then it is also called an r-arborescence.

Let e = {u, v} be an edge. By G/e we denote the graph obtained from G by

contracting u, v into a single vertex x, while keeping all the edges in δG({u, v}) (an edge in

G with an endpoint in {u, v} becomes an edge in G/e with an endpoint in x) and removing

the edges between u and v. Contracting an arc uv in a directed graphD is de�ned similarly,

while an arc in D with head/tail in {u, v} becomes an arc in D/e with head/tail in x.

We will use frequently the following fundamental min-max theorem in graph theory.

Theorem 2.2.1 (Menger's Theorem [121]) Let D = (V,A) be a directed graph, and

s, t ∈ V be two distinct vertices. The maximum number of arc-disjoint s-t paths in D is

equal to the minimum dinD (X) over all X ⊂ V with s /∈ X and t ∈ X.

Menger's theorem shows a close connection between disjoint paths and cuts, which will be

used in writing linear programs and constructing separation oracles. One can also obtain

the corresponding min-max theorems for undirected graphs and for vertex connectivity by

simple transformations (see the exercises).
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2.3 Submodular and Supermodular Functions

In this section, we de�ne special classes of set functions with some nice convexity-like

properties. Typically, in our applications, these functions are de�ned over a set of vertices

of a graph we will be working with; most of the time, they will also be integer valued and

positive. More comprehensive treatments on these topics are available in the monograph

by Fujishige [62] and the book by Schrijver [150].

2.3.1 Submodularity

De�nition 2.3.1 A function f : 2V → R is submodular if for every pair A,B of subsets

of V , we have

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

A simple example of a submodular set function de�ned on the vertices of an undi-

rected graph G = (V,E) is cardinality of the cut function d : 2V → Z+ where d(S) = |δ(S)|.

Proposition 2.3.2 The cut function d of any undirected graph is submodular.

Proof To see that d is submodular, note that on the right hand side, we have

d(A ∩B) = |E(A ∩B,A \B)|+ |E(A ∩B,B \A)|+ |E(A ∩B, V \ (A ∪B))|.

A B

Fig. 2.1. In this example the solid edges are counted exactly once in both the LHS d(A) + d(B),
and the RHS d(A∩B) + d(A∪B), and the bold edge is counted exactly twice on both sides. The
dashed edge is counted in LHS but not in RHS.

Similarly we also have

d(A ∪B) = |E(A ∩B, V \ (A ∪B))|+ |E(A \B, V \ (A ∪B))|+ |E(B \A, V \ (A ∪B))|.

On the left hand side we have

d(A) = |E(A∩B, V \(A∪B))|+|E(A∩B,B\A)|+|E(A\B, V \(A∪B))|+|E(A\B,B\A)|.
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Similarly we get

d(B) = |E(A∩B, V \(A∪B))|+|E(A∩B,A\B)|+|E(B\A, V \(A∪B))|+|E(B\A,A\B)|.

Comparing the above expressions shows that the edges in E(A \B,B \A) are responsible
for the inequality (rather than equality). Also see Figure 2.1.

Note that the edge cut function can be extended to the case when nonnegative

weights, say x : E → R+ are assigned to the edges. Instead of d(S) = |δ(S)|, we have

x(δ(S)) =
∑

e∈δ(S) xe. The above proof also shows that the function x is submodular as

well.

Proposition 2.3.3 The weighted-cut function of any undirected graph is submodular.

For undirected graphs, since the degree function is symmetric (i.e. d(S) = d(V −S)),
by applying Proposition 2.3.2 on the complements we have

d(A) + d(B) ≥ d(A \B) + d(B \A), (2.1)

which can also be veri�ed directly using the same method as above; see Figure 2.2.

A B

Fig. 2.2. In this example the solid edges are counted exactly once in both the LHS d(A) + d(B),
and the RHS d(A \B) + d(B \A), and the bold edge is counted exactly twice on both sides. The
dashed edge, however is counted in the LHS but not in the RHS.

Let us de�ne a stronger notion of submodularity.

De�nition 2.3.4 A function f : 2V → R is strongly submodular if for every pair A,B of

subsets of V , we have

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B)

and

f(A) + f(B) ≥ f(A \B) + f(B \A).

The second property in the de�nition above has also been referred to as posi-

modularity [125, 126]. The edge cut functions in undirected graphs are strongly submodu-

lar. Indeed, if a function is submodular and symmetric then it is strongly submodular (see

exercises).
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2.3.2 Supermodularity

We move on to a symmetric concept, supermodularity.

De�nition 2.3.5 A function f : 2V → R is supermodular if for every pair A,B of subsets

of V , we have

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B).

As before, a simple example of a supermodular set function de�ned on the vertices

of an undirected graph G = (V,E) is the induced edge function d : 2V → Z+ where i(S)

is the number of edges in E with both endpoints in S, i.e., i(S) = |E(S)|. A veri�cation

similar to the above can be carried out to establish that the induced edge function is

supermodular. Also, if nonnegative values, say x : E → R+ are assigned to the edges and

we consider x(S) =
∑

e∈E(S) xe, it follows that this function is supermodular as well.

Proposition 2.3.6 The induced edge function i(.) for any undirected graph is supermod-

ular. This is also true for the weighted version with nonnegative weights.

2.3.3 Re�nements

De�nition 2.3.7 Two subsets A and B of a ground set V are intersecting if A ∩B ̸= ∅,
A−B ̸= ∅ and B −A ̸= ∅. A function f : 2V → R is intersecting-submodular if for every

pair A,B of intersecting subsets of V , we have

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

De�nition 2.3.8 Two subsets A and B of a ground set V are crossing if none of the

four subsets A ∩ B,A \ B,B \ A and V \ (A ∪ B) are empty. A function f : 2V → R is

crossing-submodular if for every pair A,B of crossing subsets of V , we have

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

To distinguish the regular submodular functions from the more restricted intersecting

and crossing varieties, they are also sometimes dubbed fully submodular. Other important

examples of fully submodular functions arises as cut functions of directed graphs D =

(V,A). De�ne δin(S) for a subset S of vertices as the set of arcs whose heads are in S and

tails are in V \ S, which we can denote as A(V \ S, S). Symmetrically, de�ne δout(S) as

the set A(S, V \S). Denote |δin(S)| and |δout(S)| by din(S) and dout(S) respectively. Both
these functions din and dout de�ned on vertex subsets are fully submodular; see Figure 2.3.

Unlike undirected graphs, however, the functions din and dout are not strongly submodular.

Proposition 2.3.9 The cut functions din and dout of any directed graph are submodular.

This is also true for the weighted directed cut functions with non-negative weights.
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A B

Fig. 2.3. In this example the solid arcs are counted exactly once in both the LHS δout(A)+δout(B)
and the RHS δout(A∪B)+δout(A∩B) and the bold edges are counted exactly twice on both sides.
The dashed edges are counted in the LHS but not in the RHS.

A broader class of functions generalizing supermodularity is useful in specifying con-

nectivity requirements for network design problems.

De�nition 2.3.10 A function f : 2V → R is skew (or weakly) supermodular if for every

pair A,B of subsets of V , at least one of the following inequalities is true.

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

f(A) + f(B) ≤ f(A \B) + f(B \A)

In the survivable network design problem on an undirected graph G = (V,E), we

are given nonnegative integral edge-connectivity requirements ruv for all pairs of vertices,

and we are interested in �nding a subgraph with at least ruv edge-disjoint paths between

u and v for every pair u, v. If we de�ne the connectivity requirement function f for any

set S as f(S) = maxu∈S,v/∈S ruv, it is not hard to verify that f is skew supermodular.

Functions that are both submodular and supermoduar are modular - the typical

example being the cardinality (or "modulus") function. Furthermore, f is submodular if

and only if −f is supermodular, and if f is submodular and g is supermodular, then f − g
is submodular. Finally, if f is skew supermodular and g is strongly submodular, then f−g
is skew supermodular. These follow directly as a consequence of the de�nitions.

2.3.3.1 Minimizing submodular function

A rich literature examines the minimization of submodular functions in (strongly) poly-

nomial time - Chapter 45 of the book by Schrijver [150] contains most references on this

topic. We mention three important results in this vein: Queyranne [136] gave an algorithm

for minimizing symmetric submodular functions, building on earlier work of Nagamochi

and Ibaraki for �nding a minimum cut in an undirected graph. Grötschel, Lovász and

Schrijver [82] gave a strongly polynomial time algorithm for �nding the minimum of a

submodular function only over sets of odd cardinality, building on earlier work of Pad-

berg and Rao [133]. Finally, for the general case of submodular function with only oracle
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access to values, strongly polynomial time algorithms were �rst presented by Iwata, Fleis-

cher and Fujishige [90] and also independently by Schrijver [147]. More generally de�ned

submodular function (e.g., on intersecting or cross-free families) can also be minimized in

polynomial time - see Chapter 49 in [150].

We will be making use of submodular (and supermodular) functions extensively

in this monograph. In a typical application, the set of tight constraints at an extreme

point solution corresponds to a set of cuts in a graph for which a (submodular) function

value is an integer. Depending on the type of submodular function (full, intersecting or

crossing), these tight constraints can then be uncrossed to result in a nicely structured

basis for them: For instances, for fully submodular constraints, the basis is a chain; for

intersecting submodular constraint forms, the basis is a laminar family representable by

the forest capturing set-inclusion relation; for crossing submodular constraint systems, the

basis is a cross-free family which can also be turned into a laminar family. Such structured

sparse representations of the tight constraints at any extreme point solution are the key to

proving integrality for many problems � they pave the way to show the upper bound part

of the general argument outlined in the beginning of this chapter, typically by a counting

argument that is carried out inductively on a representation of these sparse families.

Exercises

2.1 Consider a bounded linear program. Prove that an LP solution x is a basic feasible

solution (or extreme point solution) if and only if there is an objective function c

such that x is the unique optimum solution.

2.2 Prove Menger's theorem for undirected graphs: The maximum number of edge-

disjoint s-t paths is equal to the minimum d(X) over all sets X ⊂ V with s /∈ X
and t ∈ X. (Hint: �bidirect� the edges and apply Theorem 2.2.1.)

2.3 Two directed s-t paths P1 and P2 are internally vertex-disjoint if V (P1)∩ V (P2) =

{s, t}. A vertex set U ⊂ V is an s-t cut if there is no directed s-t paths in

G − U . Prove Menger's theorem for vertex connectivity: The maximum number

of internally vertex-disjoint s-t paths is equal to the minimum size of a vertex s-t

cut. (Hint: �split� each vertex appropriately and apply Theorem 2.2.1.)

2.4 Derive a corresponding Menger's theorem for vertex connectivity in undirected

graphs.

2.5 Show that if a function is submodular and symmetric then it is strongly sub-

modular. Hence, derive that a cut function of an undirected graph is strongly

submodular.

2.6 Verify Proposition 2.3.9 that the in- and out-cut functions din and dout for a digraph

are indeed submodular but not strongly submodular.

2.7 Verify Proposition 2.3.6. Is the induced edges (arcs) function supermodular for

digraphs?
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2.8 Show that a function f : 2V → R+ is (fully) submodular if and only if f(X + v)−
f(X) ≥ f(Y + v)− f(Y ) whenever X ⊆ Y and v ∈ V −X.

2.9 Use the above equivalent de�nition of submodular function to derive Proposi-

tion 2.3.2 and Proposition 2.3.9.

2.10 Show that the connectivity requirement function for the survivable network design

problem, f(S) = maxu∈S,v/∈S ruv for all S ⊂ V is skew supermodular.

2.11 Show that the connectivity requirement function for the k-connected subgraph

problem, f(S) = k for every non-empty S ⊂ V is crossing supermodular.

2.12 Show that the connectivity requirement function for the rooted-connectivity prob-

lem, f(S) = k for every non-empty S ⊂ V with r /∈ S for a speci�ed vertex r is

intersecting supermodular.
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3

Matching and Vertex Cover in Bipartite Graphs

†

In this chapter we consider two very closely related problems, maximum weighted

matching and minimum cost vertex cover in bipartite graphs. Linear programming duality

plays a crucial role in understanding the relationship between these problems. We will

show that the natural linear programming relaxations for both the matching problem and

the vertex cover problem are integral, and then use duality to obtain a min-max relation

between them. Nevertheless, our proofs of integrality use the iterative method by arguing

the existence of 1-elements in an extreme point solution.

In the �rst section, we show the integrality of the more standard maximization version

of the matching problem. In the following sections, we show two applications of the proof

technique for integrality to derive approximation results for NP-hard problems. We �rst

present a new proof of an approximation result for the generalized assignment problem,

and then present an approximation result for the budgeted allocation problem. The proofs

of both of these results develop on the integrality result for the bipartite matching problem

and introduce the iterative relaxation method. Following this, we discuss the integrality

of the bipartite vertex cover problem formulation and conclude with a short section on the

duality relation between these problems and some historical notes.

3.1 Matchings in Bipartite Graphs

In this section, we show that the matching polytope in bipartite graphs is integral. Given

a bipartite graph G = (V1 ∪ V2, E) and a weight function w : E → R, the maximum

matching problem is to �nd a set of vertex-disjoint edges of maximum total weight.

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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3.1.1 Linear Programming Relaxation

The linear programming relaxation for the bipartite matching problem is given by the

following LPbm(G).

maximize
∑
e∈E

we xe

subject to
∑
e∈δ(v)

xe ≤ 1 ∀ v ∈ V1 ∪ V2

xe ≥ 0 ∀ e ∈ E

Observe that the linear program LPbm(G) is compact, i.e., the number of constraints

and variables is polynomially bounded in the size of the problem. Hence, the linear program

can be solved optimally in polynomial time using Theorem 2.1.6.

We prove the following theorem by an iterative algorithm in the next section.

Theorem 3.1.1 Given any weight function w there exists an integral matching M such

that w(M) ≥ w · x where x is an optimal solution to LPbm(G).

Our proof of Theorem 3.1.1 as a corollary implies the following theorem.

Theorem 3.1.2 The linear programming formulation LPbm(G) is integral.

3.1.2 Characterization of Extreme Point Solutions

Before we prove Theorem 3.1.1 we give a characterization of extreme point solutions of

LPbm(G) for which we need a few de�nitions.

For a set F ⊆ E, let χ(F ) denote the vector in R|E| that has an 1 corresponding to

each edge e ∈ F , and 0 otherwise. This vector is called the characteristic vector of F . In

the following lemma which follows by a direct application of the Rank Lemma 2.1.4, we

characterize an extreme point solution by a set of tight linearly independent constraints.

Lemma 3.1.3 Given any extreme point solution x to LPbm(G) such that xe > 0 for each

e ∈ E there exists W ⊆ V1 ∪ V2 such that

(i) x(δ(v)) = 1 for each v ∈W .

(ii) The vectors in {χ(δ(v)) : v ∈W} are linearly independent.

(iii) |W | = |E|.
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3.1.3 Iterative Algorithm

We now give the algorithm which constructs an integral matching of weight at least the

optimal solution to LPbm(G) proving Theorem 3.1.1. The algorithm is a simple iterative

procedure as shown in Figure 3.1.

Iterative Bipartite Matching Algorithm

(i) Initialization F ← ∅.
(ii) While E(G) ̸= ∅ do

(a) Find an optimal extreme point solution x to LPbm(G) and remove every

edge e with xe = 0 from G.

(b) If there is an edge e = {u, v} with xe = 1, then update F ← F ∪ {e} and
G← G \ {u, v}.

(iii) Return F .

Fig. 3.1. Bipartite Matching Algorithm

3.1.4 Correctness and Optimality

We prove the correctness of the algorithm in two steps. First, we show that the algorithm

returns a matching of optimal weight if the algorithm always �nds an edge e with xe = 0

in Step (ii)(a) or an edge e with xe = 1 in Step (ii)(b). In the second part, we show that

the algorithm will always �nd such an edge completing the proof.

Claim 3.1.4 If the algorithm, in every iteration, �nds an edge e with xe = 0 in Step (ii)(a)

or an edge e with xe = 1 in Step (ii)(b), then it returns a matching F of weight at least

the optimal solution to LPbm(G).

Proof The proof will proceed by induction on the number of iterations of the algorithm.

The base case is trivial when the algorithm proceeds for only one iteration.

If we �nd an edge e with xe = 0 in Step (ii)(a) of the algorithm, then the residual

problem is to �nd a matching in the graph G′ = G \ {e}, where we remove the edge

e from G. The residual solution xres, x restricted to G \ {e}, is a feasible solution to

the linear programming relaxation of the residual problem. By induction, the algorithm

returns a matching F ′ ⊆ E(G′) with weight at least the optimal solution to LPbm(G
′).

Since w(F ′) ≥ w · xres = w · x, the induction hypothesis holds in this case.

In the other case, if we �nd an edge e = {u, v} with xe = 1 in Step (ii)(b) of the

algorithm then the residual problem is to �nd a matching which contains the edge e. This is

exactly the matching problem in graph G′ = G\{u, v}, where we remove the vertices u and

v and their incident edges from G. Moreover xres, x restricted to edges in G′, is a feasible

solution to the linear programming relaxation for the residual problem. Inductively, the
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algorithm will return a matching F ′ of weight at least the weight of the optimum solution

of LPbm(G
′), and hence w(F ′) ≥ w · xres, as xres is a feasible solution to LPbm(G

′). The

algorithm returns the matching F = F ′ ∪ {e} and we have

w(F ) = w(F ′) + we and w(F
′) ≥ w · xres

which implies that

w(F ) ≥ w · xres + we = w · x

since xe = 1. Therefore, the weight of the matching returned by the algorithm is at least

the weight of the LP solution x.

We now complete the proof of Theorem 3.1.1 by showing that the Algorithm always

�nds an edge e with xe = 0 or xe = 1. The proof of the following lemma crucially uses the

characterization of extreme point solutions given in Lemma 3.1.3.

Lemma 3.1.5 Given any extreme point solution x of LPbm(G) there must exist an edge e

with xe = 0 or xe = 1.

Proof Suppose for sake of contradiction 0 < xe < 1 for each edge e ∈ E. Lemma 3.1.3

implies that there existsW ⊆ V1∪V2 such that constraints corresponding toW are linearly

independent and tight, and |E| = |W |.
We claim that dE(v) = 2 for each v ∈ W and dE(v) = 0 for each v /∈ W . Firstly,

dE(v) ≥ 2 for each v ∈ W , since x(δ(v)) = 1 for each v and 0 < xe < 1 for each e ∈ E.
This implies that:

2|W | = 2|E| =
∑
v∈V

dE(v) ≥
∑
v∈W

dE(v) ≥ 2|W |.

This implies the inequalities must hold as equalities, and thus dE(v) = 0 for each v /∈ W
by the �rst inequality and dE(v) = 2 for each v ∈W by the second inequality.

Hence, E is a cycle cover on the vertices in W . Let C be any such cycle with all

vertices in W . Since C is an even cycle because G is bipartite we also have∑
v∈C∩V1

χ(δ(v)) =
∑

v∈C∩V2

χ(δ(v)),

which contradicts the independence of constraints in condition (ii) of Lemma 3.1.3. There-

fore any extreme point solution x to LPbm(G) must have an edge e with xe = 0 or xe = 1.

Thus we obtain from Lemma 3.1.5 that the algorithm in Figure 3.1 returns a matching

with total weight at least the weight of the linear program. This completes the proof of

Theorem 3.1.1.
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3.2 Generalized Assignment Problem

In the section, we use the iterative relaxation method to obtain an approximation algorithm

for the generalized assignment problem. The generalized assignment problem models the

following scheduling problem on unrelated parallel machines with costs. We are given a set

of jobs J and machinesM , for each job j ∈ J and machine i ∈M there is a processing time

pij and cost cij . Machine i is available for Ti time units and the objective is to assign each

job to some machine such that the total cost is minimized and no machine is scheduled for

more than its available time.

Shmoys and Tardos [151] gave an algorithm which returns an assignment of cost at

most C and each machine is used for at most 2Ti time units, where C is the cost of the

optimal assignment which uses machine i for at most Ti time units (if such an assignment

is possible). In this section, we prove the result of the Shmoys and Tardos [151] using the

iterative relaxation method. This proof develops on the iterative proof of the integrality

of the bipartite matching given in Section 3.1. We shall prove the following theorem.

Theorem 3.2.1 There exists a polynomial time algorithm for the generalized assignment

problem which returns a solution of cost at most C that uses each machine i for at most

2Ti time units, where C is the cost of an optimal assignment that uses each machine i for

at most Ti time units.

3.2.1 Linear Programming Relaxation

Before we write the linear program for the problem, we �rst model the problem as a

bipartite matching problem. We start with a complete bipartite graph G with jobs J

and machines M as the two sides of the bipartite graph. The edge between job j ∈ J

and machine i ∈ M has cost cij . The generalized assignment problem can be reduced to

�nding a subgraph F of G such that dF (j) = 1 for each job j ∈ J and the edge incident

at j denotes which machine job j is assigned to. The time constraint at machines can be

modeled by restricting that
∑

e∈δ(i)∩F pij ≤ Ti for each machine i. We strengthen this

model by disallowing certain assignments using the following observation: If pij > Ti then

no optimal solution assigns job j to i, and hence we can remove all such edges from graph

G.

We model the above matching problem by the following natural linear programming

relaxation LPga to prove Theorem 3.2.1. Observe that we do not place time constraints

for all machines but a subset M ′ ⊆M which is initialized to M . We have a variable xe for

each e = ij denoting whether job j is assigned to machine i.
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minimize
∑

e=(i,j)∈E

cij xij

subject to
∑
e∈δ(j)

xe = 1 ∀ j ∈ J

∑
e∈δ(i)

pexe ≤ Ti ∀ i ∈M ′

xe ≥ 0 ∀ e ∈ E

3.2.2 Characterization of Extreme Point Solutions

The following lemma follows from a direct application of the Rank Lemma.

Lemma 3.2.2 Let x be an extreme point solution to the linear program LPga with 0 <

xe < 1 for each edge e. Then there exist J ′ ⊆ J and M ′′ ⊆M ′ such that

(i)
∑

e∈δ(j) xe = 1 for each j ∈ J ′ and
∑

e∈δ(i) pexe = Ti for each i ∈M ′′.

(ii) The constraints corresponding to J ′ and M ′′ are linearly independent.

(iii) |J ′|+ |M ′′| = |E(G)|

3.2.3 Iterative Algorithm

We present a simple iterative procedure which returns an assignment of optimal cost in

Figure 3.2. Observe that the iterative procedure generalizes the iterative procedure for

bipartite matching in Section 3.1. The bipartite graph F with vertex set in M ∪ J returns

the assignment found by the algorithm.

This procedure demonstrates our �rst example of the iterative relaxation method

in Step (ii)(c). Here in addition to the usual step of picking an integral element in the

solution, we identify carefully chosen constraints to relax or remove. The choice is dictated

by ensuring that the removal will allow us to argue that the �nal integral solution does

not have too much violation; at the same time, we need to ensure that in the absence of

an integral element, such a constraint can always be found to be removed. The crux of

the relaxation method is to �nd the right relaxation condition that balances this trade-o�

nicely.

3.2.4 Correctness and Performance Guarantee

The following lemma shows that the algorithm makes progress at each step of the algorithm.
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Iterative Generalized Assignment Algorithm

(i) Initialization E(F )← ∅, M ′ ←M .

(ii) While J ̸= ∅ do
(a) Find an optimal extreme point solution x to LPga and remove every vari-

able with xij = 0.

(b) If there is a variable with xij = 1, then update F ← F ∪{ij}, J ← J \{j},
Ti ← Ti − pij .

(c) (Relaxation) If there is a machine i with d(i) = 1, or a machine i with

d(i) = 2 and
∑

j∈J xij ≥ 1, then update M ′ ←M ′ \ {i}.
(iii) Return F .

Fig. 3.2. The Generalized Assignment Algorithm

Lemma 3.2.3 Consider any extreme point solution x to LPga. One of the following must

hold.

(i) There exists an edge e ∈ E with xe ∈ {0, 1}.
(ii) There exists a machine i ∈M ′ with d(i) = 1, or d(i) = 2 and

∑
j∈J xij ≥ 1.

Proof Suppose for sake of contradiction that both the conditions do not hold. By

Step (ii)(a) and Step (ii)(b), we have 0 < xe < 1 for each edge e. Each job j has de-

gree at least two since
∑

e∈δ(j) xe = 1 and there is no edge with xe = 1 by Step (ii)(b).

Moreover, each machine in M ′ has degree at least two, because the constraints for ma-

chines with degree one have been removed in Step (ii)(c). From Lemma 3.2.2 we have that

|E| = |J ′|+ |M ′′|. This implies that:

|J ′|+ |M ′′| = |E| ≥
∑

j∈J d(j) +
∑

i∈M ′ d(i)

2
≥ |J |+ |M ′| ≥ |J ′|+ |M ′′|,

and hence all inequalities must hold as equalities. The �rst inequality implies that each

machine i ∈M \M ′ has degree zero; the second inequality implies that each job j ∈ J ′ and

each machine i ∈M ′′ have degree exactly two; the last inequality implies that J = J ′ and

M ′ = M ′′. Therefore, G is a union of cycles, with vertices in J ′ ∪M ′′ (tight constraints).

Consider any cycle C. The total number of jobs in C is exactly equal to the total number

of machines in C. Therefore, since each job j ∈ J ′ has
∑

i∈M ′′ xij = 1, there must be a

machine i with
∑

j∈J ′ xij ≥ 1. Hence, this machine i has degree two and
∑

j∈J ′ xij ≥ 1,

contradicting that Step (ii)(c) cannot be applied.

We now prove Theorem 3.2.1 by a simple inductive argument.

Proof of Theorem 3.2.1: We �rst prove that the algorithm returns an assignment

of optimal cost. We claim that at any iteration of the algorithm the cost of assignment

given by F plus the cost of the current linear programming solution to LPga is at most the

cost of the initial linear programming solution. This can be shown by a simple inductive
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argument on the number of iterations. Observe that the claim holds trivially before the

�rst iteration. In any iteration, if we assign job j to machine i in Step (ii)(b) then the cost

of F increases by cij and the current linear programming solution decreases by cijxij = cij
since xij = 1. Hence, the claim holds. If we remove a constraint in Step (ii)(c), then the

cost of F remains the same, while the cost of the current linear program can only decrease.

Hence, the claim holds in this case as well. Thus, �nally when F is a feasible assignment,

by induction, the cost of assignment given by F is at most the cost of the initial linear

programming solution.

Finally, we show that machine i is used at most 2Ti units for each i. Fix any

machine i. We �rst argue the following claim. If i ∈ M ′, then at any iteration we must

have T ′
i + Ti(F ) ≤ Ti, where T

′
i is the residual time left on the machine at this iteration

and Ti(F ) is the time used by jobs assigned to machine i in F . The proof of the claim

follows by a simple inductive argument as in the above inductive argument for costs. Now

consider when the machine i is removed from M ′. There are two possibilities. If there

is only one job j in machine i, then the total processing time at machine i is at most

Ti + pij ≤ 2Ti, where the inequality holds because of the pruning step (where we deleted

edges assigning a job to machine i if its processing time exceeded Ti). If there are two

jobs j1 and j2 in machine i then let x denote the linear programming solution when the

constraint for machine i is removed. The total processing time at machine i at most

Ti(F ) + pij1 + pij2

≤ Ti − xij1pij1 − xij2pij2 + pij1 + pij2

≤ Ti + (1− xij1)pij1 + (1− xij2)pij2
≤ Ti + (2− xij1 − xij2)Ti
≤ 2Ti,

because pij1 , pij2 ≤ Ti again by the pruning step and xij1 + xij2 ≥ 1 by Step (ii)(c). This

completes the proof of Theorem 3.2.1.

3.3 Maximum Budgeted Allocation

In this section we consider the maximum budgeted allocation problem, which is similar to

the generalized assignment problem but is a maximization problem instead of a minimiza-

tion problem. There are a set Q of indivisible items and a set A of agents. Each agent

i ∈ A is willing to pay a maximum of bij dollars for item j ∈ Q, but has a maximum budget

Bi on total spending. The maximum budgeted allocation problem is to allocate items to

agents to maximize revenue. The main result of this section is the following theorem by

Chakrabarty and Goel [27].

Theorem 3.3.1 There is a 4/3-approximation algorithm for the maximum budgeted allo-

cation problem.
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3.3.1 Linear Programming Relaxation

This problem can be formulated as an integer linear programming, in which there is a

variable xij for agent i and item j to indicate whether item j is assigned to agent i.

maximize
∑
i∈A

min(Bi,
∑
j∈Q

bijxij)

subject to
∑
i∈A

xij ≤ 1 ∀ j ∈ Q

xij ∈ {0, 1} ∀ i ∈ A, j ∈ Q

The constraints require that each item is allocated to at most one agent. The objec-

tive function can be rewritten as a linear function by adding auxiliary constraints. Thus

we obtain a linear programming relaxation by relaxing the integrality constraints. Ob-

serve that by appropriate scaling there is always an optimal fractional solution in which∑
j∈Q bijxij ≤ Bi for all i ∈ A. Henceforth we consider the following equivalent linear

programming relaxation, denoted by LPmba, which is similar to that of the generalized

assignment problem. Throughout this section we assume without loss of generality that

bij ≤ Bi for each j ∈ Q (for otherwise, we can reset bij to Bi) and maintain this invariant

in all iterations of the iterative algorithm.

maximize
∑
i∈A

∑
j∈Q

bijxij

subject to
∑
j∈Q

bijxij ≤ Bi ∀ i ∈ A

∑
i∈A

xij ≤ 1 ∀ j ∈ Q

xij ≥ 0 ∀ i ∈ A, j ∈ Q

3.3.2 Characterization of Extreme Point Solutions

Given a fractional solution x to LPmba, we construct a bipartite graph Gx = (A ∪ Q,E)

with ij ∈ E if and only if xij > 0. The following lemma is a direct application of the Rank

Lemma 2.1.4.

Lemma 3.3.2 Given any extreme point solution x to LPmba with xij > 0 for each i ∈
A, j ∈ Q there exist A′ ⊆ A,Q′ ⊆ Q such that

(i)
∑

j∈Q bijxij = Bi for each i ∈ A′ and
∑

i∈A xij = 1 for each j ∈ Q′.

(ii) The corresponding row vectors in A′ and Q′ are linearly independent.

(iii) |E| = |A′|+ |Q′|.
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Similar to the bipartite matching problem and the generalized assignment problem,

the above lemma implies that each connected component of Gx has at most one cycle.

With an additional cycle elimination argument that shifts the values of the solution along

such a cycle without decreasing the objective value, one can prove that Gx is a forest (see

exercises). We call an item a leaf item if it is a leaf in Gx. We call an agent i a leaf

agent if all but one neighbor of i are leaf items (i itself may not be a leaf). Since x is

an extreme point solution and Gx is a forest, there is at most one non-tight constraint in

each component. For an agent that is a leaf of a tree, as its bid to the item is at most

the agent's budget, such an agent must be non-tight in a tree with at least two agents (if

such an agent is tight then the component has only this agent and this item). In particular

there cannot be two agents that are leaves of a tree. Hence, every tree in the forest has at

least one leaf item and one leaf agent, and if a tree has at least two agents then there is at

least one tight leaf agent. The following lemma summarizes the properties of the extreme

point solutions that we will use.

Lemma 3.3.3 [27] Given any extreme point solution x to LPmba:

(i) The graph Gx is a forest;

(ii) There is at least one leaf agent in each component of Gx.

(iii) There is at least one tight leaf agent in a component of Gx with at least two agents.

3.3.3 An Iterative 2-Approximation Algorithm

We �rst present a simple iterative 2-approximation algorithm for the problem. In the

following N(i) denotes the set of neighbors (items) of agent i in Gx.

Iterative 2-Approximation Algorithm for Maximum Budgeted Allocation

While Q ̸= ∅ do

(i) Find an optimal extreme point solution x to LPmba. Remove all edges with

xij = 0.

(ii) Pick a leaf agent i. Let L be the set of leaf items in N(i). Assign each item l ∈ L
to i and then remove L. Modify B′

i := Bi −
∑

l∈L bilxil.

(a) If i has a non-leaf item j, modify the bid of i on j to be b′ij ← min(bij , B
′
i).

Fig. 3.3. The Maximum Budgeted Allocation 2-Approximation Algorithm

We now prove that the above algorithm is a 2-approximation algorithm. Consider

an arbitrary iteration. The increase of the integral solution is at least
∑

l∈L bilxil. Note

that x restricted to the remaining edges is a feasible solution to the residual problem. Let

b′ij = min(bij , B
′
i) denote the new bid of agent i to item j. If b′ij = bij , then the decrease
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of the fractional solution is at most
∑

l∈L bilxil. Otherwise, if b
′
ij = B′

i, then the decrease

of the fractional solution is at most∑
l∈L

bilxil + (bij − b′ij)xij ≤
∑
l∈L

bilxil + (Bi −B′
i) = 2

∑
l∈L

bilxil,

where the �rst inequality follows because bij ≤ Bi and b′ij = B′
i and xij ≤ 1. Hence,

in either case, the increase of the integral solution is at least half the decrease of the

fractional solution in each iteration. It follows by an inductive argument that the �nal

integral solution is at least half the initial fractional solution.

3.3.4 An Iterative 4
3-Approximation Algorithm

Here we present an improved iterative approximation algorithm for the problem. In

Step (ii)(a) of the algorithm in Figure 3.3, the bid of agent i on item j is decreased

by the amount collected from the leaf items, and this is the bottleneck of achieving a bet-

ter approximation algorithm. The new idea is to keep the new bid slightly higher. The

intuition is that there is some �surplus� from the amount collected from the leaf items,

since they are collected with �factor one� while we only require an approximate solution.

The improved algorithm is presented in Figure 3.4.

Iterative 4
3-Approximation Algorithm for Maximum Budgeted Allocation

While Q ̸= ∅ do

(i) Find an optimal extreme point solution x to LPmba. Remove all edges with

xij = 0.

(ii) If there is a leaf agent i with all the items in N(i) being leaf items, then assign

each item l ∈ N(i) to i and remove N(i) and i.

(iii) Pick a tight leaf agent i. Let L be the set of leaf items in N(i), and j be the

unique non-leaf item in N(i). Assign each item in N(i) \ {j} to i and remove

each item in N(i) \ {j}. Modify both

Bi, bij ←
4

3
bijxij .

Fig. 3.4. The Maximum Budgeted Allocation 4/3-Approximation Algorithm

3.3.5 Correctness and Performance Guarantee

Lemma 3.3.3 guarantees that the algorithm will terminate successfully. Therefore, it re-

mains to prove that the returned integral solution is at least 3
4 of the initial fractional
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solution. As in the proof of the 2-approximation algorithm, we apply the following lemma

inductively to complete the proof.

Lemma 3.3.4 In any iteration the increase of the integral solution is at least 3
4 of the

decrease of the fractional solution.

Proof Consider any iteration and �rst suppose that Step (ii) is applied on a leaf agent

i in this iteration. Let x denote the optimal fractional solution at the end of the itera-

tion. Note that Bi is modi�ed at most once throughout the algorithm. Suppose Bi has

not been modi�ed before this iteration. Then the increase of the integral solution is at

least
∑

l∈N(i) bilxil. Since the current solution x restricted to the remaining edges is a

feasible solution in the residual problem, the decrease of the fractional solution is at most∑
l∈N(i) bilxil, and thus the lemma holds.

Now suppose that Bi has been modi�ed before this iteration. In this case let j be

the unique neighbor of i. Let y denote the fractional solution when Bi was modi�ed. Let

Bi denote the original budget, bij denote the original bid and b′ij denote the current bid.

The decrease in the fractional solution in the current step is at most its current bid

b′ij =
4

3
bijyij .

However, from the iteration when its budget was modi�ed, the unspent budget left on

agent i is at least bijyij and hence the increase of the integral solution is at least

bijyij ≥
3

4
· b′ij .

Therefore the lemma holds if Step (ii) is applied.

Now, �nally assume that Step (iii)(b) was applied on a tight leaf agent i. Let j be

the unique non-leaf item in N(i). Then increase in the integral solution is at least∑
l∈N(i)\{j}

bilxil = Bi − bijxij .

The decrease in the fractional solution is at most∑
l∈N(i)\{j}

bilxil + bijxij − b′ijxij = Bi − b′ijxij = Bi −
4

3
bijx

2
ij .

Hence, the increase in the integral solution is at least 3/4 of the decrease of the fractional

solution as veri�ed below:

∆(Integral)− 3

4
∆(FractionalSolution)

= Bi − bijxij −
3

4
(Bi −

4

3
bijx

2
ij)

=
Bi
4
− bijxij(1− xij) ≥

Bi
4
− bij

4
≥ 0,
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where the second last inequality uses the fact that x(1− x) ≤ 1/4 for any 0 ≤ x ≤ 1. This

completes the proof of the lemma, and thus the proof of Theorem 3.3.1.

3.4 Vertex Cover in Bipartite Graphs

In this section we study the vertex cover problem in bipartite graphs. Given a graph

G = (V,E) with cost function c : V → R+ the vertex cover problem asks for a set of

vertices V ′ such that e ∩ V ′ ̸= ∅ for each e ∈ E and c(V ′) =
∑

v∈V ′ cv is minimized. In

this section we restrict our attention to bipartite graphs.

3.4.1 Linear Programming Relaxation

We �rst give the following natural linear programming relaxation LPbvc(G) for the vertex

cover problem in bipartite graphs. We have a variable xv for each vertex v denoting its

inclusion in the solution.

minimize
∑
v∈V

cv xv

subject to xu + xv ≥ 1 ∀ e = {u, v} ∈ E
xv ≥ 0 ∀ v ∈ V

As in the previous two sections, the linear program LPbvc(G) is compact, i.e., the

number of constraints and variables is polynomially bounded in the size of the problem.

Hence, the linear program can be solved optimally in polynomial time by Theorem 2.1.6.

We prove the following theorem by an iterative algorithm.

Theorem 3.4.1 Given any cost function c there exists an integral vertex cover U such that

c(U) ≤ c · x where x is an optimal solution to LPbvc(G).

As before, our proof of Theorem 3.4.1 as a corollary implies the following theorem.

Theorem 3.4.2 The linear programming formulation LPbvc(G) is integral.

3.4.2 Characterization of Extreme Point Solutions

Before we prove Theorem 3.4.1 we give a characterization of extreme points of LPbvc. For a

set W ⊆ V , let χ(W ) denote the vector in R|V |: the vector has an 1 corresponding to each

vertex v ∈ W , and 0 otherwise. This vector is called the characteristic vector of W , and

is denoted by χ(W ). In the following lemma, which follows by a direct application of the
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Rank Lemma 2.1.4, we characterize an extreme point solution by a set of tight independent

constraints.

Lemma 3.4.3 Given any extreme point x to LPbvc(G) with xv > 0 for each v ∈ V there

exists F ⊆ E such that

(i) xu + xv = 1 for each e = {u, v} ∈ F .
(ii) The vectors in {χ({u, v}) : {u, v} ∈ F} are linearly independent.

(iii) |V | = |F |.

3.4.3 Iterative Algorithm

We now give the algorithm which constructs an integral vertex cover of cost at most the

optimal solution to LPbvc(G) proving Theorem 3.4.1. The algorithm is a simple iterative

procedure and shown in Figure 3.5.

Iterative Bipartite Vertex Cover Algorithm

(i) Initialization U ← ∅.
(ii) While V (G) ̸= ∅ do

(a) Find an optimal extreme point solution x to LPbvc(G) and remove every

vertex v with xv = 0 and dE(v) = 0 from G.

(b) If there is a vertex v ∈ V with xv = 1 then update U ← U ∪{v}, V (G)←
V (G) \ {v} and E(G)← E(G) \ δ(v).

(iii) Return U .

Fig. 3.5. Bipartite Vertex Cover Algorithm

3.4.4 Correctness and Optimality

Following the approach we used for bipartite matching, we prove the correctness of the

algorithm in two steps. First, we show that the algorithm returns a vertex cover of optimal

cost if the algorithm always �nds a vertex v with xv = 0 in Step (ii)(a) or a vertex v with

xv = 1 in Step (ii)(b) . In the second part, we show that the algorithm will always �nd

such an vertex completing the proof.

Claim 3.4.4 If the algorithm, in every iteration, �nds a vertex v with xv = 0 and dE(v) = 0

in Step (ii)(a) or a vertex v with xv = 1 in Step (ii)(b), then it returns a vertex cover U of

cost at most the optimal solution to LPbvc(G).

The proof of this claim is identical to the proof of Claim 3.1.4. We leave the details

to the reader. We now complete the proof of Theorem 3.4.1 by showing that we can always
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�nd a vertex v with xv = 0 and dE(v) = 0, or a vertex with xv = 1. The proof of the

following lemma crucially uses the characterization of extreme point solutions given in

Lemma 3.4.3.

Lemma 3.4.5 Given any extreme point solution x to LPbvc(G) there must exist a vertex

v with xv = 0 and dE(v) = 0, or a vertex with xv = 1.

Proof Suppose for sake of contradiction that xv < 1 and xv = 0 implies that dE(v) ≥ 1

for each vertex v ∈ V . This implies that there is no vertex v with xv = 0. This follows

from the fact that any neighbor u of v must have xu = 1 since xu + xv ≥ 1. Lemma 3.4.3

implies that there exists F ⊆ E such that constraints corresponding to F are tight and

|F | = |V |.
We claim that F is acyclic. Suppose for sake of contradiction C ⊆ F is a cycle.

Since G is bipartite C is an even cycle. Then C is the disjoint union of two matchings

M1 and M2. But then the sum of the constraints corresponding to edges in M1 equals the

sum of the constraints corresponding to edges in M2, contradicting the independence of

constraints for edges in F .

Since F is acyclic, we must have |F | ≤ |V | − 1, a contradiction.

Thus, by Lemma 3.4.5, the algorithm in Figure 3.5 returns a vertex cover that costs

at most the optimal solution to the linear program LPbvc(G), proving Theorem 3.4.1.

3.5 Vertex Cover and Matching: Duality

In this section we prove the following min-max theorem between the size of minimum

vertex covers and maximum matchings in bipartite graphs using the integrality proofs we

have seen in previous sections.

Theorem 3.5.1 Given an unweighted bipartite graph G = (V,E) we have

max{|M | :M is a matching} = min{|U | : U is a vertex cover}

Proof Let M∗ be the maximum weight matching returned by the Iterative Algorithm in

Figure 3.1 when the weight function we = 1 for all e ∈ E. Also, let U∗ denote the minimum

cost vertex cover returned by the iterative algorithm in Figure 3.5 when the cost function

cv = 1 for each v ∈ V . From Theorem 3.1.1 and Theorem 3.4.1 we have that M∗ is an

optimal solution to LPbm(G) and U
∗ is an optimal solution to LPbvc(G). But LPbm(G) and

LPbvc(G) are duals of each other when w and c are uniformly one (see Section 2.1.4). By

the strong duality theorem (Theorem 2.1.9) both the linear programs must have optimal

solutions of equal value:

|M∗| = max{|M | :M is a matching} = min{|U | : U is a vertex cover} = |U∗|.
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A weighted generalization of the above theorem is true. It can be similarly shown us-

ing duality and the fact that the corresponding linear programming problems have integral

optima. For more details, see Chapter 18 of Schrijver's book [150].

Notes

The bipartite perfect matching problem (also known as the Assignment problem) is one

of the oldest problems in Combinatorial Optimization (see e.g. [148]). The �rst proof of

polynomial solvability of maximum weight bipartite matching via the Hungarian method

was given by Egerváry [51], sharpened by Kuhn [109] and shown e�cient by Munkres [124].

The unweighted case was addressed earlier by Frobenius [60]. Birkho� [19] was the �rst

to show that the extreme points of the bipartite matching polyhedron (de�ned by the

so-called "doubly stochastic" constraint matrix) are integral.

The generalized assignment problem was �rst studied by Shmoys and Tardos [151]

following up on a bi-criteria approximation algorithms for the problem due to Lin and

Vitter [113]. Trick [157] studied the version minimizing the weighted sum of cost and

makespan of the underlying scheduling problem, while Lenstra, Shmoys and Tardos [112]

study the makespan problem and give the 2-approximation that was generalized in the

subsequent work of Shmoys and Tardos [151]. Extensions have been considered by Saha

and Srinivasan [145] and Zhang et al [166]; see exercises.

The maximum budgeted allocation problem is NP-hard. The �rst approximation al-

gorithm is a (1 +
√
5)/2-approximation algorithm given by Garg, Kumar and Pandit [70].

The approximation ratio was subsequently improved to e/(e− 1) by Andelman and Man-

sour [3], and 3/2 by Azar et al. [7]. The result presented in this chapter is by Chakrabarty

and Goel [27]. The same result is also obtained independently by Srinivasan [155] by a

dependent rounding algorithm.

The bipartite minimum vertex cover problem is the linear programming dual to the

maximum matching problem. The min-max theorem relating them is due to König [105].

The Hungarian method and LP duality can be used to show the integrality of the weighted

vertex cover problem. An alternate approach is to use the total unimodularity (see e.g.,

the book by Nemhauser and Wolsey [130]) of the constraint matrix which is the edge-node

incidence matrix of the bipartite graph, which is also an example of a Network Matrix that

we will study in Chapter 8.

Exercises

3.1 Given a bipartite graph G = (V,E) and a cost function c : E → R, a perfect

matching is a subgraph with degree exactly one at any node.

(a) Write a linear programming formulation for the minimum cost perfect match-

ing problem.
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(b) Give an iterative proof of integrality of the linear programming formulation

for the minimum cost perfect matching problem. (Hint: Adapt the proof for

maximum weight matchings.)

3.2 Show that LPbm(G) and LPbvc(G) are not integral when G is not bipartite.

3.3 Generalize the methods given in this chapter for maximum weight matchings and

minimum weight vertex covers in bipartite graphs to the case when the right hand

side of the LP constraints are positive integers (rather than all 1's as we consid-

ered). Note that the two resulting integrality proofs, along with strong duality, will

imply the general min-max relation between maximum-weight matchings with arbi-

trary vertex degree bounds and minimum-cost vertex cover with arbitrary coverage

requirements at the edges.

3.4 Given a set of intervals [ai, bi] for each 1 ≤ i ≤ n and a weight function w on

intervals, the maximum weight k-interval packing problem asks for a subset J of

intervals of maximum weight such that there are at most k intervals in J at any

point on the line.

(a) Formulate a linear program for the maximum weight k-interval packing prob-

lem.

(b) Show that only n − 1 point constraints need to be imposed apart from the

bound constraints.

(c) Show that the linear program is integral.

3.5 Can you solve the maximum weight k-interval packing problem for intervals on a

tree rather than a path (as was the case in the previous problem) using the same

approach? If you can, give an integral description for the problem. If not, argue

why natural formulations are not integral.

Consider the case when all the intervals in a tree are monotone, i.e., they

go from a point in a rooted version of the tree to its ancestor (thus there are no

intervals whose endpoints are two incomparable points in the tree). Can you give

an integral LP formulation in this case using the approach of the previous problem?

3.6 (Zhang et al [166], Saha and Srinivasan [145]) Consider the generalized assignment

problem where for each machine i we are also given an upper bound Ui on the

number of jobs that the machine i can service. Modify the iterative rounding

algorithm to obtain the same guarantee as in Theorem 3.2.1 and also that the

number of jobs on machine i is at most Ui.

3.7 Prove Lemma 3.3.3 starting from Lemma 3.3.2.

3.8 (Chakrabarty and Goel [27]) Construct an example for LPmba of the maximum

budgeted allocation problem with integrality gap 4
3 .
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4

Spanning Trees

†

In this chapter we will study the spanning tree problem in undirected graphs. First,

we will study an exact linear programming formulation and show its integrality using the

iterative method. To do this, we will introduce the uncrossing method, which is a very

powerful technique in combinatorial optimization. The uncrossing method will play a

crucial role in the proof and will occur at numerous places in later chapters. We will show

two di�erent iterative algorithms for the spanning tree problem, each using a di�erent

choice of 1-elements to pick in the solution. For the second iterative algorithm, we show

three di�erent correctness proofs for the existence of an 1-element in an extreme point

solution: a global counting argument, a local integral token counting argument and a local

fractional token counting argument. These token counting arguments will be used in many

proofs in later chapters.

We then address the degree-bounded minimum-cost spanning tree problem. We show

how the methods developed for the exact characterization of the spanning tree polyhedron

are useful in designing approximation algorithms for this NP-hard problem. We give two

additive approximation algorithm: the �rst follows the �rst approach for spanning trees

and naturally generalizes to give a simple proof of the additive two approximation result

of Goemans [72]; the second follows the second approach for spanning trees and uses the

local fractional token counting argument to provide a very simple proof of the additive one

approximation result of Singh and Lau [154].

4.1 Minimum Spanning Trees

In an instance of the minimum spanning tree (MST) problem we are given an undirected

graph G = (V,E), edge costs given as c : E → R, and the task is to �nd a spanning tree

of minimum total edge cost.

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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4.1.1 Linear Programming Relaxation

In this section two formulations of the minimum spanning tree problem are discussed (some

more are discussed in the Exercises). A spanning tree is a minimal 1-edge-connected

subgraph. Thus, a natural formulation (sometimes called the undirected LP or the cut

LP), is to require that every pair of vertices has a path connecting them. Or equivalently,

we can require that there is at least one edge crossing each proper subset of vertices.

minimize
∑
e∈E

ce xe

subject to x(δ(S)) ≥ 1 ∀ S ⊂ V
xe ≥ 0 ∀ e ∈ E

There is a variable xe corresponding to each edge e, to indicate that whether e is

included in the spanning tree, and ce denotes the cost of e. For a set F of edges, the

shorthand x(F ) is used to denote
∑

e∈F xe. Recall that δ(S) is the set of edges with

exactly one endpoint in S.

There are exponentially many constraints in the undirected LP. However, from The-

orem 2.1.8 in Chapter 1, the undirected LP can still be solved in polynomial time if a

polynomial time separation oracle can be constructed. Constructing such a polynomial-

time oracle is equivalent to �nding a cut of total capacity less than one in the graph with

capacities x, and can be accomplished using a global minimum-cut algorithm. (In detail,

given a solution to the above linear program, one needs to determine whether it is a fea-

sible solution, and if not, provides a violating inequality. A polynomial time separation

oracle for the undirected LP is easy to construct. Given a fractional solution, check �rst if

every variable is nonnegative. Then, for every pair of vertices, check if the maximum �ow

between them is at least 1. If this condition is satis�ed for every pair, then clearly the given

fractional solution is a feasible solution. On the other hand, if for some pair this condition

is not satis�ed, by the max-�ow min-cut theorem, there is a set S with x(δ(S)) < 1, and

such a set can be found in polynomial time.) Unfortunately, the undirected LP is not an

exact formulation of the minimum spanning tree problem as shown in Figure 4.1.

Another formulation is the subtour elimination LP which is related to the study of

the traveling salesman problem (TSP). For S ⊆ V , de�ne E(S) to be the set of edges

with both endpoints in S. For a spanning tree, there are at most |S| − 1 edges in E(S),

where |S| denotes the number of vertices in S. Insisting on this for every set by using the

constraint (4.2) eliminates all the potential subtours that can be formed in the LP solution:

this is how the formulation gets its name.
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Fig. 4.1. Consider a cycle of n vertices, where every edge has the same cost, say 1. Any spanning
tree requires at least n− 1 edges, and thus has cost at least n− 1. However, by setting xe = 1/2
for each edge, it can be easily checked that this is a feasible solution to the undirected LP, and has
total cost only n/2.

minimize
∑
e∈E

ce xe (4.1)

subject to x(E(S)) ≤ |S| − 1 ∀ ∅ ̸= S ⊂ V (4.2)

x(E(V )) = |V | − 1 (4.3)

xe ≥ 0 ∀ e ∈ E (4.4)

In the next section we will give an iterative algorithm which will prove that the

subtour LP is integral.

Theorem 4.1.1 Every extreme point solution to the subtour LP is integral and corresponds

to the characteristic vector of a spanning tree.

Before we give the iterative algorithm and the proof of Theorem 4.1.1, we show

that one can optimize over the subtour LP in polynomial time. We show this by giving

a polynomial time separation oracle for the constraints in subtour LP. Polynomial time

solvability now follows from Theorem 2.1.8.

Theorem 4.1.2 There is a polynomial time separation oracle for the subtour LP.

Proof Given a fractional solution x the separation oracle needs to �nd a set S ⊆ V such

that x(E(S)) > |S| − 1 if such a set exists. It is easy to check the equality x(E(V )) =

|V | − 1. Thus, checking the inequality for each subset S ⊂ V is equivalent to checking

minS⊂V {|S| − 1 − x(E(S))} < 0. Using x(E(V )) = |V | − 1 we obtain that it is enough

to check minS{|S| − 1 + x(E(V ))− x(E(S))} < |V | − 1}. We show that solving 2|V | − 2

min-cut problems su�ce to check the above.

Fix a root vertex r ∈ V . For each k ∈ V \ {r}, we construct two minimum cut

instances, one which checks the inequality for all subsets S containing r but not k and

the other checks the inequality for all subsets S containing k but not r. We outline the
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construction for the �rst one, the second construction follows by changing the roles of r

and k.

b b b

b b br

k
S̄

S

Fig. 4.2. The above �gure shows the construction for separation of spanning tree constraints. Solid
edges are part of the cut and dashed edges are not part of the cut. Thick edges into k have cost
1 and thick edges from r to any node j cost

∑
e∈δ(j)

xe

2 . Thin arcs between nodes i and j form a

pair of anti-parallel edges of cost
x{i,j}

2 .

We construct a directed graph Ĝ with vertex set V and arcs (i, j) and (j, i) for each

edge {i, j} in G. We let the weight of edges (i, j) and (j, i) to be
x{i,j}

2 . We also place arcs

from each vertex v ∈ V \ {r, k} to k of weight 1 and arcs from r to each vertex v ∈ V \ {r}
of weight

∑
e∈δ(v)

xe
2 = x(δ(v))

2 . Consider any cut (S, V \ S) which separates r from k.

Edges of weight one contribute exactly |S| − 1. The edges between i and j of weight
xij
2

contribute exactly x(δ(S))
2 . The edges from r to rest of the vertices contribute

∑
v/∈S

x(δ(v))
2 .

Thus the total weight of the cut is exactly

|S| − 1 +
x(δ(S))

2
+

∑
v/∈S

x(δ(v))

2
= |S| − 1 + x(E(V ))− x(E(S)).

Hence, checking whether the minimum cut separating r from k is strictly smaller than

|V | − 1 checks exactly whether there is a violating set S containing r but not containing

k.

4.1.2 Characterization of Extreme Point Solutions

In this subsection, we analyze the extreme point solutions to the subtour LP. Recall that

an extreme point solution is the unique solution de�ned by n linearly independent tight

inequalities, where n is the number of variables in the linear program. There are expo-

nentially many inequalities in the subtour LP, and an extreme point solution may satisfy
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many inequalities as equalities. To analyze an extreme point solution, an important step

is to �nd a �good� set of tight inequalities de�ning it. If there is an edge e with xe = 0,

this edge can be removed from the graph without a�ecting the feasibility and the objective

value. So henceforth assume every edge e has xe > 0.

4.1.3 Uncrossing Technique

The uncrossing technique is a powerful technique and we shall use it to �nd a good set

of tight inequalities for an extreme point solution in the subtour LP. For a set F ⊆ E,

let χ(F ) denote the characteristic vector in R|E| that has an 1 corresponding to each edge

e ∈ F , and 0 otherwise. The following proposition follows from the supermodularity of

|E(X)|; see also Proposition 2.3.6.

Proposition 4.1.3 For X,Y ⊆ V ,

χ(E(X)) + χ(E(Y )) ≤ χ(E(X ∪ Y )) + χ(E(X ∩ Y )),

and equality holds if and only if E(X \ Y, Y \X) = ∅.

Proof Observe that

χ(E(X)) + χ(E(Y )) = χ(E(X ∪ Y )) + χ(E(X ∩ Y ))− χ(E(X \ Y, Y \X))

and proof follows immediately. See Figure 4.3.

X Y

Fig. 4.3. In this example the solid edges are counted exactly once in both the LHS χ(E(X)) +
χ(E(Y )), and the RHS χ(E(X ∪ Y )) + χ(E(X ∩ Y )), and the bold edge is counted exactly twice
on both sides. The dashed edge, however is counted in the RHS but not in the LHS.

Given an extreme point solution x to the subtour LP, let F = {S ⊆ V | x(E(S)) =

|S| − 1} be the family of tight inequalities for x. The following lemma shows that this

family is closed under intersection and union.
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Lemma 4.1.4 If S, T ∈ F and S∩T ̸= ∅, then both S∩T and S∪T are in F . Furthermore,

χ(E(S)) + χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )).

Proof Observe that

|S| − 1 + |T | − 1 = x(E(S)) + x(E(T ))

≤ x(E(S ∩ T )) + x(E(S ∪ T )))
≤ |S ∩ T | − 1 + |S ∪ T | − 1

= |S| − 1 + |T | − 1.

The �rst equality follows from the fact that S, T ∈ F . The second inequality follows

from Proposition 4.1.3 (or from Proposition 2.3.6). The third inequality follows from

the constraints for S ∩ T and S ∪ T in the subtour LP. The last equality is because

|S| + |T | = |S ∩ T | + |S ∪ T | for any two sets S, T . Thus equality must hold everywhere

and we have x(E(S ∩ T )) + x(E(S ∪ T )) = |S ∩ T | − 1 + |S ∪ T | − 1. Hence, we must

have equality for constraints for S ∩ T and S ∪ T , i.e., x(E(S ∩ T )) = |S ∩ T | − 1 and

x(E(S ∪ T )) = |S ∪ T | − 1, which implies that S ∩ T and S ∪ T are also in F . Moreover,

equality holds for Proposition 4.1.3 and thus χ(E(S \ T, T \ S)) = ∅ and χ(E(S)) +

χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )).

Denote by span(F) the vector space generated by the set of vectors {χ(E(S)) | S ∈
F}. Call two sets X,Y intersecting if X ∩ Y , X − Y and Y − X are nonempty. A

family of sets is laminar if no two sets are intersecting. The following lemma says that an

extreme point solution is characterized by tight inequalities whose corresponding sets form

a laminar family. This is a crucial structure theorem on the extreme point solutions for

the subtour LP.

Lemma 4.1.5 If L is a maximal laminar subfamily of F , then span(L) = span(F).

Proof Suppose, by way of contradiction, that L is a maximal laminar subfamily of F but

span(L) ⊂ span(F). For any S /∈ L, de�ne intersect(S,L) to be the number of sets in

L which intersect S, i.e. intersect(S,L) = |{T ∈ L | S and T are intersecting}|. Since

span(L) ⊂ span(F), there exists a set S with χ(E(S)) /∈ span(L). Choose such a set S

with minimum intersect(S,L). Clearly, intersect(S,L) ≥ 1; otherwise L ∪ {S} is also a

laminar subfamily, contradicting the maximality of L. Let T be a set in L which intersects

S. Since S, T ∈ F , by Lemma 4.1.4, both S∩T and S∪T are in F . Also, both intersect(S∩
T,L) and intersect(S ∪ T,L) are smaller than intersect(S,L), which will be proved next

in Proposition 4.1.6. Hence, by the minimality of intersect(S,L), both S ∩ T and S ∪ T
are in span(L). By Lemma 4.1.4, χ(E(S))+χ(E(T )) = χ(E(S∩T ))+χ(E(S∪T )). Since
χ(E(S ∩ T )) and χ(E(S ∪ T )) are in span(L) and T ∈ L, the above equation implies that

χ(E(S)) ∈ span(L), a contradiction. It remains to prove Proposition 4.1.6.

Proposition 4.1.6 Let S be a set that intersects T ∈ L. Then intersect(S ∩ T,L) and

intersect(S ∪ T,L) are smaller than intersect(S,L).
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Proof Since L is a laminar family, for a set R ∈ L with R ̸= T , R does not intersect T

(either R ⊂ T , T ⊂ R or T ∩ R = ∅). So, whenever R intersects S ∩ T or S ∪ T , R also

intersects S. Also, T intersects S but not S ∩ T or S ∪ T . Therefore, intersect(S ∩ T,L)
and intersect(S ∪ T,L) are smaller than intersect(S,L)
This completes the proof of Lemma 4.1.5.

The following proposition about the size of a laminar family will be used to bound

the number of variables in an extreme point solution.

Proposition 4.1.7 A laminar family L over the ground set V without singletons (subsets

with only one element) has at most |V | − 1 distinct members.

Proof The proof is by induction on the size of the ground set. If |V | = 2, clearly the claim

follows. Let n = |V | and the claim be true for all laminar families over ground sets of size

strictly smaller than n. Let S be a maximal set in the laminar family which is not equal

to V . Each set in L, except for V , is either contained in S or does not intersect S. The

number of sets in L contained in S (including S itself) is at most |S| − 1 by the induction

hypothesis. The sets in L not intersecting with S form a laminar family over the ground

set V \ S and hence there are at most |V | − |S| − 1 such sets. Along with V , this gives a

total of at most (|S| − 1) + (|V | − |S| − 1) + 1 = |V | − 1 sets.

The following corollary follows immediately from Proposition 4.1.7.

Corollary 4.1.8 A laminar family L over the ground set V (potentially including singletons

now) has at most 2|V | − 1 distinct members.

4.1.4 Leaf-�nding Iterative Algorithm

In this subsection, an iterative procedure to �nd a minimum spanning tree from an optimal

extreme point solution of the subtour LP is presented. The algorithm is shown in Figure 4.4.

Iterative Leaf-�nding MST Algorithm

(i) Initialization F ← ∅.
(ii) While |V (G)| ≥ 2 do

(a) Find an optimal extreme point solution x to the subtour LP and remove

every edge e with xe = 0 from G.

(b) Find a vertex v with at most one edge e = uv incident on it, then update

F ← F ∪ {e} and G← G \ {v}.
(iii) Return F .

Fig. 4.4. Iterative Leaf-�nding MST Algorithm
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4.1.5 Correctness and Optimality of Leaf-Finding Algorithm

First, we prove that the algorithm will terminate in the following lemma.

Lemma 4.1.9 For any extreme point solution x to the subtour LP with xe > 0 for every

edge e, there exists a vertex v with d(v) = 1.

Proof Suppose each vertex is of degree at least two. Then |E| = 1
2

∑
v∈V d(v) ≥ |V |. On

the other hand, since there is no edge e with xe = 0, every tight inequality is of the form

x(E(S)) = |S|−1. By Lemma 4.1.5, there are |L| linearly independent tight constraints of

the form x(E(S)) = |S| − 1, where L is a laminar family with no singleton sets. It follows

that |E| = |L| by the Rank Lemma 2.1.4. By Proposition 4.1.7, |L| ≤ |V | − 1 and hence

|E| ≤ |V | − 1, a contradiction.

Next we show that the returned solution is a minimum spanning tree in the following

theorem.

Theorem 4.1.10 The Iterative MST Algorithm returns a minimum spanning tree in poly-

nomial time.

Proof This is proved by induction on the number of iterations of the algorithm. If the

algorithm �nds a vertex v of degree one (a leaf vertex) in Step (ii)(b) with an edge e = {u, v}
incident at v, then we must have xe = 1 since x(δ(v)) ≥ 1 is a valid inequality of the LP

(subtracting the constraint x(E(V −v)) ≤ |V |−2 from the constraint x(E(V )) = |V |−1).

In the iterative leaf-�nding algorithm, e is added to the solution F (starting with an

initial F = ∅), and v is removed from the graph. Note that for any spanning tree T ′ of

G′ = G \ {v}, we can construct a spanning tree T = T ′ ∪ {e} of G. Hence, the residual

problem is to �nd a minimum spanning tree on G \ v, and the same procedure is applied

to solve the residual problem recursively.

Since xe = 1, the restriction of x to E(G′), denoted by xres, is a feasible solution

to the subtour LP for G′. Inductively, the algorithm will return a spanning tree F ′ of G′

of cost at most the optimal value of the subtour LP for G′, and hence c(F ′) ≤ c · xres.
Therefore,

c(F ) = c(F ′) + ce and c(F
′) ≤ c · xres

which imply that

c(F ) ≤ c · xres + ce = c · x

as xe = 1. Hence, the spanning tree returned by the algorithm is of cost no more than

the cost of an optimal LP solution x, which is a lower bound on the cost of a minimum

spanning tree. This shows that the algorithm returns a minimum spanning tree of the

graph.
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Remark 4.1.11 If x is an optimal extreme point solution to the subtour LP for G, then

the residual LP solution xres, x restricted to G′ = G \ v, remains an optimal extreme point

solution to the subtour LP for G′. Hence, in the Iterative MST Algorithm we only need to

solve the original linear program once and none of the residual linear programs.

Theorem 4.1.10 also shows that the subtour LP is an exact formulation of the mini-

mum spanning tree problem showing the proof of Theorem 4.1.1.

Alternately, note that the proof of Lemma 4.1.9 already showed that |E| = n − 1

and since x(E) = n − 1 and x(e) ≤ 1 for all edges e ∈ E (by considering the constraint

x(E(S)) = |S|−1 for the size-two set S de�ned by the endpoints of the edge), we must have

xe = 1 for all edges e ∈ E proving integrality. Thus we have that directly either xe = 0

or xe = 1 for all edges e rather than for a single edge. This gives a direct (non-iterative)

proof of integrality of the subtour LP.

4.2 Iterative 1-edge-�nding Algorithm

In this section, we give another iterative procedure to �nd a minimum spanning tree from

an optimal extreme point solution to the subtour LP is presented. The algorithm is shown

in Figure 4.5. A key di�erence is that to create the residual problem, the chosen edge e is

contracted from G to identify its endpoints to result in the graph G/e.

Iterative 1-edge-�nding MST Algorithm

(i) Initialization F ← ∅.
(ii) While |V (G)| ≥ 2 do

(a) Find an optimal extreme point solution x to the subtour LP and remove

every edge e with xe = 0 from G.

(b) Find an edge e = {u, v} with xe = 1 and update F ← F ∪ {e}, G← G/e.

(iii) Return F .

Fig. 4.5. Iterative 1-edge-�nding MST Algorithm

4.2.1 Correctness and Optimality of 1-Edge-Finding Algorithm

Following the discussion in Subsection 4.1.5 it is enough to show that the algorithm will

terminate. An argument similar to one in proof of Theorem 4.1.10 will show that the

output of the algorithm is a minimum spanning tree.

Lemma 4.2.1 For any extreme point solution x to the subtour LP with xe > 0 for each

edge e there exists an edge f with xf = 1.
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Proof We give three alternate proofs of this lemma mainly to illustrate the three types of

counting arguments that can be used to accomplish such proofs.

Proof 1 (Global Counting Argument). This is the proof style of Lemma 4.1.5 which

shows by a global degree counting argument over all (non-leaf) nodes that |E| ≥ |V |, which
contradicts the upper bound of |L| of |V | − 1.

Proof 2 (Local Token Counting Argument). By Lemma 4.1.5, there are |L| linearly
independent tight constraints of the form x(E(S)) = |S| − 1, and so |E| = |L|. We now

show a contradiction to this through a local token counting argument.

We assign one token for each edge e in the support E, for a total of |E| tokens. We

will redistribute the tokens so that each set in L will receive one token and there are some

extra tokens left. This implies that |E| > |L|, giving us the contradiction. Actually, for

the contradiction, we can collect two tokens for each set S ∈ L. Since |L| ≥ 1, this will

give the desired extra token and hence the contradiction.

To redistribute the tokens, each edge gives its token to the smallest set containing

both of its endpoints. Let S be any set in L with children R1, . . . , Rk (k could be zero).

We have

x(E(S)) = |S| − 1

and for each i,

x(E(Ri)) = |Ri| − 1.

Subtracting, we obtain

x(E(S))−
k∑
i=1

x(E(Ri)) = |S| −
k∑
i=1

|Ri|+ k − 1.

Let A = E(S) \ (∪iE(Ri)). Observe that S obtains exactly one token for each edge in A.

If A = ∅, then χ(E(S)) =
∑

i χ(E(Ri)) which contradicts the linear independence of these

constraints in L. Moreover, |A| ≠ 1 as x(A) is an integer but no single edge in it has an

integral value. Hence, |A| ≥ 2 and thus S receives at least two tokens.

Proof 3 (Local Fractional Token Counting Argument). This is a slight modi�cation

of the previous argument but generalizes nicely to the degree-bounded case. As before, we

assign one token for each edge e in the support E, for a total of |E| tokens. For each edge

e, however, we only redistribute xe fractional token to the smallest set containing both the

endpoints. Now, we show that each set in L can collect at least one token, and demonstrate

some extra leftover fractional edge tokens as before giving us the contradiction.

Let S be any set in L with children R1, . . . , Rk for some k ≥ 0. Following the previous

proof, we have that

x(E(S))−
∑
i

x(E(Ri)) = |S| −
∑
i

|Ri|+ k − 1

=⇒ x(A) = |S| −
∑
i

|Ri|+ k − 1
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where A = E(S) \ (∪iE(Ri)). Now S obtains exactly xe fractional token for each edge e

in A. If A = ∅, then χ(E(S)) =
∑

i χ(E(Ri)) which contradicts the linear independence

of these sets of constraints in L. Moreover, x(A) is an integer and hence it is at least one,

giving S the one token it needs.

Since every edge is not integral, we have the extra fractional token of value (1− xe)
for every edge e as unused tokens giving the contradiction.

4.3 Minimum Bounded-Degree Spanning Trees

We next turn to the study of the minimum bounded-degree spanning tree (MBDST) prob-

lem. In an instance of the MBDST problem we are given a graph G = (V,E), edge cost

given by c : E → R, a degree upper bound Bv for each v ∈ V and the task is to �nd a

spanning tree of minimum cost which satis�es the degree bounds. We prove the following

theorem originally due to Singh and Lau [154].

Theorem 4.3.1 There exists a polynomial time algorithm which given a feasible instance

of the MBDST problem returns a spanning tree T such that dT (v) ≤ Bv+1 and cost of the

tree T is at most the cost of any tree which satis�es the degree bounds.

We prove Theorem 4.3.1 using the iterative relaxation technique. However, we �rst

prove a weaker guarantee where the degree bound is violated by an additive factor of two,

a result �rst obtained by Goemans [72] and illustrates a simple extension of the leaf-�nding

iterative MST algorithm. Later in Section 4.4, we present the proof of Theorem 4.3.1 that

extends the 1-edge-�nding iterative MST algorithm.

4.3.1 Linear Programming Relaxation

We use the following standard linear programming relaxation for the MBDST problem,

which we denote by LPmbdst(G, B,W ). In the following we assume that degree bounds are

given for vertices only in a subset W ⊆ V . Let B denote the vector of all degree bounds

Bv, one for each vertex v ∈W .

minimize
∑
e∈E

ce xe (4.5)

subject to x(E(V )) = |V | − 1 (4.6)

x(E(S)) ≤ |S| − 1 ∀ ∅ ≠ S ⊂ V (4.7)

x(δ(v)) ≤ Bv ∀ v ∈W (4.8)

xe ≥ 0 ∀ e ∈ E (4.9)
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Separation over the inequalities in the above linear program can be carried out in

polynomial time and follows from Theorem 4.1.2. An alternative is to write a compact

reformulation of the above linear program which has polynomially many variables and

constraints (see the exercises). When the above LP relaxation is infeasible, the method

signals infeasibility; otherwise, it proceeds to iteratively round and provide an approximate

solution. Henceforth we assume that we are working with a feasible instance of the problem

for which there is trivially a feasible LP solution.

4.3.2 Characterization of Extreme Point Solutions

We �rst give a characterization of an extreme point solution to LPmbdst(G,B,W ). We

remove all edges with xe = 0 and focus only on the support of the extreme point solution

and the tight constraints from (4.6)-(4.8). Let F = {S ⊆ V : x(E(S)) = |S|−1} be the set
of tight constraints from (4.6)-(4.7). From an application of Rank Lemma 2.1.4 and the

characterization of extreme point solutions to the spanning tree polyhedron (Lemma 4.1.5),

we have the following characterization.

Lemma 4.3.2 Let x be an extreme point solution to LPmbdst(G,B,W ) with xe > 0 for

each edge e ∈ E. Then there exists a set T ⊆W and a laminar family L such that

(i) x(δ(v)) = Bv for each v ∈ T and x(E(S)) = |S| − 1 for each S ∈ L.
(ii) The vectors in {χ(E(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ T} are linearly independent.

(iii) |L|+ |T | = |E|.

4.3.3 Leaf-�nding Iterative Algorithm

In this section, we give an iterative polynomial-time algorithm which returns a tree of

optimal cost and violates the degree bound within an additive error of two. The algorithm

is given in Figure 4.6

4.3.4 Correctness and Performance Guarantee

In the next lemma we prove by a simple counting argument that in each iteration we can

proceed by applying either Step (ii)(b) or Step (ii)(c); this will ensure that the algorithm

terminates.

Lemma 4.3.3 Any extreme point solution x to LPmbdst(G,B,W ) with xe > 0 for each

edge e ∈ E must satisfy one of the following.

(a) There is a vertex v ∈ V with dE(v) = 1.

(b) There is a vertex v ∈W with dE(v) ≤ 3.
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Iterative MBDST Leaf-�nding Algorithm

(i) Initialization F ← ∅.
(ii) While |V (G)| ≥ 2 do

(a) Find an optimal extreme point solution x to LPmbdst(G,B,W ) and remove

every edge e with xe = 0 from G. Let the support of x be E.

(b) If there exists a vertex v ∈ V with at most one edge e = uv incident on

it, then update F ← F ∪ {e}, G ← G \ {v}, W ← W \ {v}, and set

Bu ← Bu − 1.

(c) (Relaxation) If there exists a vertex v ∈W with dE(v) ≤ 3, then update

W ←W \ {v}.
(iii) Return F .

Fig. 4.6. MBDST Leaf-�nding Algorithm

Proof We use a global counting argument. Suppose for sake of contradiction that both

(a) and (b) are not satis�ed. Then every vertex has at least 2 edges incident on it and

every vertex in W has at least 4 edges incident on it. Therefore, |E| = 1
2

∑
v∈V d(v) ≥

1
2(2(n− |W |) + 4|W |) = n+ |W |, where n = |V |.

On the other hand, by Lemma 4.3.2, there is a laminar family L and a set T ⊆ W

of vertices such that |E| = |L| + |T |. As L is a laminar family which contains subsets of

size at least two, from Proposition 4.1.7 we have |L| ≤ n − 1. Hence, |E| = |L| + |T | ≤
n− 1 + |T | ≤ n− 1 + |W |, a contradiction.

We now prove the performance guarantee of the algorithm.

Theorem 4.3.4 The leaf-�nding iterative algorithm in Figure 4.6 returns a tree T of

optimal cost with dT (v) ≤ Bv + 2 for each v ∈ V .

Proof The proof that the cost of tree returned is at most the cost of the linear programming

solution is identical to the proof of the optimality of the iterative spanning tree algorithm

in Section 4.1 and we do not duplicate it here.

We show that the degree of any vertex v is at most Bv + 2. At any iteration, let F

denote the set of edges selected and let B′
v denote the current residual degree bound of v.

We claim that while the degree constraint of v is present, dF (v) + B′
v = Bv. The proof is

by induction on the number of iterations of the algorithm. Clearly, F = ∅ and B′
v = Bv

and the claim holds. At any iteration, whenever we include an edge e ∈ δ(v) in F , we

reduce B′
v by one and hence the equality holds true.

When the degree bound for the vertex v is removed then at most 3 edges are incident

at v. In the worst case, we may select all three edges in the solution. Hence,

dT (v) ≤ Bv −B′
v + 3 ≤ Bv + 2

where B′
v ≥ 1 is the degree bound of v when the degree constraint is removed.
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4.4 An Additive One Approximation Algorithm

In this section, we give a very simple iterative algorithm which returns a tree of optimal

cost and violates the degree bound within an additive error of one. This algorithm involves

no rounding at all (not even picking an 1-edge) - it removes degree constraints one by one,

and eventually reduces the problem to a minimum spanning tree problem. This can be

thought of as an analogue of the 1-edge-�nding iterative MST algorithm presented earlier.

The algorithm is given in Figure 4.7.

Iterative Relaxation MBDST Algorithm

(i) While W ̸= ∅ do
(a) Find an optimal extreme point solution x to LPmbdst(G,B,W ) and remove

every edge e with xe = 0 from G. Let the support of x be E.

(b) (Relaxation) If there exists a vertex v ∈ W with dE(v) ≤ Bv + 1, then

update W ←W \ {v}.
(ii) Return E.

Fig. 4.7. Additive One MBDST Algorithm

4.4.1 Correctness and Performance Guarantee

In the next lemma we prove that in each iteration, the algorithm can �nd some vertex for

which the degree constraint can be removed. Observe that once all the degree constraints

are removed we obtain the linear program for the minimum spanning tree problem which

we showed in Section 4.1 to be integral. Hence, the algorithm returns a tree. Moreover,

at each step we only relax the linear program. Hence, the cost of the �nal solution is at

most the cost of the initial linear programming solution. Thus the tree returned by the

algorithm has optimal cost. A simple inductive argument also shows that the degree bound

is violated by at most an additive one. The degree bound is violated only when we remove

the degree constraint and then dE(v) ≤ Bv + 1. Thus, in the worst case, if we include all

the edges incident at v in T , the degree bound of v is violated by at most an additive one.

It remains to show that the iterative relaxation algorithm �nds a degree constraint

to remove at each step. From Lemma 4.3.2 we have that there exists a laminar family

L ⊆ F and T ⊆ W such that |L| + |T | = |E| and constraints for sets in L are linearly

independent. Observe that if T = ∅ then only the spanning tree inequalities de�ne the

solution x. Hence, x must be integral. In the other case, we show that there must be a

vertex in W whose degree constraint can be removed.

Lemma 4.4.1 Let x be an extreme point solution to LPmbdst(G, B,W ) with xe > 0.

Let L and T ⊆ W correspond to the tight set constraints and the tight degree constraints
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de�ning x as given by Lemma 4.3.2. If T ̸= ∅ then there exists some vertex v ∈ W with

dE(v) ≤ Bv + 1.

Proof We use the local fractional token argument as in the integrality proof of the 1-edge-

�nding iterative MST algorithm we presented earlier.

Suppose for the sake of contradiction, we have T ̸= ∅ and dE(v) ≥ Bv + 2 for each

v ∈ W . We now show a contradiction by a fractional token argument. We give one token

for each edge in E. We then redistribute the token such that each vertex in T and each set

in L gets one token and we still have extra tokens left. This will contradict |E| = |T |+ |L|.
The token redistribution is as follows. Each edge e ∈ E gives as before xe fractional token

to the smallest set in L containing both endpoints of e, and (1− xe)/2 fractional token to

each of its endpoints for the degree constraints.

We have already argued earlier that the xe assignment su�ces to obtain one token

for each member in the laminar family (see the third fractional token argument in the proof

of Lemma 4.2.1).

Thus it su�ces to show that each vertex with a tight degree constraint gets one

token. Let v ∈ T be such a vertex. Then v receives (1−xe)/2 token for each edge incident

at v for a total token of value∑
e∈δ(v)

1− xe
2

=
dE(v)−Bv

2
≥ 1,

where the �rst equality holds since
∑

e∈δ(v) xe = Bv and the inequality holds since dE(v) ≥
Bv + 2 by Step (i)(b) of the algorithm.

To �nish the proof, we argue that there is some extra token left for contradiction.

If V /∈ L then there exists an edge e which is not contained in any set of L and the xe
token for that edge gives us the contradiction. Similarly, if there is a vertex v ∈ W \ T
then v also collects one token which it does not need and we get the desired contradiction.

Moreover, if there is a vertex v ∈ V \ T then each edge e incident at v must have xe = 1

else the (1− xe)/2 > 0 token is extra. Note that e ∈ span(L) for each e with xe = 1, since

e is a tight set of size two. We have

2χ(E(V )) =
∑
v∈V

χ(δ(v)) =
∑
v∈T

χ(δ(v)) +
∑

v∈V−T
χ(δ(v)) =

∑
v∈T

χ(δ(v)) +
∑

v∈V−T

∑
e∈δ(v)

χ(e).

We have argued that V ∈ L and e ∈ span(L) for each edge e ∈ δ(v) for v ∈ V − T . Since
T ̸= ∅, this implies the linear independence of the tight constraints in T and those in L,
giving us the contradiction.

Notes

Many variants of the greedy algorithm for �nding minimum spanning trees have been

obtained starting from Boruvka [21], Kruskal [108] and Prim [135] (Graham and Hell [75]
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have a useful survey of the history). Edmonds [48] gave the integral linear programming

relaxation for minimum spanning tree problem that we presented.

There is a long line of work of successively improving the performance guarantees for

the degree-bounded minimum-cost spanning tree problem. The algorithm with additive

guarantee of one for the unweighted case was �rst given by Fürer and Raghavachari [66].

The additive algorithm with violation 2 (with both upper and lower degree bounds) was

presented by Goemans [72]. The algorithm with additive violation of 1 was �rst presented

by Singh and Lau [154], also for the case with upper and lower bounds on the degree.

The fractional token proof which we used for the additive one proof was �rst presented

by Bansal et al. [9]. Chan et al [29] consider the degree bounded spanning tree problem

with metric costs and give true approximation by applying splitting o� techniques to the

solution presented here (see exercises).

Exercises

4.1 (Partition LP formulation for spanning trees.) Consider the following par-

tition LP for the minimum spanning tree problem. Let π = {V1, . . . , Vl} be a

partition of the vertex set V , and let |π| = l denote the size of the partition. De�ne

∆(π) to be the set of edges with endpoints in di�erent sets in the partition π. In

any spanning tree, there are at least |π| − 1 edges in ∆(π) for a partition π of V .

Note that the undirected LP is a special case where only partitions of size two are

considered. Show that the partition LP is equivalent to the subtour LP.

minimize
∑
e∈E

ce xe

subject to x(∆(π)) ≥ |π| − 1 for all partitions π of V

x(E(V )) = |V | − 1

xe ≥ 0 ∀ e ∈ E

4.2 Let τ = {S ⊆ V : x(E(S)) = |S| − 1} where x is an extreme point solution to the

spanning tree polyhedron. Solving the linear program using the ellipsoid method

enables us to get a set family F ⊆ τ such that constraints for sets in F are linearly

independent and span all the tight constraints in τ . But F need not be laminar.

Give a polynomial time algorithm that, given F , returns a laminar family L ⊆ τ

such that constraints for sets in L are independent and span all the tight constraints

in τ .

4.3 (Spanning tree formulations.) Another interesting formulation for the mini-

mum spanning tree problem is the bidirected LP, which models the problem as

�nding a spanning arborescence (i.e. a directed spanning tree). Given a directed

graph D and a root vertex r, a spanning r-arborescence is a subgraph of D so that

there is a directed path from r to every vertex in V −r. Given an undirected graph
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G, we construct a directed graph D by having two opposite arcs (u, v) and (v, u) for

each undirected edge uv in G, and the cost of (u, v) and (v, u) in D are the same as

the cost of uv in G. Then, pick an arbitrary vertex r as the root vertex, and require

that there is a directed path from r to every vertex in V − r. Or equivalently, by
Menger's theorem, require that there is at least one arc entering every set which

does not contain the root vertex. The bidirected LP formulation for the minimum

spanning tree problem is shown as follows.

minimize
∑
a∈A

ca xa

subject to x(δin(S)) ≥ 1 ∀ S ⊆ V − r
xa ≥ 0 ∀ a ∈ A

It is not clear a-priori whether the di�erent spanning tree formulations are exact

(i.e., give integer solutions at all extreme points) or not. (For example, consider

the bidirected LP which looks almost the same as the undirected LP.) Also, it is

not clear whether they can be solved in polynomial time. The following exercises

shows that these three formulations are equivalent.

(a) Suppose all edge weights are positive. Then show that the partition LP, the

subtour LP, and the bidirected LP are equivalent. That is, any solution of

one can be translated into a solution of the other with the same cost.

(b) Using the above result, provide separation oracles for these formulations and

show that there is a polynomial time separation oracle for the partition LP,

the subtour LP, and the bidirected LP.

4.4 Argue that in the iterative relaxation algorithm in Figure 4.7, one only needs to

compute an optimal extreme point solution once initially, after that one can modify

the current solution to obtain an extreme point solution for the next iteration in

a simple way. (Hint: After we relax a degree constraint, we only need to �nd

another extreme point solution with cost no more than the original solution, and

the current solution is an �almost� extreme point solution for the next iteration.)

4.5 (Ghodsi et al [77]) In an instance of the minimum bounded weighted-degree span-

ning tree we are given a graph G = (V,E) and cost function c : E → R+, a weight

function w : E → R+, a degree bound Bv on each vertex v, and the task is to �nd

a spanning tree T with minimum cost and
∑

e∈δT (v)w(e) ≤ Bv for all v ∈ V . Give
a good bi-criteria approximation algorithm for the problem.

4.6 Can you generalize the result in the previous problem to get good bi-criteria approx-

imation algorithm for the minimum bounded weighted-degree Steiner tree problem?

Why or why not?

4.7 (Chan et al [29]) Consider the minimum bounded degree spanning tree problem

when the cost function c : E → Z satis�es triangle inequalities, i.e. c(uv)+c(vw) ≥
c(uw) for all u, v, w ∈ V . Given a spanning tree T , denoted by dT (v) the degree

of a vertex v in T and Bv the degree bound for v. Using a minimum-cost �ow
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technique, Fekete et al [52] showed that the cost of a tree satisfying all degree

bounds is at most the cost of T times

2−min{ Bv − 2

dT (v)− 2
: v ∈ V, dT (v) > 2}.

Use this result and Theorem 4.3.1 to prove that there is a (1+ 1
B−1)-approximation

algorithm for �nding a minimum cost spanning tree with maximum degree B.
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5

Matroids

†

In this chapter, we will study matroids, a combinatorial abstraction, which general-

izes spanning trees and host of other combinatorial structures. After introducing matroids

and stating some basic properties, we address the two most important polynomial-time

solvable problems in this formalism: that of �nding a maximum weight basis and of �nding

a maximum weight common independent set of two matroids (the so-called two-matroid in-

tersection problem), and show integral characterizations using an iterative proof. We then

consider the duals of these problems and prove a min-max theorem on matroid intersection.

We extend the method developed for the exact characterizations to two NP-hard ma-

troid optimization problems. First, we de�ne a degree-bounded version of the minimum

cost basis problem for matroids, and adapt our iterative proof method to supply additive

approximation algorithms. Then, extending the proof for the two matroid intersection

problem, we present a (k − 1)-approximation algorithm for the unweighted k matroid in-

tersection problem: �nding a maximum cardinality common independent set in k matroids

de�ned on the same ground set.

5.1 Preliminaries

De�nition 5.1.1 A pairM = (S, I) is a matroid if I is a nonempty collection of subsets

of S with the following properties.

(i) ∅ ∈ I.
(ii) A ∈ I and B ⊆ A =⇒ B ∈ I.
(iii) A,B ∈ I and |B| > |A| =⇒ ∃x ∈ B \A such that A ∪ {x} ∈ I.

S is called the ground set of the matroid M . A set A ⊆ S is called independent if

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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A ∈ I else it is called dependent. A maximal set A ∈ I is called a basis of M . Observe

that Property (iii) implies that all bases have the the same cardinality.

Examples of Matroids

(i) Graphic Matroid: Given an undirected graph G = (V,E), the graphic matroid

of G is de�ned asMG = (E, IG) where IG = {F ⊆ E | F contains no cycles}.
(ii) Uniform Matroid: Given a set S and an integer k ≥ 0, the uniform matroid of

rank k is de�ned asMk
S = (S, Ik) where Ik = {T ⊆ S : |T | ≤ k}.

(iii) Partition Matroid: Given a set S = ⊎ki=1Si (⊎ is the operation of disjoint union)

and integers n1, . . . , nk ≥ 0, the partition matroid is de�ned asM = (S, I) where
I = {⊎ki=1Ti ⊆ Si : |Ti| ≤ ni}.

(iv) Linear Matroid: Let A be anm×nmatrix and S = {1, . . . , n}. For any 1 ≤ i ≤ n,
let Ai denote the ith-column of A. The linear matroid over matrix A is de�ned as

MA = (S, IA) where IA = {T ⊆ S : Ai for i ∈ T are linearly independent}.
(v) Matroid Restriction: LetM = (S, I) be a matroid and T ⊆ S. Then the matroid

restriction of M to the set T is the matroid MT = (T, IT ) where IT = {R : R ∈
I, R ⊆ T}.

It is quite straightforward to verify that the above examples satisfy the properties of

matroids and we leave it as an exercise for the reader.

De�nition 5.1.2 (Rank function) Given a matroid M = (S, I), the rank function

rM : 2S → Z of the matroidM is de�ned as rM(T ) = maxU⊆T,U∈I |U |.

We will drop the subscript M from the rank function rM when the matroid M is

clear from the context. Observe that A ∈ I if and only if r(A) = |A|. We also have

the following important property about rank function of matroids. In the terminology

introduced in Chapter 2, the property states that the rank function of matroids is (fully)

submodular.

Lemma 5.1.3 Let r be the rank function of matroidM = (S, I). Then for all A,B ⊆ S,

we have r(A) + r(B) ≥ r(A ∩B) + r(A ∪B).

Proof Let r(A ∩ B) = k1, r(A ∪ B) = k2. This implies that ∃V ⊆ A ∩ B such that

r(V ) = |V | = k1. Similarly, there exists U ⊆ A ∪B such that r(U) = |U | = k2. Moreover,

since every independent set can be extended to a basis, we can assume that V ⊆ U . Since
U is independent, we have r(A) ≥ |U ∩A| and r(B) ≥ |U ∩B|. Now, we have

|U ∩A|+ |U ∩B| = |U ∩ (A ∪B)|+ |U ∩ (A ∩B)| ≥ |U |+ |V |

=⇒ r(A) + r(B) ≥ r(A ∪B) + r(A ∩B)

as desired.
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We now de�ne two important operations on matroids.

De�nition 5.1.4 (Deletion) Given a matroidM = (S, I) and x ∈ S we de�ne M \ x =

(S \ {x}, I ′) where I ′ = {T \ {x} : T ∈ I} to be the matroid obtained by deleting x from

M . The rank function of M \ x, denoted by r1, is related to the rank function r of M by

the formula r1(T ) = r(T ) for T ⊆ S \ {x}.

De�nition 5.1.5 (Contraction) Given a matroid M = (S, I) and x ∈ S we de�ne

M/x = (S \ x, I ′′) as the matroid obtained by contracting x in M where I ′′ = {T ⊆
S \ {x} : T ∪ {x} ∈ I} if {x} is independent, and I ′′ = I if {x} is not independent. The

rank function of M/{x}, denoted by r2, is related to the rank function of M by the formula

r2(T ) = r(T ∪ {x})− r({x}) for T ⊆ S \ x.

Note that if {x} is not independent, then M/x =M \ x.

5.2 Maximum Weight Basis

We now study the maximum weight basis problem in a matroid, and give an integral

characterization by an iterative argument. Given a matroid M = (S, I) and a weight

function w : S → R, the task is to �nd a basis of M of maximum weight. In the special

case of graphic matroids in connected graphs, this problem reduces to the maximum weight

spanning tree problem. If we set edge costs to be the negative of their weights, this is the

same as the minimum cost spanning tree problem which we studied in Chapter 4.

5.2.1 Linear Programming Formulation

We begin by giving a linear programming formulation for the problem. Let xe denote the

indicator variable for element e, with the intent that xe = 1 if e is in the solution and 0

otherwise. We obtain the following linear programming relaxation LPmat(M) after relaxing

the integrality constraints on the variables x. In the following we use the shorthand x(T )

to denote
∑

e∈T xe for any subset T of the ground set S.

maximize
∑
e∈S

wexe

subject to x(S) = r(S)

x(T ) ≤ r(T ) ∀T ⊆ S
xe ≥ 0 ∀ e ∈ S

Solving the linear program. Observe that the above linear program is exponential in

size and hence, an e�cient separation routine is needed to separate over these constraints.
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The separation routine needs to check that x(T ) ≤ r(T ) for each T ⊆ S. Cunningham [40]

provided such a separation routine which as an input uses the independence oracle for

matroid M. Since the rank function of a matroid is a submodular function, one can

also uses an algorithm for minimizing submodular function [150] to separate over these

constraints.

5.2.2 Characterization of Extreme Point Solutions

We now give a characterization of extreme point solutions of the linear program LPmat(M)

by showing that the linearly independent set of tight constraints associated with it can be

chosen to form a special structure.

De�nition 5.2.1 (Chain) A subset L ⊆ 2S is a chain if A ∈ L, B ∈ L, then A ⊆ B or

B ⊆ A.

We will use an uncrossing argument to show that the linearly independent set of

tight constraints can be chosen to form a chain. Given an extreme point solution x to

LPmat(M) let F = {T ⊆ S : x(T ) = r(T )} be the set of tight constraints. For a set

T ⊆ S, let χ(T ) denote the characteristic vector in R|S| that has an 1 corresponding to

each element e ∈ T and 0 otherwise. We �rst show that F is closed under intersection and

union.

Lemma 5.2.2 If U, V ∈ F , then both U ∩ V and U ∪ V are in F . Furthermore, χ(U) +

χ(V ) = χ(U ∩ V ) + χ(U ∪ V ).

Proof

r(U) + r(V ) = x(U) + x(V )

= x(U ∩ V ) + x(U ∪ V )

≤ r(U ∩ V ) + r(U ∪ V )

≤ r(U) + r(V )

The �rst equality is by the fact that U, V ∈ F . The second equality follows from basic

set properties. The third inequality follows from the constraints in the matroid basis

LPmat(M). The last equality is because of the submodularity of the rank function r as

shown in Lemma 5.1.3. Moreover, χ(U)+χ(V ) = χ(U ∩V )+χ(U ∪V ) follows from basic

set properties.

Lemma 5.2.3 If L is a maximal chain subfamily of F , then span(L) = span(F).

Proof The proof follows exactly the same argument as in Lemma 4.1.5. We show exactly

where the argument di�ers and why we obtain a chain in this case while we could only

argue a laminar structure in Lemma 4.1.5. Lemma 5.2.2 shows that two tight sets A and B
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can always be uncrossed, not only when A and B intersect as was the case in Lemma 4.1.4.

Hence, even if A,B are two tight sets and A ∩ B = ∅, we can uncross them and ensure

that no such two sets exist among the constraints de�ning x.

Observe that for the spanning tree formulation in Section 4.1, we obtained a laminar

family characterizing the extreme point solution in Lemma 4.1.5. For the matroid basis

problem, which is a generalization of spanning tree problem, Lemma 5.2.3 implies that the

extreme point can be characterized by the chain which is a simpler structure than a general

laminar family. This discrepancy can be explained by the formulation that we chose for

the spanning tree problem. Indeed, applying uncrossing on the partition LP does give a

characterization such that the extreme point is characterized by a chain, albeit over the

edges and not the vertices of the graph (see exercises).

The following lemma follows from Lemma 5.2.3 and the Rank Lemma.

Lemma 5.2.4 Let x be any extreme point solution to LPmat(M) with xe > 0 for each

element e ∈ S. Then there exists a chain L such that

(i) x(T ) = r(T ) for each T ⊆ L.
(ii) The vectors in {χ(T ) : T ∈ L} are linearly independent.

(iii) |L| = |S|.

5.2.3 Iterative Algorithm

We now give an iterative algorithm which constructs an integral solution from the linear

program and shows that the linear programming formulation is integral. The algorithm is

shown in Figure 5.1.

Iterative Maximum Weight Matroid Basis Algorithm

(i) Initialization B ← ∅.
(ii) While B is not a basis do

(a) Find an optimal extreme point solution x to LPmat(M) and delete every

element e with xe = 0 fromM, i.e., M ←M \ e.
(b) If there is an element e such that xe = 1, then update B ← B ∪ {e} and

set M ←M/e.

(iii) Return B.

Fig. 5.1. Maximum Weight Matroid Basis Algorithm

5.2.4 Correctness and Optimality

First, we prove that the algorithm will terminate in the following lemma.
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Lemma 5.2.5 For any extreme point solution x to LPmat(M) with xe > 0 for every

element e, there exists an element e with xe = 1.

Proof We present two proofs for this lemma.

(Global Counting Argument.) Suppose for a contradiction 0 < xe < 1 for each e ∈ S.
Then the number of variables is exactly |S|. Since there is no element e with xe = 0,

every tight inequality is of the form x(T ) = r(T ). By Lemma 5.2.4, there are |L| linearly
independent tight constraints of the form x(T ) = r(T ) where L is a chain. Since there is

no integral xe, there is no singleton element in the chain. Thus every pair of consecutive

sets in the chain di�er by at least two elements, so |L| ≤ |S|/2 which is a contradiction.

(Local Fractional Token Argument.) As in the case of spanning trees, there is a

fractional token argument that can be generalized to the degree bounded case. For each

e ∈ S assign one token and distribute xe fraction of it to the smallest set T in the chain

of tight constraints containing it. For every tight set T with child C, the set of fractional

tokens assigned to it is x(T ) − x(C) = r(T ) − r(C) which cannot be zero (due to linear

independence of this pair), and hence is at least one. The remaining (1 − xe) tokens for
any element e gives the desired contradiction.

Next we show that the returned solution is a maximum weight basis, which is proved

in the following theorem.

Theorem 5.2.6 The Iterative Matroid Basis Algorithm returns a maximum weight basis

in polynomial time.

Proof This is proved by induction on the number of iterations of the algorithm. The base

case is trivial to verify. Let M = (S, I) denote the matroid in the current iteration. If the

algorithm �nds an element e with xe = 0 we update the matroid to M \ e. Observe that x
restricted to S \ {e}, say x′, is a feasible solution to LPmat(M \ e). This is easily checked

using the rank function of M \ e which is identical to the rank function of M on the sets

not containing e. By induction, we �nd a basis B ofM \e of weight at least w ·x′. Observe
that B is also a basis of M and costs at least w · x′ = w · x. Hence, the induction claim is

true in this case.

Now, suppose the algorithm selects an element e with xe = 1. Then the algorithm

updates the matroid M to M/e and B to B ∪ {e}. Let r denote the rank function of

M and r′ denote the rank function of M/e. We now claim that x restricted to S \ {e},
say x′, is a feasible solution to LPmat(M/e). For any set T ⊆ S \ {x}, we have x′(T ) =

x(T ∪ {e})− xe = x(T ∪ {e})− 1 ≤ r(T ∪ {e})− 1 = r′(T ). By the induction hypothesis,

we obtain a basis B′ of M/e of weight at least w · x′. Then B′ ∪ {e} is a basis of M of

weight at least w · x′ + we = w · x as required. This shows that the algorithm returns a

maximum weight integral basis of the matroid M .
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This also shows that the LPmat(M) is an exact formulation of the maximum weight

basis problem.

Theorem 5.2.7 The extreme point solutions of LPmat(M) are bases of matroid M .

5.3 Matroid Intersection

Given matroidsM1 = (S, I1) andM2 = (S, I2) and a weight function w : S → R, the max-

imum weight two matroid intersection problem is to �nd a set T ⊆ S of maximum weight

which is independent in both M1 and M2, i.e, T is a maximizer of maxT⊆S,T∈I1∩I2w(T ) =∑
e∈T we. This problem generalizes many important problems, including the maximum

weight matching in bipartite graphs (Chapter 3) and maximum weight arborescence prob-

lem (Chapter 6).

Examples of Matroid Intersection

(i) Matchings in Bipartite graph: Given a bipartite graph G = (A ∪ B,E), let

MA = (E, I1) be a partition matroid on E where I1 = {F ⊆ E | dF (v) ≤ 1 ∀v ∈
A}. Similarly, let MB = (E, I2) be a partition matroid on E where I2 = {F ⊆
E | dF (v) ≤ 1 ∀v ∈ B}. Observe that T ∈ I1 ∩ I2 if and only if T is a matching

in G. Hence, �nding a maximum weight matching in G is equivalent to �nding a

maximum weight independent set in the intersection of matroids MA and MB.

(ii) Arborescence: Given a directed graph G = (D,A) with root r, let M1 = (A, I1)
be the graphic matroid on the underlying undirected graph of G (where we ignore

arc directions). Let M2 = (A, I2) be the partition matroid where I2 = {B ⊆ A :

dinB (v) ≤ 1 ∀v ∈ D \ {r} and dinB (r) = 0}. Observe that B is a common basis in I1
and I2 if and only if B is an arborescence rooted at r.

We now show that an e�cient procedure for the maximum weight basis in the inter-

section of two matroids. In contrast, the matroid intersection problem for three or more

matroids is NP-hard in general.

5.3.1 Linear Programming Relaxation

We now give a linear programming formulation for �nding a maximum weight common

independent set in the intersection of two matroids, and then give an iterative argument

to show that it is integral. Let xe denote the indicator variable for element, with xe = 1

if e is in the common independent set and 0 otherwise. We obtain the following linear

programming relaxation LPint(M1,M2) after relaxing the integrality constraints on the

variables x. Here ri(T ) denotes the rank of the set T in the matroid Mi.
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maximize
∑
e∈S

wexe

subject to x(T ) ≤ r1(T ) ∀T ⊆ S
x(T ) ≤ r2(T ) ∀T ⊆ S
xe ≥ 0 ∀ e ∈ S

Solving the linear program. To get a separation oracle for minimum weight matroid

basis problem, it su�ces to separate over the inequalities in LPint(M1,M2). This can be

done if we are given as input independence oracles for each of the matroidsM1 andM2, by

using the work of Cunningham [40] as before, or any algorithm for minimizing submodular

functions.

5.3.2 Characterization of Extreme Point Solutions

We now give a characterization of extreme points of the linear program LPint(M1,M2)

by showing that the independent set of tight constraints can be chosen to form a union

of two chains. The proof is quite straightforward and uses the characterization of tight

inequalities for the matroid basis problem.

Given an extreme point solution x to LPint(M1,M2) let F1 = {T ⊆ S : x(T ) =

r1(T )} and F2 = {T ⊆ S : x(T ) = r2(T )} be the set of tight constraints.

Lemma 5.3.1 There exist two chains C1 and C2 such that span(C1 ∪ C2) = span(F1 ∪F2)

and constraints in sets C1 and C2 are linearly independent.

Proof Applying Lemma 5.2.3 to families F1 and F2 separately, we obtain two chains C′1
and C′2 such that span(C′1) = span(F1) and span(C′2) = span(F2). Now, picking a maximal

independent family from C′1 ∪ C′2 gives us the desired chains.

The following lemma follows from Lemma 5.3.1 and the Rank Lemma.

Lemma 5.3.2 Let x be any extreme point solution to LPint(M1,M2) with xe > 0 for each

element e ∈ S. Then there exist two chains C1 and C2 such that

(i) x(T ) = ri(T ) for each T ⊆ Ci for i = {1, 2}.
(ii) The vectors in {χ(T ) : T ∈ C1} ∪ {χ(T ) : T ∈ C2} are linearly independent.

(iii) |C1|+ |C2| = |S|.

74



5.3.3 Iterative Algorithm

We now give an iterative algorithm which constructs an integral solution from the linear

program and shows that the linear programming formulation is integral. The algorithm is

shown in Figure 5.2.

Iterative Matroid Intersection Algorithm

(i) Initialization I ← ∅.
(ii) While S ̸= ∅ do

(a) Find an optimal extreme point solution x to LPint(M1,M2) and delete

every element e with xe = 0 from M1 and M2, i.e., M1 ← M1 \ e and

M2 ←M2 \ e.
(b) If there is an element e such that xe = 1 then and update I ← I ∪ {e},

M1 ←M1/e and M2 ←M2/e.

(iii) Return I.

Fig. 5.2. Matroid Intersection Algorithm

5.3.4 Correctness and Optimality

First, we prove that the algorithm will terminate in the following lemma.

Lemma 5.3.3 For any extreme point solution x to LPint(M1,M2) with xe > 0 for every

element e, there exists an element e with xe = 1.

Proof Suppose for a contradiction 0 < xe < 1 for each e ∈ S. Then the number of variables

is exactly |S|. Since there is no element e with xe = 0, every tight inequality is of the form

x(T ) = r1(T ) or x(T ) = r2(T ) for some T ⊆ S. By Lemma 5.3.2, we obtain two chains

C1 and C2 de�ning x. We now show a contradiction to the fact that |S| = |C1|+ |C2| by a

counting argument.

We give two tokens to each element in S for a total of 2|S| tokens. Now, we collect
two tokens for each member of C1 and C2 and an extra token showing the contradiction.

This is done as follows. Each element e assigns one token to the smallest set T1 ∈ C1 such
that e ∈ T1 and the other token to the smallest set T2 ∈ C2 such that e ∈ T2. We now

claim that each set in C1 ∪ C2 obtains at least two tokens.

The argument is identical for sets in C1 and C2. Let T ∈ C1 and R be the largest set

in C1 such that R ⊆ T . Now, we have x(T ) = r1(T ) and x(R) = r1(R). Subtracting, we

obtain x(T \R) = r1(T )− r1(R). If T \R = ∅ then T = R and we have a contradiction to

the linear independence of the constraints. Also, since x(T \R) is an integer and 0 < xe < 1

for all e, we have that |T \R| ≥ 2. Thus T receives one token for each element in T \R for

a total of at least two tokens. Therefore, every set in C1 ∪ C2 receives at least two tokens.
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Now, we show that there is at least one extra token. Observe that S ∈ C1 or S ∈ C2 but

not both; say it is in C1. Hence, there exists an e such that e is not contained in any set

in C2. Hence, one token for e has not been used in the above counting argument, giving us

the desired extra token for the contradiction.

It remains to check that the returned solution is optimal. The proof of the following

theorem is straightforward and follows from an argument identical to Theorem 5.2.6 (and

is not duplicated).

Theorem 5.3.4 The Iterative Matroid Intersection Algorithm returns a maximum weight

set independent in the intersection of both matroids.

This also shows that the LPint(M1,M2) is an exact formulation of the maximum

weight matroid intersection problem.

Theorem 5.3.5 The extreme point solutions of LPint(M1,M2) correspond to independent

sets in the intersection of M1 and M2.

5.4 Duality and Min-Max Theorem

In this section we consider the dual problems of maximum weight basis and maximum

weight matroid intersection and show their integrality; we also prove a min-max theorem

for matroid intersection. The former results rely on integrality results about covering linear

programs where the constraint matrices are network matrices (Chapter 8).

5.4.1 Dual of Maximum Weight Basis

We �rst consider the dual linear program of the maximum weight basis problem and argue

its integrality. The following linear program, which we call LPdmat(M), is the dual linear

program to LPmat(M). We use y(T ) to denote the dual variable for a subset T , and we

assume that the weights we are nonnegative integers.

minimize
∑
T⊆S

r(T )y(T )

subject to
∑
T :e∈T

y(T ) ≥ we ∀ e ∈ S

y(T ) ≥ 0 ∀T ⊆ S

The uncrossing technique can be used to prove the following claim.
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Claim 5.4.1 There is an optimal solution y to LPdmat(M) with the set C = {T ⊆ S :

y(T ) > 0} being a chain of S.

Proof Pick an optimal solution that minimizes the number of pairs of sets that are either

intersecting or disjoint in the support. We will prove that this number is zero, and this

would imply the claim. Suppose for a contradiction that this number is not zero and A

and B are such a pair with min{y(A), y(B)} = ϵ. Consider the alternate solution y′ with

y′(A)← y(A)−ϵ, y′(B)← y(B)−ϵ, y′(A∪B)← y(A∪B)+ϵ and y′(A∩B)← y(A∩B)+ϵ,

with y′(S) ← y(S) for all other sets S. It is easy to see that y′ is also a feasible solution

to LPdmat(M). Also, by the submodularity of the rank function (Lemma 5.1.3), we have

ϵ(r(A) + r(B)) ≥ ϵ(r(A ∪B) + r(A ∩B)),

and thus the objective function value does not increase. Finally, the new solution can

easily be checked to have fewer pairs that are disjoint or intersecting in the support, giving

the contradiction and �nishing the proof.

Claim 5.4.1 implies that the following restricted linear program, denoted by LPrdmat(M),

has the same objective value as LPdmat(M).

minimize
∑
T∈C

r(T )y(T )

subject to
∑

T∈C:e∈T
y(T ) ≥ we ∀ e ∈ S

y(T ) ≥ 0 ∀T ∈ C

As C is a chain, one can show that the constrained matrix of LPrdmat(M) is a network

matrix: see Section 8.4.1 in Chapter 8. Then, by the results on LP's with network matrix

constraints (Theorem 8.1.1), it follows that LPrdmat(M) is integral. Since we have shown

that LPdmat(M) always has integral optimal solutions, we also get the following result.

Theorem 5.4.2 The linear programming formulation LPdmat(M) is integral.

5.4.2 Dual of Two Matroid Intersection

Next we prove the integrality of the dual linear program of matroid intersection, and

obtain a min-max theorem on matroid intersection. The following linear program, denoted

by LPdint(M1,M2), is the dual linear program to LPint(M1,M2) in Section 5.3.
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minimize
∑
T⊆S

r1(T )y1(T ) + r2(T )y2(T )

subject to
∑
T :e∈T

(
y1(T ) + y2(T )

)
≥ we ∀ e ∈ S

yi(T ) ≥ 0 ∀T ⊆ S, 1 ≤ i ≤ 2

The following claim follows by the same uncrossing argument as in Claim 5.4.1.

Claim 5.4.3 There is an optimal solution y to LPdint(M1,M2) where the sets C1 = {T ⊆
S : y1(T ) > 0} and C2 = {T ⊆ S : y2(T ) > 0} are both chains of S.

As in the case of the dual of maximum weight basis, Claim 5.4.3 implies that the

following restricted linear program, denoted by LPrdint(M1,M2), has the same objective

value as LPdint(M1,M2).

minimize
∑
T∈C1

r1(T )y1(T ) +
∑
T∈C2

r2(T )y2(T )

subject to
∑

T∈C1:e∈T
y1(T ) +

∑
T∈C2:e∈T

y2(T ) ≥ we ∀ e ∈ S

yi(T ) ≥ 0 ∀T ∈ Ci, 1 ≤ i ≤ 2

As C1 and C2 are chains, one can show that the constrained matrix of LPrdint(M1,M2)

is a network matrix; see Section 8.4.2 in Chapter 8. Then, by the result on network matrix

(Theorem 8.1.1), it follows that LPrdint(M1,M2) is integral. As before, since we have

shown that LPdint(M) always has integral optimal solutions, we also get the following

result.

Theorem 5.4.4 The linear programming formulation LPdint(M1,M2) is integral.

Using Theorem 5.3.5 and Theorem 5.4.4, we can obtain the following min-max the-

orem on the maximum cardinality of a common independent set in two matroids M1 and

M2.

Theorem 5.4.5 Given matroids M1 = (S, I1) and M2 = (S, I2) with rank functions r1
and r2 respectively, the size of a maximum common independent set in I1 and I2 is given

by

max
I∈I1∩I2

|I| = min
T⊆S

(r1(T ) + r2(S \ T ))

Proof The problem of �nding a maximum cardinality common independent set is a special

case of the maximum weight two matroid intersection problem when we = 1 for all e ∈ S.
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By the strong duality theorem of linear programming (Theorem 2.1.9), the objective value

of LPint(M1,M2) is the same as the objective value of LPdint(M1,M2). For the primal

program LPint(M1,M2), observe that xe ≤ r({e}) ≤ 1 since r is the rank function of

a matroid. By Theorem 5.3.5, LPint(M1,M2) is integral and hence there is an optimal

solution with xe ∈ {0, 1}, and thus the optimum value of LPint(M1,M2) = maxI∈I1∩I2 |I|.
For the dual program LPdint(M1,M2), since we = 1 for all e ∈ S and ri(T ) ≥ 0 for

all T ⊆ S, we can assume that yi(T ) ≤ 1 for all T ⊆ S. By Theorem 5.4.4, LPdint(M1,M2)

is integral and hence there is an optimal solution with yi(T ) ∈ {0, 1} for all T ⊆ S and

i = {1, 2}. By Claim 5.4.3, we can assume that the set C1 = {T ⊆ S : y1(T ) = 1} is a
chain. Furthermore, since we = 1 for all e ∈ S and ri(T ) ≥ 0 for all T ⊆ S, we can assume

that there is only one set T with y1(T ) = 1, with T being the largest set in the chain

C1. Similarly, we can assume that there is only one set T ′ with y2(T
′) = 1. Since we = 1

for all e ∈ S and y is a feasible solution to LPdint(M1,M2), we must have T ∪ T ′ = S.

As the rank function r of a matroid is a monotone function, we can further assume that

T ′ = S \ T , and thus there is an optimal solution to LPdint(M1,M2) with objective value

r1(T ) + r2(S \ T ) for some T ⊆ S, proving the theorem.

5.5 Minimum Bounded Degree Matroid Basis

In this section we consider the minimum bounded degree matroid basis problem, a gener-

alization of the minimum bounded degree spanning tree problem. We are given a matroid

M = (S, I), a cost function c on the ground set S, a hypergraph H = (S,E) on the same

ground set, and an upper bound g(e) for each hyperedge e ∈ E(H). The task is to �nd a

basis B of minimum cost such that |B ∩ e| ≤ g(e) for each hyperedge e ∈ E(H).

One motivation for considering the matroid generalization was the following problem

posed by Frieze [59]: �Given a binary matroid MA over the columns of a 0, 1-matrix A and

bounds gi for each row i of A, �nd a basis B of matroid MA such that there are at most

gi ones in row i (for all rows i) among the columns in B�. The main result of this section

is the following theorem.

Theorem 5.5.1 There is a polynomial time algorithm for the minimum bounded degree

matroid basis problem which returns a basis B of cost at most opt such that |B ∩ e| ≤
g(e) + ∆− 1 for each e ∈ E(H). Here ∆ = maxv∈S |{e ∈ E(H) : v ∈ e}| is the maximum

degree of the hypergraph H and opt is the cost of an optimal solution which satis�es all

the degree constraints.

When the hyperedges in H are disjoint, the maximum degree ∆ is 1 and the above

theorem gives an optimal result. Note that this also follows from the matroid intersection

theorem: when the hyperedges induce disjoint sets of the ground set, they de�ne a par-

tition matroid, and the solution we �nd is a minimum cost common basis of the original

matroid and this partition matroid. We mention more applications of Theorem 5.5.1 to

approximation algorithms in the last part of this section.
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5.5.1 Linear Programming Relaxation

Let r : 2S → Z+ denote the rank function of matroid M . We have already argued in

Lemma 5.1.3 that r is a monotone submodular function. We denote the following relaxation

as LPmat(M,H).

minimize
∑
v∈S

cvxv

subject to x(S) = r(S)

x(T ) ≤ r(T ) ∀T ⊆ S
x(e) ≤ g(e) ∀ e ∈ E(H)

0 ≤ xv ≤ 1 ∀ v ∈ S

This linear program is exponential in size but can be separated over in polynomial

time as before if given access to an independent set oracle for the underlying matroid.

5.5.2 Characterization of Extreme Point Solutions

The following lemma follows from Lemma 5.2.4 and the Rank Lemma.

Lemma 5.5.2 Let x be any extreme point solution to LPmat(M,H) with xe > 0 for each

element e ∈ S. Then there exists a set R ⊆ E and a chain L such that x is the unique

solution to the following linear system.

(i) x(T ) = r(T ) for each T ∈ L and x(e) = g(e) for each e ∈ R.
(ii) The vectors in {χ(T ) : T ∈ L} ∪ {χ(e) : e ∈ R} are linearly independent.

(iii) |S| = |L|+ |R|.

5.5.3 Iterative Algorithm

The iterative algorithm is similar to that of the minimum bounded degree spanning tree

problem in Chapter 4.

5.5.4 Correctness and Performance Guarantee

The degree constraint is only violated by at most ∆−1 in Step 2(c) of the algorithm. Theo-

rem 5.5.1 follows by an inductive argument if the algorithm always terminates successfully,

which we will prove in the following lemma.

Lemma 5.5.3 An extreme point solution x to LPmat(M,H) must satisfy one of the fol-

lowing.
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Iterative Minimum Bounded Degree Matroid Basis Algorithm

(i) Initialization B ← ∅,
(ii) While B is not a basis do

(a) Find an optimal extreme point solution x to LPmat(M,H). Delete v with

xv = 0. Update each edge e ∈ E(H) with e ← e \ {v}. Update matroid

M ←M \ v.
(b) For each element v with xv = 1, include v in B and decrease g(e) by 1 for

each e ∋ v. Update M ←M/v.

(c) For every e ∈ E(H) with |e| ≤ g(e) + ∆− 1, remove e from E(H).

(iii) Return B.

Fig. 5.3. Minimum Bounded Degree Matroid Basis Algorithm

(i) There is an element v with xv = 1.

(ii) There is a hyperedge e such that |e| ≤ g(e) + ∆− 1.

Proof The proof is by a local fractional token argument. Each element is initially assigned

∆ tokens, for a total of ∆ · |S| tokens. For each element v, 1− xv token is redistributed to

each hyperedge that contains v, and ∆ ·xv token is redistributed to the smallest set T ∈ L
which contains e. This is possible since each element is contained in at most ∆ hyperedges.

We shall show that if neither of the above conditions are satis�ed, then each set in L and

each hyperedge constraint in R can collect ∆ tokens, and there are still some tokens left.

This would imply |S| > |L|+ |R|, which contradicts to Lemma 5.5.2.

For each hyperedge e in R, it collects∑
v∈e

(1− xv) = |e| −
∑
v∈e

xv = |e| − g(e) ≥ ∆

tokens. The second equality follows because e is tight, and the last inequality follows

because the second condition in the lemma is not satis�ed. This shows that each hyperedge

constraint in R can collect at least ∆ tokens.

For each T ∈ L, let U ∈ L be its child in the chain L. Then T collects

∆ · (x(T )− x(U)) = ∆ · (r(T )− r(U)) ≥ ∆ · 1 = ∆

tokens. The inequality follows because χ(T ) and χ(U) are linearly independent and r is

an integer monotone function. This shows that each set in L can collect at least ∆ tokens.

It remains to show that there are some unused tokens. If some element is not in

exactly ∆ hyperedges in R or if S /∈ L, then there are some tokens left, which contradicts

that |S| = |L| + |R|. Otherwise, we have ∆ · χ(S) =
∑

e∈R χ(e), which contradicts the

linear independence of the characteristic vectors of the sets in R and S ∈ L. In either case

there is a contradiction implying that one of the conditions in the lemma must be satis�ed.
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5.5.5 Applications

We highlight some applications of the bounded degree matroid basis result.

Minimum Crossing Spanning Tree

In the minimum crossing spanning tree problem, we are given a graph G = (V,E) with edge

cost function c, a collection of cuts (edge subsets) C = {C1, . . . , Cm} and bound gi for each

cut Ci. The task is to �nd a spanning tree T of minimum cost such that T contains at most

gi edges from cut Ci. The minimum bounded degree spanning tree problem is the special

case where C = {δ(v) : v ∈ V }; note that ∆ = 2 for the minimum bounded degree spanning

tree problem. The following result can be obtained as a corollary of Theorem 5.5.1.

Corollary 5.5.4 There exists a polynomial time algorithm for the minimum crossing span-

ning tree problem that returns a tree T with cost at most opt, and such that T contains at

most gi+ d− 1 edges from cut Ci for each i, where d = maxe∈E |{Ci : e ∈ Ci}| and opt is

the cost of an optimal solution which satis�es all the cut degree constraints.

Proof Let M = (E, I) denote the graphic matroid over the graph G. The hypergraph

H is de�ned with V (H) = E(G) and E(H) = {Ci : 1 ≤ i ≤ m}. Note that ∆ =

maxv∈V (H) |{e ∈ E(H) : v ∈ e}| = maxe∈E(G) |{Ci : e ∈ Ci}| = d. So, using Theorem 5.5.1,

we obtain a basis T of matroidM (which is a spanning tree), such that |T ∩Ci| ≤ gi+d−1.

Minimum Bounded-Ones Binary Matroid Basis

For the minimum bounded-ones binary matroid basis problem, we are given a binary

matroid MA over the columns of a 0, 1-matrix A and bounds gi for each row i of A. The

task is to �nd a minimum cost basis B of matroid MA such that there are at most gi ones

in row i (for all rows i) among the columns in B. The following result is obtained as a

corollary of Theorem 5.5.1.

Corollary 5.5.5 There exists a polynomial time algorithm for the minimum bounded-ones

binary matroid basis problem which returns a basis B of cost at most opt, such that there

are at most gi+ d− 1 ones in any row restricted to columns of B. Here d is the maximum

number of ones in any column of A, and opt is the cost of an optimal solution satisfying

all the row constraints.

Proof Let M = MA be a linear matroid and de�ne a hypergraph H where the vertex set

is the columns of A. The hyperedges correspond to rows of A where ei = {Aj : Aij = 1}
where Aj is the jth column of A. Note that ∆ = maxv∈V (H) |{e ∈ E(H) : v ∈ e}| =
maxj |{i : aij = 1}| = d, which is the maximum number of ones in any column of A. So,

using Theorem 5.5.1, we obtain a basis of M = MA such that number of ones in any row

is at most gi + d− 1.
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Minimum Bounded Degree Spanning Tree Union

In the minimum bounded degree spanning tree union problem, we are given a graph G =

(V,E) with edge cost function c, a positive integer k, and a degree upper bound g(v) for

each vertex v. The task is to �nd a subgraph F which is the union of k edge-disjoint

spanning trees and the degree of v in F is at most g(v). The minimum bounded degree

spanning tree problem is a special case when k = 1. Theorem 5.5.1 implies the following

result, which is optimal in terms of the degree upper bounds.

Corollary 5.5.6 There is a polynomial time algorithm for the minimum bounded degree

spanning tree union problem which returns a subgraph F of cost at most opt which is the

union of k edge-disjoint spanning trees and the degree of v in F is at most g(v) + 1. Here

opt is the cost of an optimal solution which satis�es all the degree upper bounds.

Proof Let M = (E, I) denote the union of k graphic matroids over the graph G, which

is a matroid by the matroid union theorem (see e.g., [150]). The hypergraph H is de�ned

with V (H) = E(G) and E(H) = {δ(v) : v ∈ V (G)}. Note that ∆ = maxv∈V (H) |{e ∈
E(H) : v ∈ e}| = maxe∈E(G) |{δ(v) : v ∈ V (G) ∧ e ∈ δ(v)}| = 2. So, using Theorem 5.5.1,

we obtain a basis F of matroid M (which is the union of k edge-disjoint spanning trees),

such that |F ∩ δ(v)| ≤ g(v) + 1.

5.6 k Matroid Intersection

Given k matroids M1 = (S, I1),M2 = (S, I2), . . . ,Mk = (S, Ik) on the same ground set S,

the maximum k matroid intersection problem is to �nd a set T ⊆ S of maximum cardinality

which is independent in all matroids M1,M2, . . . ,Mk. This problem is NP-hard already

for k = 3 (see the exercises). We will present a 2-approximation algorithm for this problem

when k = 3, and leave the generalization to general k to the exercises.

5.6.1 Linear Programming Relaxation

The linear programming relaxation, denoted by LP3int(M1,M2,M3), for three-matroid

intersection is a natural extension of LPint(M1,M2) for two-matroid intersection. Notice

that we only consider the unweighted problem where we = 1 for all e ∈ S.

maximize
∑
e∈S

xe

subject to x(T ) ≤ r1(T ) ∀T ⊆ S
x(T ) ≤ r2(T ) ∀T ⊆ S
x(T ) ≤ r3(T ) ∀T ⊆ S
xe ≥ 0 ∀ e ∈ S
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There is an e�cient separation oracle for this exponential-size linear program, as in

the case for two-matroid intersection.

5.6.2 Characterization of Extreme Point Solutions

The proof of the following characterization follows the same lines as the proof of Lemma 5.3.2

for two-matroid intersection.

Lemma 5.6.1 Let x be any extreme point solution to LP3int(M1,M2,M3) with xe > 0 for

each element e ∈ S. Then there exist three chains C1, C2, C3 such that

(i) x(T ) = ri(T ) for each T ⊆ Ci for i = {1, 2, 3}.
(ii) The vectors in {χ(T ) : T ∈ C1} ∪ {χ(T ) : T ∈ C2} ∪ {χ(T ) : T ∈ C3} are linearly

independent.

(iii) |C1|+ |C2|+ |C3| = |S|.

5.6.3 Iterative Algorithm

The iterative algorithm is similar to that of two-matroid intersection, except that an ele-

ment e with xe ≥ 1
2 will be chosen.

Iterative Three Matroid Intersection Algorithm

(i) Initialization I ← ∅.
(ii) While S ̸= ∅ do

(a) Find an optimal extreme point solution x to LP3int(M1,M2,M3). Delete

every element e with xe = 0 from M1,M2,M3, i.e., M1 ← M1 \ e and

M2 ←M2 \ e and M3 ←M3 \ e.
(b) If there is an element e with xe ≥ 1

2 , then update I ← I∪{e},M1 ←M1/e

and M2 ←M2/e and M3 ←M3/e.

(iii) Return I.

Fig. 5.4. Three Matroid Intersection Algorithm

5.6.4 Correctness and Performance Guarantee

We �rst show that the iterative algorithm makes progress in each iteration. We then show

that the algorithm returns a 2-approximate solution assuming it makes progress in each

step. The proof of the former claim is similar to the proof of Lemma 5.3.3, while the proof

of the later claim uses some basic results in matroid theory.
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Lemma 5.6.2 For any extreme point solution x to LP3int(M1,M2,M3) with xe > 0 for

every element e, there exists an element e with xe ≥ 1
2 .

Proof Suppose for a contradiction 0 < xe <
1
2 for each e ∈ S. Then the number of

variables is exactly |S|. By Lemma 5.6.1, we obtain three chains C1, C2, C3 de�ning x. We

now show a contradiction to the fact that |S| = |C1|+ |C2|+ |C3| by a counting argument.

We give three tokens to each element in S for a total of 3|S| tokens. Now, we collect
three tokens for each member of C1, C2, C3 and an extra token showing the contradiction.

This is done as follows. Each element e assigns one token to the smallest set Ti ∈ Ci such
that e ∈ Ti for i = {1, 2, 3}. We now claim that each set in C1 ∪ C2 ∪ C3 obtains at least

three tokens.

The argument is identical for sets in C1, C2, C3. Let T ∈ C1 and R be the largest set

in C1 such that R ⊆ T . Now, we have x(T ) = r1(T ) and x(R) = r1(R). Subtracting, we

obtain x(T \R) = r1(T )− r1(R). If T \R = ∅ then T = R and we have a contradiction to

the linear independence of the constraints. Also, since x(T \R) is an integer and 0 < xe <
1
2

for all e, we have that |T \R| ≥ 3. Thus T receives one token for each element in T \R for

a total of at least three tokens. Therefore, every set in C1 ∪ C2 ∪ C3 receives at least three

tokens. Now, we show that there is at least one extra token. Observe that the whole set

S can be in at most one of the three colelctions C1, C2 or C3, say it is in C1. Hence, there
exists an e such that e is not contained in any set in C2. Hence, at least one token for e

has not been used in the above counting argument, giving us the desired extra token for

the contradiction.

Theorem 5.6.3 The algorithm in Figure 5.4 returns a 2-approximate solution to the max-

imum three-matroid intersection problem in polynomial time.

Proof This is proved by induction on the number of iterations of the algorithm. The

case when the algorithm �nds an element e with xe = 0 is handled as in the proof of

Theorem 5.2.6. We focus on the case when the algorithm selects an element e with xe ≥ 1
2 .

In this case the algorithm updates the matroid Mi to Mi/e and I to I ∪ {e}. Let w(x) be
the objective value of the solution x in the current iteration. To prove the performance

guarantee, it su�ces to prove that there is a feasible solution in the next iteration with

objective value at least w(x) − 2. Since we add one element to I and the objective value

decreases by at most two, by a standard inductive argument we can prove that the returned

independent set has size at least half the objective value of LP3int(M1,M2,M3), and thus

the theorem follows.

To prove the claim, we need to demonstrate a feasible solution in the next iteration

with objective value at least w(x)−2, after we select the element e and update the matroids

Mi toMi/e. Consider the solution x restricted to S \e, denoted by x′. Note that x′ has ob-

jective value w(x)−xe, but it may not be a feasible solution to LP3int(M1/e,M2/e,M3/e),

the linear program in the next iteration. In the next paragraph we will show how to mod-

ify x′ to satisfy all the constraints de�ned by matroid Mi/e, by decreasing the objective

value by at most 1 − xe. By performing this modi�cation to each of the three matroids,
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we will have a feasible solution to LP3int(M1/e,M2/e,M3/e) with objective value at least

w(x)− xe − 3(1− xe) = w(x)− 3 + 2xe ≥ w(x)− 2 since xe ≥ 1
2 , as desired.

It remains to show how to modify the solution x′ to satisfy all the constraints de�ned

byMi/e, while decreasing the objective value by at most 1−xe. Since x is a feasible solution
to LP3int(M1,M2,M3), it is obviously a feasible solution to LPmat(Mi), the independent

set polytope of matroid Mi. Since the independent set polytope of a matroid is integral,

the solution x can be written as a convex combination of independent sets in Mi, i.e.

x =
∑N

j=1 λjχ(Ij) for some N , where
∑N

j=1 λj = 1 for nonnegative λj 's and Ij is an

independent set of Mi for each j. Assume that e /∈ Ij for 1 ≤ j ≤ N ′ and e ∈ Ij for

N ′ < j ≤ N . Then, by de�nition,
∑N ′

j=1 λi = 1−xe. For each 1 ≤ j ≤ N ′, let fj ̸= e be an

element in the unique circuit (if exists) in Ij ∪ {e}. Since Ij + e− fj is an independent set

in Mi, it follows by de�nition that Ij − fj is an independent set in Mi/e. Similarly, Ij − e
is an independent set in Mi/e for N

′ < j ≤ N . Thus

x∗ = λ1χ(I1 − f1) + . . .+ λN ′χ(IN ′ − fN ′) + λN ′+1χ(IN ′+1 − e) + . . .+ λNχ(IN − e)

is a feasible solution to LPmat(Mi/e), since it is a convex combination of independent sets

in Mi/e. Furthermore w(x∗) ≥ w(x′)−
∑N ′

j=1 λi = w(x′)− (1− xe), proving the theorem.

Notes

Matroids were introduced by Whitney in the 1930's and a comprehensive review of related

concepts that led to this as well as the rich literature on it is reviewed by Schrijver in his

book [150]. The work of Edmonds [47, 48] �rst showed the polyhedral characterization

results we presented in this chapter. The result for the minimum bounded degree matroid

basis problem is by Király, Lau and Singh [97].

Exercises

5.1 Show that the �ve examples of matroids in Section 5.1 are indeed matroids by

verifying the three matroid properties for each of them.

5.2 Verify that the deletion and contraction matroids de�ned in Section 5.1 are indeed

matroids by checking the two properties of matroids for them. Also prove that their

rank function is correctly de�ned. Finally, convince yourself that for any element

x of the matroid, if {x} is not independent, then M \ x =M/x.

5.3 Given a matroid M = (S, I) with rank function r, let M∗ = (S, I∗) be the dual

matroid where I∗ = {I ⊆ S : S \ I contains a basis of M}.
(a) Show that M∗ is a matroid.

(b) Show that the rank r∗ of a set T in the dual matroidM∗ is given by r∗(T ) =

|T | − r(S) + r(S \ T ).
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5.4 Let M = (S, I) be a matroid with rank function r and let T ⊆ S. Matroid

MT = (T, IT ) is de�ned by IT = {R ∩ T : R ∈ I}.
(a) Show that MT is a matroid.

(b) What is the rank function rT of MT ?

5.5 Given two matroid M1 = (S, I1) and matroid M2 = (S, I2), let M12 = (S1 ∪
S2, I1 ∨ I2) where S1 and S2 are two copies of S such that S1 ∩ S2 = ∅ and

I1 ∨ I2 = {A ∪ B : A ∈ I1, B ∈ I2}. Let M ′ = (S1 ∪ S2, I ′) be the partition

matroid such that I ∈ I ′ if and only if I contains at most one copy of each element

in S (remember there are two copies of each element, one in S1 and the other in

S2).

(a) Show that M12 is a matroid.

(b) Show that matroid union M1 ∪ M2 is isomorphic to matroid intersection

M12 ∩M ′.

(c) Derive the rank function of matroid union of two matroids using the size

of maximum size of an independent set in the intersection of these two

matroids.

5.6 Let D = (V,A) be a directed graph and subsets U, S of V . For X,Y ⊆ V , call X

linked to Y if |X| = |Y | and D has |X|-vertex disjoint X − Y paths. (X is the set

of starting vertices of these paths and Y is the set of ending vertices).

Let I be the collection of subsets I of S such that some subset of U linked

to I. Prove that M = (S, I) is a matroid.

5.7 Show that �nding a maximum cardinality independent set in the intersection of

three matroids is NP-hard.

5.8 Apply uncrossing to the partition LP for the spanning tree problem to obtain

a characterization such that characteristic vectors for edge sets corresponding to

linearly independent tight constraints form a chain.

5.9 Consider the degree bounded minimum cost spanning tree problem where the de-

gree bounds are imposed only on an independent subset of the nodes of the un-

derlying graph. Show that this problem can be solved optimally in polynomial

time.

5.10 Show that Theorem 5.6.3 can be generalized to give a (k− 1)-approximation algo-

rithm for the maximum k matroid intersection problem.
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6

Arborescence and Rooted Connectivity

†

In this chapter we study problems in directed graphs and see how the techniques

developed in previous chapters generalize to problems on directed graphs. We �rst con-

sider exact formulations for the arborescence problem and a vertex connectivity problem

in directed graphs. For the latter, we demonstrate the iterative method in the more so-

phisticated uncrossing context which is applied to bi-set families instead of set families

as in previous chapters. We then extend these results to degree bounded variants of the

problems and use the iterative method to obtain bi-criteria results unlike previous chapters

where the algorithm would be optimal on the cost and only violate the degree constraints.

Given a directed graphD = (V,A) and a root vertex r ∈ V , a spanning r-arborescence
is a subgraph of D so that there is a directed path from r to every vertex in V −r. The min-

imum spanning arborescence problem is to �nd a spanning r-arborescence with minimum

total cost. We will show an integral characterization using iterative proofs, and extend

this result in two directions. Given a directed graph D and a root vertex r, a rooted

k-connected subgraph is a subgraph of D so that there are k internally vertex-disjoint di-

rected paths from r to every vertex in V − r. The minimum rooted k-connected subgraph

problem is to �nd a rooted k-connected subgraph with minimum total cost. We extend

the proofs in the minimum arborescence problem to show an integral characterization in

this more general setting.

As in the previous chapters, we extend the method developed for the exact charac-

terization to the degree-bounded version of the problem. However, unlike in the undirected

case, the resulting approximation algorithms have a multiplicative guarantee (rather than

an additive guarantee) on the degree and the cost. We also show how additive guarantees

on the degree can be recovered in the case of unweighted arborescence where arc costs are

not considered.

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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6.1 Minimum Cost Arborescence

This problem is studied using the same framework as before: �rst formulate the problem

as a linear program, then characterize the extreme point solutions of this linear program,

and �nally use an iterative algorithm to �nd a minimum spanning r-arborescence.

6.1.1 Linear Programming Relaxation

It is easy to formulate the minimum spanning arborescence problem as a linear program.

There is a natural choice that we call the directed LP, and this is an exact formulation.

The directed LP requires that there is a directed path from the root r to every vertex in

V − r. Or equivalently, by Menger's theorem (Theorem 2.2.1), the formulation requires

that there is at least one arc entering every set which does not contain the root vertex.

This directed LP formulation, originally due to Edmonds [46], for the minimum spanning

arborescence problem is shown below.

Just like earlier formulations, ca is the cost of choosing arc a, and xa is a binary

variable to denote whether arc a is chosen in the arborescence or not. For a set S ⊆ V ,

the corresponding inequality x(δin(S)) ≥ 1 relates to a vector in R|A|: the vector has an

1 corresponding to each arc a ∈ δin(S), and 0 otherwise (recall that δin(S) is the set of

all arcs incoming to a vertex v ∈ S from any vertex outside S). This vector is called

the characteristic vector of δin(S), and is denoted by χ(δin(S)). The term x(δin(S)) just

means the sum
∑

a∈δin(S) xa.

minimize
∑
a∈A

ca xa

subject to x(δin(S)) ≥ 1 ∀ S ⊆ V − r
xa ≥ 0 ∀ a ∈ A

The above formulation actually captures all subgraphs containing an arborescence or equiv-

alently, it is the up-hull of the arborescence polytope. The arborescence polytope can be

obtained by adding the equality
∑

a∈A xa = |V | − 1.

Although the number of constraints is exponential in the number of vertices, the

availability of an e�cient separation oracle ensures the polynomial-time solvability of this

LP. Given any solution x, the separation oracle �rst constructs a graph with arc capacities

as xa. It then computes the minimum-cuts from the root vertex r to every other vertex.

If all the minimum-cuts have value at least 1, it is easy to see that the solution is feasible.

If there exists a minimum-cut of value less than 1, the violated constraint is precisely the

set of vertices that this cut separates.

One can also write a compact formulation for the directed LP, using the equivalence

of �ows and cuts. This compact formulation provides an alternative way to solve the

directed LP in polynomial time. For each vertex v ∈ V − r, there is a variable fva for
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each arc a, representing the �ow value from r to v through the arc a. The proof of the

equivalence of the linear programs is deferred to the exercises.

minimize
∑
a∈A

ca xa

subject to
∑

a∈δin(v)

fva = 1 ∀ v ∈ V − r,

∑
a∈δin(u)

fva −
∑

a∈δout(u)

fva = 0 ∀ v ∈ V − r,∀ u ∈ V − r − v,

∑
a∈δout(r)

fva = 1 ∀ v ∈ V − r,

xa ≥ fva ∀ a ∈ A,∀ v ∈ V − r,
fva ≥ 0 ∀ a ∈ A,∀ v ∈ V − r,
xa ≥ 0 ∀ a ∈ A.

6.1.2 Characterization of Extreme Point Solutions

As in minimum spanning trees, the uncrossing technique is used to �nd a good set of

tight inequalities that de�nes an extreme point solution to the directed LP. Let F =

{S | x(δin(S)) = 1} be the family of tight inequalities for an extreme point solution x

in the directed LP. The next claim follows from the submodularity of the din(S) function

noted earlier in Proposition 2.3.9; see also Figure 2.3.

Proposition 6.1.1 For X,Y ⊆ V ,

x(δin(X)) + x(δin(Y )) ≥ x(δin(X ∪ Y )) + x(δin(X ∩ Y )),

and equality holds if and only if E(X \ Y, Y \X) = ∅.

The following lemma shows that the family F is closed under intersection and union.

Lemma 6.1.2 If S, T ∈ F and S∩T ̸= ∅, then both S∩T and S∪T are in F . Furthermore,

χ(δin(S)) + χ(δin(T )) = χ(δin(S ∩ T )) + χ(δin(S ∪ T )).

Proof

1 + 1 = x(δin(S)) + x(δin(T ))

≥ x(δin(S ∩ T )) + x(δin(S ∪ T ))
≥ 1 + 1
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The equality follows from the fact that S, T ∈ F . The �rst inequality follows from Propo-

sition 6.1.1. The second inequality follows from the constraints for S ∩ T and S ∪ T in the

directed LP. Equality must hold everywhere and thus x(δin(S ∩ T )) + x(δin(S ∪ T )) = 2.

Therefore we must have equality for constraints for S∩T and S∪T , i.e., x(δin(S∩T )) = 1

and x(δin(S∪T )) = 1, which imply that S∩T and S∪T are also in F . Moreover, equality

holds for Proposition 6.1.1 and thus E(S \ T, T \ S) = ∅ and χ(δin(S)) + χ(δin(T )) =

χ(δin(S ∩ T )) + χ(δin(S ∪ T )).

Denote by span(F) the vector space generated by the set of characteristic vectors

{χ(δin(S)) | S ∈ F}. The following lemma says that an extreme point solution is char-

acterized by tight inequalities whose corresponding sets form a laminar family. The proof

follows the same steps as in the case of undirected spanning trees (see Lemma 4.1.5) and

we do not duplicate it here.

Lemma 6.1.3 If L is a maximal laminar subfamily of F , then span(L) = span(F).

Lemma 6.1.3 and the Rank Lemma imply the following.

Corollary 6.1.4 Let x be any extreme point solution to the directed LP. Then there exists

a laminar family L such that

(i) x(δin(S)) = 1 for all S ∈ L.
(ii) The vectors in {χ(δin(S)) : S ∈ L} are linearly independent.

(iii) |A| = |L|.

A laminar family L de�nes naturally a forest L as follows (see Figure 6.1): Each node

of L corresponds to a set in L, and there is an edge from set R to set S if R is the smallest

set containing S. R is called the parent of S, and S is called the child of R. A node with

no parent is called a root, and a node with no children is called a leaf. Given a node R,

the subtree rooted at R consists of R and all its descendants. The forest L corresponding

to the laminar family L will be used to perform the token counting arguments inductively.

6.1.3 Iterative Algorithm

We present an iterative algorithm to �nd a minimum spanning arborescence from an op-

timal extreme point solution to the directed LP. The algorithm is similar to the Iterative

1-edge-�nding Algorithm in Figure 4.5 of Chapter 4 for �nding minimum spanning trees.

Again, we use the notation D/{uv} to denote the digraph obtained from D by contracting

the arc uv.
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R1 R2 R3

S1
S2

T1

S3

T2

(a) Laminar Set Family

b b b

b b

b b

b

T1 T2

S1 S2 S3

R1 R2 R3

(b) Corresponding Forest

Fig. 6.1. A laminar family and its corresponding forest.

Iterative Minimum Spanning Arborescence Algorithm

(i) Initialization F ← ∅.
(ii) While |V (D)| ≥ 2 do

(a) Find an optimal extreme point solution x to the directed LP and remove

every arc a with xa = 0 from D.

(b) Find an arc a = uv with xa = 1, and update F ← F ∪ {a}, D ← D/{uv}.
(iii) Return F .

Fig. 6.2. Minimum Arborescence Algorithm

6.1.4 Correctness and Optimality

As in minimum spanning trees, assuming the algorithm terminates successfully, it is easy

to show that the returned solution is a minimum spanning arborescence. The proof of the

following result is identical to that of Theorem 4.1.10.

Theorem 6.1.5 The Iterative Minimum Spanning Arborescence Algorithm in Figure 6.2

returns a minimum spanning arborescence in polynomial time.

The key step is to prove that the algorithm will terminate. In the following lemma

we show that there is an arc a with either xa = 1 or xa = 0 at each stage of the algorithm.

Lemma 6.1.6 For any extreme point solution x to the directed LP, either there is an arc

with xa = 0 or there is an arc with xa = 1.
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Before we begin the proof, let us recall that there exists a laminar family L such

that it represents a linearly independent set of tight constraints (Corollary 6.1.4). The

proof, by contradiction, is based on the token argument used in earlier proofs. The idea

of the argument is to assume that there is no arc with xa = 0 and xa = 1, and then

derive a contradiction by showing that the number of constraints (that is, the number of

sets in L) is smaller than the number of non zero variables (that is, the number of arcs) -

contradicting the Rank Lemma (that is, Corollary 6.1.4).

As in the undirected case, we present three di�erent counting arguments. While the

�rst argument is the simplest for the minimum arborescence problem, the second argument

can be generalized to the minimum cost rooted k-connected subgraph problem, and the

third proof can be generalized to the degree-bounded version of the minimum arborescence

problem.

Proof 1 (Global Counting Argument). Suppose for sake of contradiction 0 < xa < 1.

As we have x(δin(v)) ≥ 1 for each v ∈ V \ {r}, hence we must have |δin(v)| ≥ 2 for each

v ∈ V \ {r}. Thus

|A| =
∑
v∈V
|δin(v)| ≥

∑
v∈V \{r}

2 = 2|V | − 2.

On the other hand, from Lemma 6.1.4, we have the maximal linearly independent con-

straints form a laminar family over the ground set V \ {r}. From Corollary 4.1.8 we

have that |L| ≤ 2(|V | − 1) − 1 = 2|V | − 3, but this contradicts Corollary 6.1.4 since

|A| ≥ 2|V | − 2 > |L|.

Proof 2 (Local Token Counting Argument). For each arc, one token is assigned

to its head. So the total number of tokens assigned is exactly |A|. These tokens will be

redistributed such that each subset S ∈ L is assigned one token, and there are still some

tokens left. This will imply |A| > |L| and thus contradicts Corollary 6.1.4. The following

lemma shows that the redistribution is possible by an inductive argument on the forest L

corresponding to the laminar family L.

Lemma 6.1.7 For any rooted subtree of the forest L ̸= ∅ with root S, the tokens assigned

to vertices inside S can be distributed such that every node in the subtree gets at least one

token and the root S gets at least two tokens.

Proof The proof is by induction on the height of the subtree. The base case is when S is

a leaf. Since x(δin(S)) = 1 and there is no arc with xa = 1, there are at least two arcs in

δin(S), and so S gets at least two tokens.

For the induction step, let S be the root and R1, . . . , Rk be its children. By the

induction hypothesis, each node in the subtree rooted at Ri gets at least one token and Ri
gets at least two tokens. Since Ri only needs to keep one token, it can give one token to S.

Suppose k ≥ 2, then S can collect two tokens by taking one token from each of its children,

as required. So suppose k = 1. If there is an arc a which enters S but not R1, then S can
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collect two tokens by taking one token from R1 and one token from the head of a. Suppose

such an arc does not exist, then δin(S) ⊆ δin(R). Since x(δin(S)) = x(δin(R)) = 1 and

there is no arc with xa = 0, this implies δin(S) = δin(R). Hence χ(δin(S)) = χ(δin(R)),

but this contradicts the linear independence of the characteristic vectors for sets in L (recall

that L can be chosen to satisfy the properties in Corollary 6.1.4). Therefore, such an arc

must exist, and S can collect two tokens, as required. This completes the proof of the

induction step.

From Lemma 6.1.7, the number of tokens is at least |L| + 1 which implies that

|A| > |L|, contradicting Corollary 6.1.4.

Proof 3 (Local Fractional Token Counting Argument). The third counting argu-

ment also starts from a laminar family L which satis�es the properties in Corollary 6.1.4.

Instead of assigning tokens integrally, we assign tokens fractionally based on the following

two rules.

(i) For every arc a, we assign xa token to the smallest set in L containing its head.

(ii) For every arc a, we assign 1− xa token to the smallest set in L containing its tail.

Thus the total number of tokens assigned is exactly |A|. To derive a contradiction, we

show that each subset S ∈ L has been assigned at least one token, and there are still some

tokens left. This will imply |A| > |L| and thus contradicts Corollary 6.1.4.

Lemma 6.1.8 Let S be any set in the L. Then S receives at least one token by the above

assignment.

Proof Let S be any set in L and let R1, . . . , Rk be the children of S where k ≥ 0 (k = 0

implies S is a leaf). We have x(δin(S)) = 1, and for each Ri we have x(δin(Ri)) = 1.

Subtracting, we obtain x(δin(S))−
∑k

i=1 x(δ
in(R1)) = 1−k. Let AS = δin(S)\(∪iδin(Ri))

and AR = (∪iδin(Ri)) \ δin(S). Then the above equation can be rewritten as x(AS) −
x(AR) = 1 − k. Observe that the tokens received by S are exactly xa tokens for each

arc a ∈ AS and exactly 1 − xa tokens for each arc in AR. Hence, S receives exactly

x(AS) + |AR| − x(AR) tokens, which is an integer since x(AS) − x(AR) = 1 − k is an

integer. If the tokens received by S is zero, then we must have AS = ∅ and AR = ∅ and
then we have that χ(δin(S)) =

∑
i χ(δ

in(Ri)), contradicting the linear independence of

constraints. Thus S receives at least one token.

Therefore each set is assigned one token. To complete the argument, we need to show

that there are still some extra tokens. This follows from observing that for any arc incident

at the root, the 1 − xa > 0 token is still unassigned as there is no set in L containing its

tail. This completes the counting argument.
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6.2 Minimum Cost Rooted k-Connected Subgraphs

It is easy to see that the problem of �nding a rooted k-arc-connected subgraph of minimum

cost (requiring k arc-disjoint paths from r to every other vertex), generalizes the minimum

arborescence problem. In fact, the LP for this problem is very similar to the directed LP

for the arborescence (all the constraints require at least k instead of 1 on the right hand

side). The separation oracle, the iterative algorithm and the counting argument are all

similar for this problem as well. We leave the details to the exercises.

We therefore shift our focus to the vertex connectivity problem, giving an LP for-

mulation in the following.

6.2.1 Linear Programming Relaxation

A natural formulation of the minimum rooted k-connected subgraph problem is to require

that there are k internally vertex-disjoint paths from the root to every other vertex. As

usual, an equivalent formulation as a �cut covering� problem is considered. For vertex-

connectivity, it is not enough to just have k arcs entering a set, and a more sophisticated

notion, bi-set, is needed. See Figure 6.3 for an example.

De�nition 6.2.1 A bi-set S = (SO, SI) is a pair of subsets SO, SI of V for which ∅ ⊂
SI ⊂ SO ⊂ V . SO is the outer member and SI is the inner member. An arc a = (u, v) is

said to enter S = (SO, SI) if u ∈ V − SO and v ∈ SI , which is denoted by xa ∈ δin(S).

SI

SO
b

b

u

v

Fig. 6.3. In this example the bi-set S = (SO, SI) is shown and the arc (u, v) enters S.

Let us intuitively explain the role of bi-sets for this problem. A graph is rooted

k-connected if upon removal of l ≤ k vertices, there are still at least k − l vertex disjoint

paths from r to other vertices. This is precisely the reason we count arcs coming in from

V − SO to SI - corresponding to the case where the vertices in SO − SI are deleted.
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Let R be the set of all bi-sets S for which SO ⊆ V − r. We have the following bi-set

LP formulation for the minimum rooted k-connected subgraph problem. Note that, by

Menger's theorem, a 0-1 solution to the bi-set LP corresponds to a rooted k-connected

subgraph; see Exercise 2.3 in Chapter 2.

minimize
∑
a∈A

ca xa

subject to x(δin(S)) ≥ k − (|SO| − |SI |) ∀ bi-sets S ∈ R
xa ≥ 0 ∀ a ∈ A

We can use a minimum-cut algorithm to design a separation oracle for the bi-set LP.

Given a solution x for this problem, we can construct an auxiliary graph D′ by expanding

each vertex to an arc of capacity 1. All other arc capacities are the values of xa. It is easy

to see that the solution x is a feasible solution to the bi-set LP if and only if the minimum

cut separating the root from a vertex of V − r in D′ has outgoing capacity at least k.

It is tempting to try to extend the solution technique motivated by the arborescence

case for this problem. This actually works to some extent, when we actually complete

an iteration in the iterative algorithm, we pick an arc if its value was 1. However, this

changes some of the constraints of the LP (the residual problem is no longer an instance of

the rooted k vertex-connectivity problem), and therefore even the separation oracle could

change in theory (in reality, all that is needed is a small addition to the above mentioned

oracle). To apply the iterative method, we generalize the bi-set LP to the following.

minimize
∑
a∈A

ca xa

subject to x(δin(S)) ≥ g(S) ∀ bi-sets S ∈ R
xa ≥ 0 ∀ a ∈ A

Initially g(S) is k − (|SO| − |SI |). The function g is required to satisfy a speci�c

supermodularity property which we shall soon de�ne. We are now in a position to explain

the iterative algorithm for the rooted k-connected subgraph problem.

6.2.2 Iterative Algorithm

The iterative algorithm to �nd an optimal rooted k-connected subgraph is given in Fig-

ure 6.4.

Note that at each iteration, the separation oracle is exactly the one mentioned earlier

where as a pre-processing step, we expand every vertex to an arc with x value of 1 in the
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Iterative Rooted k-Connected Subgraph Algorithm

(i) Initialization F ← ∅, g′ ← g.

(ii) While g′ ̸≡ 0 do

(a) Find an optimal extreme point solution x to the bi-set LP with the re-

quirement function g′. Remove every arc a with xa = 0 from D.

(b) Find an arc a = uv with xa = 1, and update F ← F ∪{a}, D ← D \{uv},
and set g′(S)← max{g(S)− dinF (S), 0}.

(iii) Return F .

Fig. 6.4. Rooted k-Connected Subgraph Algorithm

graph and also add in the arcs set to 1 so far by the algorithm, and look for a cut of value

k as before. Details are left to the exercises.

6.2.3 Characterization of Extreme Point Solutions

The uncrossing technique can also be applied to bi-sets. For a bi-set S = (SO, SI), the

corresponding inequality x(δin(S)) ≥ g(S) de�nes the characteristic vector χ(δin(S)) in

R|A|: the vector has an 1 corresponding to each arc a ∈ δin(S), and 0 otherwise. Let

F = {S | x(δin(S)) = g(S)} be the family of tight inequalities for an extreme point

solution x to the bi-set LP. The following lemma shows that this family is closed under

intersection and union. Before stating the lemma, we de�ne bi-set intersections and unions

(see Figure 6.5).

De�nition 6.2.2 Given two bi-sets S, T , de�ne S ∩ T := (SO ∩ TO, SI ∩ TI) and S ∪ T :=

(SO ∪ TO, SI ∪ TI). Two bi-sets S, T are intersecting if SI ∩ TI , SI − TI and TI − SI are

nonempty, or SI ∩ TI , SO ∩ TO, SO − TO and TO − SO are nonempty.

SI

SO

TI

TO

Fig. 6.5. In this example the bi-set S = (SO, SI) and bi-set T = (TO, TI) intersect.
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Lemma 6.2.3 If bi-sets S, T ∈ F and S and T are intersecting, then both S∩T and S∪T
are in F . Furthermore, χ(δin(S)) + χ(δin(T )) = χ(δin(S ∩ T )) + χ(δin(S ∪ T )).

Proof

g(S) + g(T ) = x(δin(S)) + x(δin(T ))

≥ x(δin(S ∩ T )) + x(δin(S ∪ T ))
≥ g(S ∩ T ) + g(S ∪ T )
≥ g(S) + g(T )

The equality is by the fact that S, T ∈ F . The �rst inequality follows from the sub-

modularity of the bi-set function din(S), which can be shown in a manner similar to the

corresponding submodularity of the set function din(S) in the arborescence problem (see

the exercises). The second inequality follows from the constraints in the bi-set LP. The

last inequality is because of the property we require the function g to satisfy - intersecting

bi-supermodularity. We will prove in Proposition 6.2.7 that the function g′ is intersecting

bi-supermodular at each stage of the iterative algorithm.

De�nition 6.2.4 A function g is intersecting bi-supermodular if for all intersecting bi-sets

S and T , g(S) + g(T ) ≤ g(S ∪ T ) + g(S ∩ T ).

Therefore, equality holds everywhere, and thus x(δin(S∩T )) = g(S∩T ) and x(δin(S∪
T )) = g(S ∪ T ), which implies that S ∩ T and S ∪ T are also in F . Moreover, since xa > 0

for every arc a, we have χ(δin(S)) + χ(δin(T )) = χ(δin(S ∩ T )) + χ(δin(S ∪ T )).

Denote by span(F) the vector space generated by the set of characteristic vectors

{χ(δin(S)) | S ∈ F}. A family of bi-sets is bi-laminar if no two bi-sets are intersecting. In a

bi-laminar family, the inner members form a laminar family, and if XI ⊆ YI then XO ⊆ YO
or YO ⊆ XO (see the exercises). The following lemma says that an extreme point solution is

characterized by tight inequalities whose corresponding sets form a bi-laminar family. The

proof is similar to the corresponding proof for the spanning tree problem (see Lemma 4.1.5)

and is omitted here.

Lemma 6.2.5 If L is a maximal bi-laminar subfamily of F , then span(L) = span(F).

Lemma 6.2.5 and the Rank Lemma imply the following.

Corollary 6.2.6 Let x be any extreme point solution to the bi-set LP. Then there exists a

bi-laminar family L such that

(i) x(δin(S)) = g(S) for all S ∈ L.
(ii) The vectors in {χ(δin(S)) : S ∈ L} are linearly independent.

(iii) |A| = |L|.
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6.2.4 Correctness and Optimality

Firstly, for the inductive procedure to work, we want g to be bi-supermodular initially.

Recall that we initialized g(S) as k− (|SO| − |SI |). It is not too di�cult to verify that this

g is indeed bi-supermodular.

Proposition 6.2.7 The function g′ is an intersecting bi-supermodular function.

Proof Let S and R be two intersecting bi-sets.

g(S) + g(R) = (k − |SO|+ |SI |) + (k − |RO|+ |RI |)
= (k − |SO ∩RO|+ |SI ∩RI |) + (k − |SO ∪RO|+ |SI ∪RI |)
= g(S ∩R) + g(S ∪R)

Since g is an intersecting bi-supermodular function, and g′ is obtained from g by subtracting

an intersecting bi-submodular function dinF (S) (the subset of arcs set to 1 in each iteration),

g′ is also an intersecting bi-supermodular function.

Assuming the algorithm terminates successfully, the returned solution is a minimum

rooted k-connected subgraph - the proof of optimality is by now a standard induction

argument which we omit here.

Theorem 6.2.8 The Iterative Rooted k-Connected Subgraph Algorithm in Figure 6.4 re-

turns a rooted k-connected subgraph of minimum cost in polynomial time.

The key to prove the correctness is to show that the algorithm will terminate. This

is very similar to a counting argument we employed for minimum arborescences.

Lemma 6.2.9 For any extreme point solution x to the bi-set LP, either there is an arc

with xa = 0 or there is an arc with xa = 1.

Suppose for a contradiction that there is no arc with xa = 0 or xa = 1. The proof

starts from a bi-laminar family L which satis�es the properties of Corollary 6.2.6. A bi-

laminar family L also naturally de�nes a forest L as follows: Each node of L corresponds

to a bi-set in L, and there is an edge from bi-set R to bi-set S if R is the smallest set

containing S, where a bi-set R contains a bi-set S if SI ⊆ RI and SO ⊆ RO. The goal

of the counting argument is the same - assuming there is no arc with xa = 0 and xa = 1,

derive a contradiction by showing that the number of inequalities (that is, the number of

sets in L) is smaller than the number of variables (that is, the number of arcs).

For each arc, one token is assigned to its head. So the total number of tokens assigned

is exactly |A|. To derive a contradiction, these tokens will be redistributed such that each

bi-set S ∈ L is assigned one token, and there are still some excess tokens left. This will

imply |A| > |L| and thus contradict Corollary 6.2.6. The following lemma shows that such

a redistribution is possible.
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Lemma 6.2.10 For any rooted subtree of the forest L ̸= ∅ with root S, the tokens assigned

to vertices inside SI can be distributed such that every node in the subtree gets at least one

token and the root S gets at least g(S) + 1 tokens.

Proof The proof is by induction on the height of the subtree. The base case is when S is

a leaf. Since x(δin(S)) = g(S) and there is no arc with xa = 1, there are at least g(S) + 1

arcs in δin(S), and so S gets at least g(S) + 1 tokens.

For the induction step, let S be the root and R1, . . . , Rk be its children. By the

induction hypothesis, each node in the subtree rooted at Ri gets at least one token and

Ri gets at least g(Ri) + 1 tokens. Since Ri only needs to keep one token, it can give g(Ri)

tokens to S. Let g(R) =
∑k

i=1 g(Ri). Three cases are considered.

(i) g(S) < g(R). Then S can collect g(R) ≥ g(S) + 1 tokens from its children.

(ii) g(S) > g(R). Since there is no arc with xa = 1, there must be at least g(S)−g(R)+1

arcs entering S but not its children. So S can take g(R) tokens from its children

and g(S) − g(R) + 1 tokens from the heads of those arcs. Therefore, S can collect

at least g(S) + 1 tokens, as required.

(iii) g(S) = g(R). If there is an arc a which enters S but not any of its children, then

S can collect g(S) + 1 tokens by taking g(S) = g(R) tokens from its children and

at least one more token from the head of such arc, as required. Suppose such an

arc does not exist, then δin(S) ⊆ ∪ki=1δ
in(Ri). Since x(δin(S)) =

∑k
i=1 x(δ

in(Ri))

and there is no arc with xa = 0, this implies that δin(S) = ∪ki=1δ
in(Ri). Hence

χ(δin(S)) =
∑k

i=1 χ(δ
in(Ri)), but this contradicts the linear independence of the

characteristic vectors for bi-sets in L. Therefore such an arc must exist, and thus S

can collect g(S) + 1 tokens, as required.

This completes the proof of the induction step.

From Lemma 6.2.10, the number of tokens is at least |L| + 1 which implies that

|A| > |L|, contradicting Corollary 6.2.6. This completes the proof of Lemma 6.2.9, and

hence Theorem 6.2.8 follows.

6.3 Minimum Bounded Degree Arborescence

The minimum bounded degree arborescence problem (MBDA) is de�ned as follows: Given

a directed graph G = (V,A), a cost function c : A→ R and an out-degree upper bound Bv
for each vertex v ∈ V , the task is to �nd an arborescence of minimum cost which satis�es

all the out-degree bounds.

First we present a (2, 2Bv + 2)-approximation algorithm for the minimum bounded

degree arborescence problem. By this, we mean that the algorithm outputs an arborescence

whose cost is twice that of the LP relaxation for the original problem and whose out-degree

at any node v is at most 2Bv + 2. Thus it is a pseudo-approximation or bicriteria approx-

imation algorithm that both violates the degree bounds as well as delivers a suboptimal
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cost solution. In the next section, we will present an algorithm with only an additive error

of 2 on the degree bounds but when there are no costs on arcs (the unweighted case).

6.3.1 Linear Programming Relaxation

The following is a natural extension of the directed LP for this degree-bounded problem

where the degree bounds are imposed only on a subset W of the vertices.

minimize
∑
a∈A

ca xa

subject to x(δin(S)) ≥ 1 ∀ S ⊆ V − r
x(δout(v)) ≤ Bv ∀ v ∈W

xa ≥ 0 ∀ a ∈ A

This linear program can be solved by using a minimum cut algorithm as a separation

oracle as in the case of the directed LP for minimum cost arborescences.

To make the formalism su�ciently general to handle residual problems arising in

the iterative procedure, we use an LP for a generalization of arborescences to more general

cut-functions f : S → Z+. Recall that a pair of sets A,B ⊂ V are intersecting if A∩B ̸= ∅,
A− B ̸= ∅ and B − A ̸= ∅. A function f is intersecting supermodular if for every pair of

intersecting sets A,B ⊂ V we have

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B).

In the following f(S) is a 0-1 intersecting supermodular function. By setting f(S) =

1 for all subsets S that do not contain the root r (this is intersecting supermodular, see ex-

ercise 2.12), we get an LP relaxation, denoted by LPmbda(G, f,B,W ), for the arborescence

problem below. Here B denotes the vector of out-degree bounds on the subset of vertices

W .

minimize
∑
a∈A

ca xa

subject to x(δin(S)) ≥ f(S) ∀ S ⊆ V − r
x(δout(v)) ≤ Bv ∀ v ∈W

xa ≥ 0 ∀ a ∈ A

To �nd a separation oracle for this problem, we need to check whether x(δin(S)) −
f(S) ≥ 0 for each S ⊆ V − r. For general supermodular function f , we can use an e�cient

algorithm for submodular function minimization to check this, since x(δin(S)) − f(S) is
a submodular function. For the function f arising from the minimum bounded degree
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arborescence problem, we can use an e�cient minimum cut algorithm for this task, as we

did for the minimum rooted k-connected subgraph problem.

6.3.2 Characterization of Extreme Point Solutions

The proof of the following lemma follows from standard uncrossing arguments as in the

minimum arborescence problem.

Lemma 6.3.1 For any extreme point solution x to LPmbda, there exist a set T ⊆ W and

a laminar family L such that

(i) x(δout(v)) = Bv for each v ∈ T and x(δin(S)) = 1 for each S ∈ L.
(ii) The vectors in {χ(δout(v)) : v ∈ T} ∪ {χ(δin(S)) : S ∈ L} are linearly independent.

(iii) |A| = |L|+ |T |.

6.3.3 Iterative Algorithm

The iterative algorithm is similar to that for the minimum bounded degree spanning tree

problem in Chapter 4, except that it has a relaxation step as well as a rounding step, in

which we choose an arc a even though xa < 1.

Iterative Minimum Bounded Degree Arborescence Algorithm

(i) Initialization F ← ∅, f ′ = f .

(ii) While f ′ ̸≡ 0 do

(a) Compute an optimal extreme point solution x to LPmbda(G, f
′,B,W ). Re-

move every arc a with xa = 0.

(b) (Rounding): If there is an arc a = (u, v) with xa ≥ 1
2 , then update

F ← F ∪ {a} and set Bu ← Bu − 1
2 .

(c) (Relaxation): If there exists a vertex v ∈W with dout(v) < Bv +3, then

set W ←W − v.
(d) Update f ′(S)← max{f(S)− dinF (S), 0}.

(iii) Return F .

Fig. 6.6. Minimum Bounded Degree Arborescence Algorithm

6.3.4 Correctness and Performance Guarantee

We �rst prove that the algorithm has the claimed performance guarantee, assuming that

it terminates successfully.
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Theorem 6.3.2 The iterative algorithm in Figure 6.6 is a (2, 2Bv + 2)- approximation

algorithm for the minimum bounded degree arborescence problem.

Proof First we prove that the cost of the arborescence returned by the algorithm is at

most twice the cost of the initial LP solution. The proof is by induction on the number of

iterations executed by the algorithm. For the base case that requires only one iteration,

the theorem follows since it rounds up a single arc a with xa ≥ 1
2 . For the induction step,

let a′ be the arc with xa′ ≥ 1
2 in the current iteration. Let f ′ be the residual requirement

function after this iteration and let F ′ be the set of arcs picked in subsequent iterations

for satisfying f ′. The key observation is that the current solution x restricted to A − a′
is a feasible solution for satisfying f ′ (by checking the connectivity constraints and also

the degree constraints), and thus by the induction hypothesis, the cost of F ′ is at most

2
∑

a∈A−a′ caxa. Consider F := F ′ ∪ a′ which satis�es f (by the de�nition of f ′). The cost

of F is:

cost(F ) = cost(F ′) + ca′ ≤ 2
∑

a∈A−a′
caxa + ca′ ≤ 2

∑
a∈A

caxa,

where the last inequality follows because xa′ ≥ 1
2 . This implies that the cost of F is at

most twice the cost of an optimal fractional solution.

Next we show that the degree of any vertex v is at most 2Bv + 2. At any iteration,

let F denote the set of edges selected and let B′
v denote the current residual degree bound

of v. While the degree constraint of v is present, dF (v) = 2(Bv − B′
v). This is because,

at any iteration, whenever we include an edge e ∈ δ(v) in F , we reduce B′
v by half and

hence the equality holds true. When the degree bound for the vertex v is removed then

less than B′
v + 3 edges are incident at v. In the worst case, we may select all these edges

in the solution. Hence,

dF (v) < 2(Bv −B′
v) +B′

v + 3 < 2Bv + 3.

Since dF (v) and Bv are integers, this implies that dF (v) ≤ 2Bv + 2, as required.

We now focus on using a counting argument to prove the following lemma which

guarantees that the algorithm terminates successfully.

Lemma 6.3.3 An extreme point solution x to LPmbda must satisfy one of the following.

(i) There is an arc a with xa ≥ 1
2 .

(ii) There is a vertex v with dout(v) < Bv + 3.

Proof The proof uses the local fractional token argument. Each arc is assigned two tokens,

for a total of 2|A| tokens. For each arc a, 1−xa token is assigned to its tail, and 1+xa token

is assigned to its head. We shall show that if none of the above conditions are satis�ed,

then each set in L and each degree constraint in T can collect two tokens, and there are

some tokens left. This would imply |A| > |L|+ |T |, which contradicts Lemma 6.3.1.
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For each tight vertex v in T , it collects∑
a∈δout(v)

(1− xa) = dout(v)−
∑

a∈δout(v)

xa = dout(v)−Bv ≥ 3

tokens; the second equality follows because v is tight, and the last inequality follows because

the condition in the lemma is not satis�ed. This shows that each degree constraint in T

can collect at least three tokens. Hence each degree constraint has at least one extra token.

In the following, each node with a degree constraint will contribute its extra token to the

smallest set in the laminar family containing it.

For a leaf node S ∈ L, it collects∑
a∈δin(S)

(1 + xa) = din(S) +
∑

a∈δin(S)

xa = din(S) + 1 ≥ 4

tokens; the second equality follows because S is tight and so x(δin(S)) = 1, and the last

inequality follows because there is no arcs with value at least 1/2 and hence din(S) ≥ 3.

This shows that each leaf node in L can collect at least four tokens. Hence each leaf node

has at least two extra tokens to start us o� in the bottom-up induction over the laminar

family.

We argue by induction going bottom up in the laminar family L that we can assign

the tokens in the subtree of S so that every set gets at least two tokens and the root gets

two extra tokens. We proved the base case for leaves in the previous paragraph. Consider

a non-leaf node S ∈ L, and let its children be R1, . . . , Rl. If l ≥ 2, then S can collect two

extra tokens from each child by the induction hypothesis, and hence S has at least two

extra tokens, as required. So assume S has only one child R1, and S can collect two tokens

from R1 and needs two more tokens. Since x(δin(S)) = x(δin(R1)) = 1 and χ(δin(S)) ̸=
χ(δin(R1)), there are arcs p ∈ P := δin(S)− δin(R1) and q ∈ Q := δin(R1)− δin(S). Every
arc p ∈ P can contribute 1 + xp token to S. If the tail of q ∈ Q is in T (the set of vertices

with tight degree constraint), then its tail contributes 1 token to S since it has a degree

constraint and by the redistribution above, every such node gives its one extra token to

the smallest set in the laminar family containing it. If the tail of q is not in T , then q can

contribute 1− xq token to S. In this case, note that since x(δin(S)) = x(δin(R1)) = 1, we

have
∑

p∈P xp =
∑

q∈Q xq and thus S can collect two more tokens from arcs in P and Q,

and this completes the induction step. There are always some tokens left at the root node

in L, and this completes the proof.

6.4 Additive Performance Guarantee

In this section we present an algorithm for the unweighted problem (without arc costs) that

outputs an arborescence that violates the out-degrees by at most two. However, as opposed

to the minimum bounded degree spanning tree problem, to achieve an additive guarantee

on the degrees, the cost of the solution is no longer bounded. In fact, this tradeo� is shown

to be unavoidable using this linear programming relaxation for the problem [9].
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6.4.1 Iterative Algorithm

The iterative algorithm is similar to the additive one approximation for the minimum

bounded degree spanning tree problem. The algorithm removes degree constraint one by

one, and include all arcs incident on these vertices as candidates for the �nal solution, and

remove them from the graph. In the end a subset of arcs that make up an arborescence

among the candidates is output. The algorithm is presented in Figure 6.7.

Iterative Additive Arborescence Algorithm

(i) Initialization F ← ∅, f ′ = f .

(ii) While A \ F ̸= ∅ do
(a) Find an optimal extreme point solution x to LPmbda(G, f

′,B,W ). Remove

every arc a with xa = 0.

(b) (Relaxation): If there exists a vertex v ∈W with dout(v) ≤ Bv +2, then

set W ←W − v and update F ← F ∪ {δout(v)}.
(c) Update f ′(S)← max{f(S)− dinF (S), 0} and A← A− F .

(iii) Return any arborescence in F .

Fig. 6.7. Additive Arborescence Algorithm

The degree constraint is violated only in Step 2(c) by at most two. So if the algorithm

terminates successfully, then the algorithm is an additive two approximation algorithm for

the unweighted bounded degree arborescence problem.

6.4.2 Correctness and Performance Guarantee

The following lemma shows that the algorithm always terminates successfully. The proof

uses the characterization of the extreme point solutions of LPmbda.

Lemma 6.4.1 In any extreme point solution x to LPmbda, there is a vertex v ∈ W with

out-degree at most Bv + 2.

Proof The proof uses a local fractional token argument. Each arc is assigned one token,

for a total of |A| tokens. For each arc a, 1−xa token is assigned to its tail, and xa token is

assigned to its head. We shall show that if the above condition is not satis�ed, then each

set in L and each degree constraint in T can collect one token, and there are some tokens

left. This would imply |A| > |L|+ |T |, contradicting Lemma 6.3.1.

Each vertex v with nonzero out-degree must be in W . Hence it collects∑
a∈δout(v)

(1− xa) = dout(v)− x(δout(v)) ≥ dout(v)−Bv ≥ 3

tokens; the �rst inequality follows because of the out-degree constraint at v, and the last
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inequality follows because the condition in the lemma is not satis�ed. This shows that

each vertex with non-zero out-degree has at least two extra tokens. Each such vertex with

an out-degree constraint distributes its two extra tokens to the smallest set in L containing

it.

A leaf node S ∈ L collects x(δin(v)) = 1 token. Furthermore, S has at least one extra

token if dout(S) ≥ 1 (actually at least two extra tokens but we only need one extra token

for the induction to work). We call S with dout(S) = 0 a sink node. Note that when S is

a leaf node, it gets at least one token if it is a sink node and at least two if it is a non-sink

node. We prove inductively (going bottom-up in L) that we can redistribute the tokens in

the subtree of any non-leaf node S ∈ L so that every set gets at least one token and the

root S gets at least two tokens. For the induction step, consider a non-leaf node S ∈ L,
and let its children be R1, . . . , Rl. If S has at least two children that are non-leaf nodes or

are leaf nodes that are non-sink nodes, then S can collect one extra token from each such

child by the induction hypothesis, and hence S has at least two tokens, as required. So

assume S has at most one child R1 that is a non-leaf node or a leaf node that is a non-sink

node.
S

R3

Rl

R2

R1

b

b

v

u

a

Fig. 6.8. In this �gure, set S has children R1, . . . , Rl where all except R1 are leaf as well sink nodes.
Thus the tail u of arc a ∈ δin(R1) \ δin(S) must have 2 extra tokens which it gives to S.

Since x(δin(S)) = x(δin(R1)) = 1 and χ(δin(S)) ̸= χ(δin(R1)), there is an arc

a ∈ δin(R1) − δin(S). Since R2, . . . , Rl are sink nodes, the tail of a is not contained in

R1 ∪ R2 ∪ . . . ∪ Rl but is in S. Furthermore, since the tail of a has positive out-degree in

the support, it has two extra tokens by the argument in the previous paragraph that it

assigns to S, as required. The roots of L have extra tokens left, completing the proof.

Notes

The directed LP formulation for the minimum spanning arborescence problem is due to

Edmonds [46]. The �rst polynomial-time algorithm for the minimum rooted k-connected

subgraph problem was given by Frank and Tardos [58] via the use of submodular �ows
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(which we will introduce in Chapter 7). Recently Frank [57] showed that the minimum

rooted k-connected subgraph problem can actually be reduced to the matroid intersection

problem, and that the bi-set LP for this problem is totally dual integral (TDI). The bicri-

teria approximation algorithm for the minimum bounded degree arborescence problem is

by Lau, Naor, Salavatipour and Singh [110], while the additive approximation algorithm

for the unweighted problem is due to Bansal, Khandekar and Nagarajan [9].

Exercises

6.1 Show the equivalence of the directed LP and the �ow-based LP in Section 6.1.1.

6.2 Write a compact formulation for the spanning tree problem. (Hint: Use the com-

pact formulation for the arborescence problem.)

6.3 Show the application of the iterative method to formulate an integral LP for the

rooted k-arc-connected subgraph problem. Use the same outline we have used

as in the earlier chapters: LP formulation, properties of extreme point solutions,

iterative algorithm and its correctness and optimality.

6.4 Work out the details of the separation oracle for the bi-set LP relaxation for this

problem. Also, show how the separation oracle can be adapted for the LP formu-

lations that arise when some of the arcs are already chosen in a current solution.

6.5 A function g on bi-sets is intersecting bi-submodular if g(S) + g(T ) ≥ g(S ∩ T ) +
g(S ∪ T ) holds for any two intersecting bi-sets S and T . Prove that the bi-set

function din(S) is intersecting bi-submodular.

6.6 Show that in a bi-laminar family, the inner members form a laminar family, and if

XI ⊆ YI then XO ⊆ YO or YO ⊆ XO.

6.7 Prove Lemma 6.2.5.

6.8 Can the approximation algorithms for the minimum bounded degree arborescence

problem be extended to the minimum bounded degree rooted k-edge-connected

subgraph problem?
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7

Submodular Flows and Applications

†

Quoting Lovász from his paper �Submodular Functions and Convexity� [116]:

�Several recent combinatorial studies involving submodularity �t into the following pattern. Take
a classical graph-theoretical result (e.g. the Marriage Theorem, the Max-�ow-min-cut Theorem
etc.), and replace certain linear functions occurring in the problem (either in the objective function
or in the constraints) by submodular functions. Often the generalizations of the original theorems
obtained this way remain valid; sometimes even the proofs carry over. What is important here
to realize is that these generalizations are by no means l'art pour l'art. In fact, the range of
applicability of certain methods can be extended tremendously by this trick.�

The submodular �ow model is an excellent example to illustrate this point. In this chap-

ter, we introduce the submodular �ow problem as a generalization of the minimum cost

circulation problem. We then show the integrality of its LP relaxation and its dual using

the iterative method. We then discuss many applications of the main result. We also show

an application of the iterative method to an NP-hard degree bounded generalization and

show some applications of this result as well.

The crux of the integrality of the submodular �ow formulations will be the property

that a maximal tight set of constraints form a cross-free family. This representation al-

lows an inductive token counting argument to show an 1-element in an optimal extreme

point solution. We will see that this representation is precisely the one we will eventually

encounter in Chapter 8 on network matrices.

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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7.1 The Model and the Main Result

7.1.1 Minimum-Cost Flows and Minimum-Cost Circulations

Given a directed graph D = (V,A), a source vertex s ∈ V , a sink vertex t ∈ V , a capacity

function c : A→ Q+, a cost function w : A→ Q, and a value k, the minimum cost s-t �ow

problem is to �nd an s-t �ow of value k with xa ≤ ca that minimizes cost(x) :=
∑

a∈Awa·xa.

Recall that a �ow function x assigns non-negative �ow values to each arc that obeys

�ow conservation constraints at all nodes except the source s and the sink t. The �ow

conservation insists that the �ow coming via the in-arcs equals that going via the out-arcs.

With these constraints at all nodes except s and t, the net out-�ow from s equals the net

in-�ow into t which is the value of this s − t �ow. The capacity constraints mentioned

above insist that the �ow routes through an arc not exceed its capacity to carry �ow.

Related to this classical problem is the minimum cost circulation problem, where

each arc a has a lower bound da and an upper bound ca, and the goal is to �nd a minimum

cost circulation (i.e., a �ow function that is conserved at all nodes including s and t) that

satis�es capacity lower and upper bounds: da ≤ xa ≤ ca.

The problem of �nding a minimum-cost s-t �ow of value k can be easily reduced

to a minimum-cost circulation problem: just add an arc a0 = (t, s) with da0 = ca0 = k,

and wa0 = 0. Also let da = 0 for each arc a ̸= a0. Then a minimum cost circulation in

the extended directed graph gives a minimum cost �ow of value k in the original directed

graph.

Also the problem of �nding a maximum value s-t �ow can be easily reduced to a

minimum-cost circulation problem in the extended directed graph: just de�ne da0 = 0,

ca0 = ∞, and wa0 = −1. Moreover, set wa = 0 for each a ̸= a0. Then a minimum cost

circulation gives a maximum value s-t �ow.

Edmonds and Karp showed that the minimum cost circulation problem is solvable in

polynomial time. One can now generalize this problem by extending the �ow conservation

constraints at each node in the circulation from singleton nodes to a collection C of node

subsets. Also, the right hand side of these constraints which are all zero for the circulation

problem can be generalized to be a submodular function f(S) for the constraint for set S.

These two generalizations of the circulation problem give the submodular �ow problem.

7.1.2 Generalizing to Submodular Functions

Let D = (V,A) be a directed graph and let C be a crossing family of subsets of V (that is,

if T,U ∈ C with T ∩U ̸= ∅, T ∪U ̸= V , T −U ̸= ∅ and U −T ̸= ∅, then T ∩U, T ∪U ∈ C).
Recall that a function f : C → R is called crossing submodular, if for all U, T ∈ C with

U ∩ T ̸= ∅, U ∪ T ̸= V , U − T ̸= ∅ and T − U ̸= ∅ one has

f(U) + f(T ) ≥ f(U ∩ T ) + f(U ∪ T )
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Given such D, C, f , a submodular �ow is a function x ∈ RA satisfying:

x(δin(U))− x(δout(U)) ≤ f(U) for each U ∈ C,

where x(δin(U)) is a shorthand for
∑

a∈δin(U) xa and similarly for x(δout(U)). The set P

of all submodular �ows with the bound constraints da ≤ xa ≤ ca is called the submodular

�ow polyhedron.

Note that the minimum-cost circulation which we generalized from can easily seen

to be a special case of a maximum-cost version of the submodular �ow problem where the

costs are -1 for every arc. Take C = {{v} | v ∈ V }; trivially C is a crossing family. Set

f = 0; obviously f is a crossing submodular function. The maximum-cost submodular

�ow problem becomes:

maximize
∑
a∈A

waxa

subject to x(δin(v))− x(δout(v)) ≤ 0 ∀ v ⊆ V
da ≤ xa ≤ ca ∀ a ∈ A

Note that no inequality at a vertex can be a strict inequality, and so the solution must be

a maximum cost circulation. We refer to the above constraint system as constituting the

submodular �ow polyhedron.

The main result of this chapter is the following theorem.

Theorem 7.1.1 If f is a crossing submodular function, then both the primal and the dual

of the submodular �ow polyhedron are integral.

The result has myriad consequences many of which we will describe in Section 7.4.

7.2 Primal Integrality

In this section, the integrality of the submodular �ow polyhedron will be derived via an

iterative method. We derive the result for the special case when the bound functions are

da = 0 and ca = 1 for all arcs a. The extension to more general integral bounds will be

immediate and the subject of the exercises. We only use integral submodular function f

in the sequel (but not necessarily nonnegative).
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7.2.1 Linear Programming Relaxation

The linear programming formulation LPsmf (D, f,w) is restated as follows.

maximize
∑
a∈A

waxa

subject to x(δin(S))− x(δout(S)) ≤ f(S) ∀S ⊆ V
0 ≤ xa ≤ 1 ∀ a ∈ A

As you might have expected by now, this linear program can be solved by the ellipsoid

method, using the polynomial time algorithm for minimizing submodular functions as a

separation oracle. To see this, note that the function x(δin(S))−x(δout(S)) is modular since

this is exactly
∑

v∈S(x(δ
in(v))−x(δout(v))). Thus the function g(S) = f(S)−(x(δin(S))−

x(δout(S))) is submodular and the separation problem is equivalent to checking whether

the minimum of g(S) is negative or not.

7.2.2 Characterization of Extreme Point Solutions

As in previous problems, the uncrossing technique is used to �nd a �good� set of tight

inequalities that de�nes an extreme point solution to the submodular �ow LP. For a set

S ⊆ V , the corresponding inequality x(δin(S))−x(δout(S)) ≤ f(S) de�nes a characteristic
vector χ(S) in R|A|: the vector has value 1 corresponding to each incoming arc a ∈ δin(S),
value -1 corresponding to each outgoing arc a ∈ δout(S), and 0 otherwise. Let F =

{S | x(δin(S))−x(δout(S)) = f(S)} be the family of tight inequalities for an extreme point

solution x in the submodular �ow LP. The following lemma shows that this family is a

crossing family. The proof is by now standard - you should work out the details to see

how nicely the submodular constraint �ts with our usual proof approach (e.g., 4.1.4 and

5.2.2) for this lemma.

Lemma 7.2.1 If S, T ∈ F and S ∩ T ̸= ∅ and S ∪ T ̸= V , then both S ∩ T and S ∪ T are

in F . Furthermore, χ(S) + χ(T ) = χ(S ∩ T ) + χ(S ∪ T ).

Denote by span(F) the vector space generated by the set of vectors {χ(S) | S ∈ F}.
Recall that two setsX,Y are crossing ifX∩Y , X−Y , Y −X and V −(X∪Y ) are nonempty.

A family of sets is cross-free if no two sets are crossing. The following lemma says that

an extreme point solution is characterized by tight inequalities whose corresponding sets

form a cross-free family. The proof follows the same lines as in Lemma 4.1.5.

Lemma 7.2.2 If C is a maximal cross-free subfamily of F , then span(C) = span(F).

Lemma 7.2.2 and the Rank Lemma imply the following characterization of extreme

point solutions.
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Lemma 7.2.3 Let x be any extreme point solution to LPsmf (D, f,w) with 0 < xa < 1 for

each arc a ∈ A(D). Then there exists a cross-free family C such that

(i) x(δin(S))− x(δout(S)) = f(S) for each S ∈ C.
(ii) The vectors in {χ(S) : S ∈ C} are linearly independent.

(iii) |C| = |A(D)|.

7.2.3 Iterative Algorithm

An iterative procedure is used to �nd a minimum cost submodular �ow from an optimal

extreme point solution to LPsmf (D, f,w). We �x the values of the arcs with xa = 0 or

xa = 1, and update the submodular function accordingly. The algorithm is described in

Figure 7.1.

Iterative Submodular Flow Algorithm

(i) Initialization F = ∅, f ′ ← f .

(ii) While A ̸= ∅ do
(a) Find an optimal extreme point solution x to LPsmf (D, f

′, w). Delete every

arc a with xa = 0 from D.

(b) For each arc a = uv with xa = 1, delete a from D, add a to F , and update

f ′(S)← f(S)− dinF (S) + doutF (S) for each S ⊆ V .
(iii) Return the solution x.

Fig. 7.1. Submodular Flow Algorithm

7.2.4 Correctness and Optimality

One nice feature of the submodular �ow problem is self-reducibility: after an arc a =

uv with xa = 1 is picked and the submodular function is modi�ed appropriately, the

residual problem is still a submodular �ow problem. Assuming the algorithm terminates

successfully, the returned solution is a maximum cost submodular �ow using the by-now

standard induction argument.

Theorem 7.2.4 The Iterative Submodular Flow Algorithm in Figure 7.1 returns a mini-

mum cost submodular �ow in polynomial time.

The following lemma shows that the algorithm will terminate.

Lemma 7.2.5 For any extreme point solution x to LPsmf (D, f,w), either there is an arc

with xa = 0 or there is an arc with xa = 1.
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The proof of Lemma 7.2.5 starts from a cross-free family C which satis�es the proper-

ties of Lemma 7.2.3. From a cross-free family, a laminar family L is constructed as follows.

Let r ∈ V be an arbitrary vertex.

L := {X ⊆ V − r : X ∈ C} ∪ {X ⊆ V − r : V −X ∈ C}

The �rst set includes the members of C which does not contain r, and so is laminar. The

second set includes the members of C which contain r, and so their complements form a

laminar family. Also it can be checked that a member in the �rst set does not intersect a

member in the second set (otherwise they are crossing in C), and so L is a laminar family.

Note that since the constraints in C are linearly independent, there are no repeated sets in

the laminar family L.

As usual, a counting argument will be used to derive a contradiction - assuming

there is no arc with xa = 0 or xa = 1, then the number of inequalities is smaller than

the number of variables. For each arc, one token is assigned to its head and one token is

assigned to its tail. So the total number of tokens assigned is exactly 2|A|. These tokens
will be redistributed such that each set S ∈ L is assigned two tokens, and there are still

some excess tokens left. This will imply |A| > |L| and yield a contradiction. Let L be

the forest corresponding to the laminar family L. The following lemma shows that the

redistribution is possible.

Lemma 7.2.6 For any rooted subtree of the forest L ̸= ∅ with root S, the tokens assigned

to vertices inside S can be distributed such that every node in the subtree (including the

root S) gets at least two tokens.

Proof The proof is by induction on the height of the subtree. The base case is when S

is a leaf. Since x(δin(S)) − x(δout(S)) = f(S) and there is no arc with xa = 1 or xa = 0,

either there is at least two incoming arcs, or there is at least two outgoing arcs, or there is

at least one incoming and one outgoing arc. In any case, S can collect two tokens.

For the induction step, let S be the root and R1, . . . , Rk be its children. By the

induction hypothesis, each node in the subtree rooted at Ri gets at least two tokens and

Ri gets at least two tokens. To prove the induction step, S needs to collect two more

tokens. If there is an arc which enters S but not any Ri, or there is an arc which leaves S

but not any Ri, then S can collect one token from this arc. Suppose, to the contrary, that

such an arc does not exist. Then

sign(S)(δin(S)− δout(S)) =
k∑
i=1

sign(Ri)(δ
in(Ri)− δout(Ri)),

where sign(U) = 1 if the set U ∈ C and sign(U) = −1 if the set V − U ∈ C, since each arc

with the tail in Ri and the head in Rj with i ̸= j is canceled out in the summation. This

implies that

sign(S) · χ(S) =
k∑
i=1

sign(Ri) · χ(Ri),

113



contradicting the linear independence of the characteristic vectors. Therefore, there must

be at least an arc which has an endpoint belonging to S but not R1, . . . , Rk. If a is the

only such arc, then

x(a) = sign(S) · (x(δin(S))− x(δout(S)))−
k∑
i=1

sign(Ri) · (x(δin(Ri))− x(δout(Ri)))

= sign(S) · f(S)−
k∑
i=1

sign(Ri) · f(Ri).

Since f is an integer-valued function, then x(a) must be an integer, a contradiction. So

there must be at least two such arcs, and therefore S can collect two extra tokens, as

required.

It remains to show that there is some unused tokens. Consider the roots S1, . . . , Sl
in the laminar family L. If there is an arc with one endpoint not in any Si, then the

token in that endpoint is unused, as required. Otherwise, if no such arc exists, then the

characteristic vectors of Si are linearly dependent since
∑l

i=1 sign(Si)(δ
in(Si)−δout(Si)) =

0, a contradiction. This completes the proof of Lemma 7.2.5.

7.3 Dual Integrality

Consider the dual linear program for the submodular �ow problem. We �rst write the dual

linear program of the submodular �ow linear program without the upper bound constraints

on the arcs. The argument can be simply extended to deal with upper bounds on arcs,

and is left as an exercise. Denote the LP below by LPdsmf (D, f,w).

minimize
∑
S⊆V

f(S) y(S)

subject to
∑

S:a∈δin(S)

y(S)−
∑

S:a∈δout(S)

y(S) ≥ wa ∀ a ⊆ A

y(S) ≥ 0 ∀S ⊆ V

The uncrossing technique can be used to prove the following claim, whose proof is

similar to that of Claim 5.4.1 and Claim 5.4.3.

Claim 7.3.1 There is an optimal solution y to LPdsmf (D, f,w) with the set C = {S ⊆
V (D) : y(S) > 0} being a cross-free family of V (D).

Claim 7.3.1 implies the following restricted linear program, denoted by LPrdsmf (D, f,w),

has the same objective value as LPdsmf (D, f,w).
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minimize
∑
S∈C

f(S) y(S)

subject to
∑

S∈C:a∈δin(S)

y(S)−
∑

S∈C:a∈δout(S)

y(S) ≥ wa ∀ a ∈ A

y(S) ≥ 0 ∀S ∈ C

As C is a cross-free family, one can show that the constrained matrix of LPrdsmf (D, f,w)

is a network matrix; see Section 8.4.1 in Chapter 8. Since this is true for any set of costs

w, by the result on LP's with network matrix constraints (Theorem 8.1.1), it follows that

LPrdsmf (D, f,w) is integral, and hence the following result.

Theorem 7.3.2 The linear program LPdsmf (D, f,w) is integral for any vector w ∈ Zm.

7.4 Applications of Submodular Flows

In this section, we show some applications of Theorem 7.1.1, including the Lucchesi-

Younger's theorem on directed cut cover, the polymatroid intersection theorem, and Nash-

Williams' theorem on graph orientations. We remark that the main result in Section 6.2

about minimum cost rooted k-connected subgraphs was �rst proved by using Theorem 7.1.1.

7.4.1 Directed Cut Cover and Feedback Arc Set

Let D = (V,A) be a directed graph. A subset C of A is called a directed cut if there exists

a nonempty proper subset U of V with δin(U) = C and δout(U) = ∅. Note that if a graph

is strongly connected, then there is no directed cut in it. A directed cut cover (also known

as a dijoin in the literature) is a set of arcs intersecting each directed cut.

Lucchesi and Younger proved the following min-max theorem for the minimum size

of a directed cut cover, which was conjectured by N. Robertson and by Younger.

Theorem 7.4.1 (Lucchesi-Younger Theorem). Suppose D = (V,A) is not a strongly

connected graph. Then the minimum size of a directed cut cover is equal to the maximum

number of arc-disjoint directed cuts.

We will derive the Lucchesi-Younger theorem from Theorem 7.1.1. The starting

point is this simple observation.

Proposition 7.4.2 Let C consists of all sets U such that the collection of arcs entering

U forms a directed cut, i.e. C := {U ⊆ V | ∅ ̸= U ̸= V and δout(U) = ∅}. Then C is a

crossing family of subsets.
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To model the minimum directed cut cover problem as a submodular �ow problem,

we set f(U) = −1 for each U ∈ C and d(a) = −∞, c(a) = 0, w(a) = 1 for each arc. Note

that since δout(U) = ∅ for each U ∈ C, the linear program LPsmf (D, f,w) simpli�es to

the following (after replacing the negation of the original �ow variables by x below, hence

transforming the maximization to a minimization problem):

minimize
∑
a∈A

xa

subject to x(δin(U)) ≥ 1 ∀U ⊆ C
xa ≥ 0 ∀ a ∈ A

In this linear program, an optimal integer solution corresponds to a minimum directed cut

cover, as the constraints ensure that every directed cut has an arc selected. On the other

hand, the dual is

maximize
∑
U∈C

y(U)

subject to
∑

U∈C:a∈δin(U)

y(U) ≤ 1 ∀ a ⊆ A

y(U) ≥ 0 ∀U ∈ C

An optimal integer solution to the dual linear program corresponds to a maximum collec-

tion of disjoint directed cuts, as the constraints force the directed cuts to be arc-disjoint.

By Theorem 7.1.1, both the primal and the dual programs have integral optimal solutions,

and thus the Lucchesi-Younger theorem follows by the strong duality theorem of linear pro-

gramming (Theorem 2.1.9). Furthermore, an e�cient separation oracle for the minimum

directed cut cover problem can be constructed via standard �ow techniques, and thus the

problem can be solved in polynomial time.

7.4.1.1 Feedback Arc Set in Directed Planar Graphs

An interesting corollary of the Lucchesi-Younger theorem is a min-max relation for the

minimum size of a feedback arc set in a directed planar graph. A feedback arc set in a

directed graph D = (V,A) is a set of arcs intersecting every directed cycle. The problem

of �nding a minimum feedback arc set is NP-complete in general digraphs. For planar

digraphs, however, the problem of computing a minimum feedback arc set can be reduced

to the problem of computing a minimum directed cut cover.

Given a directed planar graph D, its (directed) planar dual D∗ is constructed as

follows. Let GD be the underlying undirected graph of D, and let G∗
D be its planar dual

(a vertex in G∗
D is a face of GD, and two vertices in G∗

D are adjacent if and only if the

corresponding faces in GD are adjacent). For each arc wx of D, let yz be the corresponding

dual arc in G∗
D. The direction of yz is chosen so that it crosses the arc wx from left to right.

Intuitively, the direction of yz is obtained by rotating the arc wx clockwise. The resulting

directed planar graph is the planar dual D∗. It can be easily seen that the directed cycles
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Fig. 7.2. In this example, the directed planar graph D is shown in solid edges and its dual D′

is dotted edges. The arcs (A,B) and (C,B) form a feedback arc set and the corresponding dual
edges (a, b) and (b, c) form a directed cut cover in the dual graph.

of D correspond to the directed cuts of D∗. See Figure 7.2. Recall that a feedback arc set

in D intersects every directed cycle in D. This corresponds to a set of arcs in the planar

dual D∗ that intersects every directed cut in D∗, which is by de�nition a directed cut cover

in D∗. Therefore, by computing a minimum directed cut cover in D∗, a minimum feedback

arc set can be constructed in D. Hence the minimum feedback arc set problem can be

solved in polynomial time in directed graphs. Moreover, the Lucchesi-Younger theorem

translates to the following beautiful min-max theorem.

Theorem 7.4.3 Let D = (V,A) be a planar directed graph. Then the minimum size of a

feedback arc set is equal to the maximum number of arc-disjoint directed cycles.
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7.4.2 Polymatroid Intersection

Recall that a matroid is characterized by its rank function: In fact, it can be shown that r

is the rank function of a matroid if and only if r is integer valued non-negative submodular

function and r(T ) ≤ r(U) ≤ |U | if T ⊆ U . Given a matroid M , we have already seen (in

Chapter 5) Edmonds' characterization of the independent set polytope of M , as well as

that of the common independent sets in the intersections of two di�erent matroids.

The above results can be generalized to arbitrary submodular function starting from

the observation that the rank function of a matroid is a speci�c submodular function.

Given a submodular set function f on a ground set V , the polytope de�ned below is called

the polymatroid associated with f , which is an integral polytope if f is an integer-valued

function.

xs ≥ 0 for s ∈ S,
x(U) ≤ f(U) for U ⊆ S

Similarly, for two submodular set functions f1, f2 on S, the following system charac-

terizes the polymatroid intersection polytope LPpmi:

xs ≥ 0 for s ∈ S,
x(U) ≤ f1(U) for U ⊆ S
x(U) ≤ f2(U) for U ⊆ S

Notice that matroid intersection is a special case since the rank function of a matroid is

submodular. The theorem below is due to Edmonds.

Theorem 7.4.4 If f1 and f2 are submodular, then the polymatroid intersection polytope

and its dual are integral.

This result can be derived from Theorem 7.1.1. First a directed graph D = (V,A)

is constructed as follows. Let S′ and S′′ be two disjoint copies of S, let V = S′ ∪ S′′, and

A = {s′′s′ | for s ∈ S}. Note that D = (V,A) is a directed matching, where each arc in A

corresponds to an element in the ground set S. De�ne C = {U ′ | U ⊆ S}∪{S′∪U ′′ | U ⊆ S}
where U ′ and U ′′ denote the sets of copies of elements of U in S′ and S′′, and de�ne

f : C → R+ by

f(U ′) := f1(U) for U ⊆ S,
f(V \ U ′′) := f2(U) for U ⊆ S,
f(S′) := min{f1(S), f2(S)}.

Then C and f satisfy the crossing submodular condition. That is, C is a crossing

family and f is a crossing submodular function since f1 and f2 are submodular functions.

See Figure 7.3. If we take d = 0 and c = ∞, the submodular �ow problem becomes the

polymatroid intersection problem (for each U , the constraint for U ′ ensures that x(U) ≤
f1(U) and the constraint for V \ U ′′ ensures that x(U) ≤ f2(U)). So Theorem 7.4.4
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Fig. 7.3. In this example, the graph D is shown along with two typical sets U1 and U2 in C.

follows from Theorem 7.1.1. As in the case of matroid intersection, a min-max theorem

on polymatroid intersection follows from Theorem 7.4.4. The proof is the same as in the

proof of Theorem 5.4.5.

Theorem 7.4.5 Let f1 and f2 be submodular set functions on S with f1(∅) = f2(∅) = 0.

Then

max
x∈LPpmi

x(U) = min
T⊆U

(f1(T ) + f2(U \ T )).

Furthermore, the following discrete separation theorem can be proved, using a similar

construction as in the proof of Theorem 7.4.4. We defer the details to the exercises.

Theorem 7.4.6 Let S be a ground set, p : 2S → Z ∪ {−∞} a supermodular function and

b : 2S → Z ∪ {∞} a submodular function for which p(∅) = b(∅) = 0 and p ≤ b. Then there

exists an integer-valued modular function m for which p ≤ m ≤ b.

7.4.3 Graph Orientation

Recall that a directed graph is strongly k-arc-connected if there are k arc-disjoint paths

between every ordered pair of vertices. Given an undirected graph, when does it have a

strongly k-arc-connected orientation? Nash-Williams proved the following necessary and

su�cient condition.
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Theorem 7.4.7 An undirected graph G has a k-strongly-connected orientation if and only

if G is 2k-edge-connected.

We derive Nash-Williams theorem using Theorem 7.1.1. The submodular �ow prob-

lem is de�ned on directed graphs; to reduce graph orientation to submodular �ow, we �rst

choose an arbitrary orientation D of G. If D is strongly k-arc-connected, then there is

nothing to prove. Otherwise, the task is to reverse the orientations of some arcs to obtain

a strongly k-arc-connected orientation. For each arc a there is a variable xa, where xa = 1

means that the direction of a will be reversed, while xa = 0 means that the direction of a

will be retained from the arbitrary initial orientation.

Let ∅ ̸= U ⊂ V be an arbitrary subset. After reversing the directions of some arcs,

the target is to have k arcs entering each set U (and thus by Menger's theorem, the resulting

directed graph is strongly k-arc-connected). Before reversing, there are dinD (U) arcs entering

U . The number of new arcs entering U after reversing is x(δout(U))−x(δin(U)). Therefore,

to have k arcs entering U after reversing, the constraint is dinD (U)−x(δin(U))+x(δout(U)) ≥
k, and thus the goal is to �nd an integral vector x satisying:

x(δin(U))− x(δout(U)) ≤ dinD (U)− k,
0 ≤ xa ≤ 1.

Note that the right hand side dinD (U) − k is a crossing submodular function, and thus

this �re-orientation� problem is a submodular �ow problem. Observe that when G is 2k-

edge-connected, x ≡ 1
2 is a feasible fractional solution to this submodular �ow problem,

since

dinD (U) + x(δoutD (U))− x(δinD (U)) = dinD (U) +
1

2
doutD (U)− 1

2
dinD (U)

=
1

2
din(U) +

1

2
dout(U)

≥ 1

2
(2k − doutD (U)) +

1

2
dout(U)

= k.

By Theorem 7.1.1, the linear program for the submodular �ow problem is integral. Since

there is a feasible solution when G is 2k-edge-connected, there is also an integral solution

when G is 2k-edge-connected, proving Nash-Williams' Theorem 7.4.7.

Note that by formulating the orientation problem as a submodular �ow problem,

many generalizations can be solved consequently. One example is the weighted version

where the two possible orientations of an arc may have di�erent costs and the goal is to

�nd the minimum cost strongly k-arc-connected orientation. This also includes a special

case of orientating mixed graphs, where the directions of some edges are �xed.
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Another example is the degree-constrained version where the indegree (and thus the

outdegree) of each vertex is �xed. To see this, consider the following extra constraints:

x(δin(v))− x(δout(v)) ≤ d(v)

x(δin(V − v))− x(δout(V − v)) ≤ d(v)

These force the di�erence between din(v) and dout(v) to be �xed, and so the resulting

orientation must have din(v) = dinD (v) − d(v), where dinD (v) is the indegree in the initial

orientation. These extra constraints are only de�ned on singletons and complement of

singletons, and one can verify that the resulting function is still crossing submodular no

matter what d(v) is. We note that the degree-constrained orientation problem (even with-

out connectivity requirement) already captures many interesting combinatorial problems

such as bipartite matching, score sequences of tournament and basketball league winner

problems.

7.5 Minimum Bounded Degree Submodular Flows

In this section we consider the minimum bounded degree submodular �ow problem, which

is a generalization of the submodular �ow problem we just addressed earlier. In this

problem we are given a directed graph D = (V,A), a crossing submodular set function

f : 2V → Z∪{+∞}, a node set W ⊆ V , and a function g :W → Z+. A degree-constrained

0-1 submodular �ow is a vector x ∈ {0, 1}|A| with the following properties:

x(δin(S))− x(δout(S)) ≤ f(S) for every S ⊆ V ,
x(δ(v)) ≤ g(v) for every v ∈W,

where δ(v) = δin(v) ∪ δout(v). If W = ∅, then this is the well-studied submodular �ow

problem we encountered earlier (Even though we have a minimization problem rather than

the maximization version we introduced earlier, the transformation between the two is

direct by negating the weights w). However, the addition of the degree constraints makes

the feasibility problem NP-complete. We show the following by adapting the iterative

proof of Theorem 7.1.1 in Section 7.2.

Theorem 7.5.1 There exists a polynomial time algorithm for the minimum bounded degree

submodular �ow problem which returns a 0-1 submodular �ow of cost at most opt that

violates each degree constraint by at most one, where opt is the cost of an optimal solution

which satis�es all the degree constraints.

7.5.1 Linear Programming Relaxation

The proof of Theorem 7.5.1 is based on the natural linear programming relaxation for the

problem which we denote LPbdsmf (D, f,w, g).
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minimize
∑
a∈A

waxa

subject to x(δin(S))− x(δout(S)) ≤ f(S) ∀S ⊆ V
x(δ(v)) ≤ g(v) ∀ v ∈W

0 ≤ xa ≤ 1 ∀ a ∈ A

As before, this linear program can be solved by using an algorithm for minimizing

submodular functions as a separation oracle.

7.5.2 Characterization of Extreme Point Solutions

The following characterization of the extreme point solutions follows from Lemma 7.2.3

and the Rank Lemma.

Lemma 7.5.2 Let x be any extreme point solution to LPbdsmf (D, f,w, g) with 0 < xa < 1

for each arc a ∈ A(D). Then there exist a cross-free family C and a set T ⊆W such that

(i) x(δin(S))− x(δout(S)) = f(S) for each S ∈ C and x(δ(v)) = g(v) for each v ∈ T .
(ii) The vectors in {χ(S) : S ∈ C} ∪ {χ(δ(v)) : v ∈ T} are linearly independent.

(iii) |C|+ |T | = |A(D)|.

7.5.3 Iterative Algorithm

Before we go into the iterative algorithm for the minimum bounded degree submodular

�ow problem, let us �rst note that separate indegree and outdegree constraints can be

incorporated into the submodular �ow problem. This is achieved by a �node-splitting�

technique, which will be useful in the iterative algorithm. Suppose we are given an indegree

bound Bin
v and an outdegree bound Bout

v on a vertex v. To incorporate these constraints,

we split the vertex v into two new vertices vin and vout, such that an arc uv is replaced by

uvin and an arc vu is replaced by voutu. See Figure 7.4 for an illustration.

The set function f is modi�ed as follows:

f ′(S) =



Bin
v if S = {vin},

Bout
v if S = V − {vout},

f(S) if S ∩ {vin, vout} = ∅,
f(S − {vin, vout}+ v) if {vin, vout} ⊆ S,
∞ otherwise.

It can be veri�ed that f ′ is a crossing submodular function if f is a crossing submodular

function, and thus the new problem is also a submodular �ow problem. By construction,
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Fig. 7.4. The node-splitting operation.

vin has no outgoing arcs, and so the submodular �ow constraint x(δin(vin))−x(δout(vin)) ≤
f ′(vin) reduces to the indegree constraint x(δin(vin)) ≤ Bin

v . Similarly, vout has no incom-

ing arcs, and so the submodular �ow constraint x(δin(V − vout)) − x(δout(V − vout)) ≤
f ′(V −vout) reduces to the outdegree constraint x(δout(vout)) ≤ Bout

v . Therefore, a feasible

submodular �ow in this new problem is a feasible submodular �ow in the original problem

satisfying the indegree and outdegree constraints on v.

With this node-splitting technique, we are ready to describe the iterative algorithm

for the minimum bounded degree submodular �ow problem.

Iterative Minimum Bounded Degree Submodular Flow Algorithm

(i) Initialize F = ∅ and f ′ ← f .

(ii) While A ̸= ∅ do
(a) Compute an optimal extreme point solution x to LPbdsmf (D, f

′, w, g).

Delete all arcs a with xa = 0.

(b) For each arc a = uv with xa = 1, delete a from D, add a to F , decrease

g(u) and g(v) by 1, and update f ′(S)← f(S)− dinF (S) + doutF (S) for each

S ⊆ V .
(c) (Relaxation 1) For each vertex v ∈ W with d(v) ≤ g(v) + 1, remove v

from W .

(d) (Relaxation 2) For each vertex v ∈ W with g(v) = 1, remove v from

W , add an indegree constraint x(δin(v)) ≤ 1 and an outdegree constraint

x(δout(v)) ≤ 1.

(iii) Return the solution x.

Fig. 7.5. Minimum Bounded Degree Submodular Flow Algorithm
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7.5.4 Correctness and Performance Guarantee

The iterative algorithm is similar to that for the submodular �ow problem, but with two

relaxation steps. The relaxation step in (ii)(c) is the usual step of removing a degree

constraint on v when d(v) ≤ g(v) + 1, and so the degree violation on v is at most one.

The relaxation step in (ii)(d) is a new step, where a degree constraint on v is replaced by

an indegree constraint and an outdegree constraint on v, which can be incorporated into

the submodular �ow problem via the node-splitting technique. Observe that the current

solution corresponds to a feasible solution of this relaxation. Since x(δin(v)) ≤ 1 and

x(δout(v)) ≤ 1, this means that the degree bound on v is violated by at most 1. Note that

using the node-splitting technique the size of the graph is increased by 1 . However, the

number of arcs is never increased and |W | decreases, so the number of steps is polynomial.

Hence Theorem 7.2.4 would follow if the algorithm always terminates successfully.

A counting argument is used to prove that the algorithm always terminates. Each

arc is assigned two tokens, for a total of 2|A| tokens. For each arc a, one token is assigned

to each endpoint. We shall show that if none of the steps in the algorithm can be applied,

then each set in C and each degree constraint in T can collect two tokens, and there are

some tokens left. This would imply |A| > |C|+ |T |, which contradicts that x is an extreme

point solution.

By Step (ii)(d) and Step (ii)(c) of the algorithm, we may assume that g(v) ≥ 2 and

d(v) ≥ g(v) + 2 for every v ∈ W . Hence d(v) ≥ 4 for v ∈ W , and thus each degree

constraint has two extra tokens. The remaining counting argument is very similar to that

of Lemma 7.2.6, and so only the di�erence is highlighted here. The proof is by induction

on the height of the subtree de�ned by the laminar family (constructed from the cross-free

family as in Section 7.2.4). If a set S is the smallest set containing a vertex v with degree

constraint, then S can collect two tokens from the extra tokens on v. Otherwise, the same

argument as in Lemma 7.2.6 will give two tokens to S. This shows that each set in L and

each degree constraint in T can collect two tokens. Finally, the same argument as in the

last paragraph of Lemma 7.2.5 will prove that there is some unused token, a contradiction.

Therefore the algorithm always terminates, and this completes the proof of Theorem 7.5.1.

7.5.5 Applications

We close with some applications of the minimum bounded degree submodular �ow problem.

Minimum Bounded Degree Directed Cut Cover

Let D = (V,A) be a directed graph. Recall that a set of vertices X is called a directed cut

if δout(X) = ∅, and a subset of arcs F is called a directed cut cover if |F ∩ δ(X)| ≠ ∅ for
every directed cut X (recall that δ(X) = δin(X) ∪ δout(X) = δin(X) for such sets X). In

the minimum bounded degree directed cut cover problem, we are given a directed graph

D = (V,A), a cost function c : A → Z, and a degree bound g(v) for each v ∈ V . The
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task is to �nd a directed cut cover F ⊆ A of minimum cost such that |F ∩ δ(v)| ≤ g(v) for
every v ∈ V . As seen in Section 7.4, the directed cut cover problem can be reduced to the

submodular �ow problem. Thus Theorem 7.5.1 implies the following result.

Corollary 7.5.3 There exists a polynomial time algorithm for the minimum bounded degree

directed cut cover problem which returns a directed cut cover F of cost at most opt and

|F ∩ δ(v)| ≤ g(v) + 1 for each vertex v ∈ V , where opt is the cost of an optimal solution

which satis�es all the degree constraints.

Minimum Bounded Degree Graph Orientation

In the minimum bounded degree graph orientation problem, we are given a directed graph

D = (V,A), a cost function c : A → Z, and a degree bound g(v) for every v ∈ V . The

task is to �nd an arc set of minimum cost whose reversal makes the digraph strongly

k-arc-connected, with the additional constraint that the number of arcs reversed at each

node v is at most g(v). As seen in Section 7.4, graph orientation problems (with cross-

ing supermodular requirements) can be reduced to the submodular �ow problem. Thus

Theorem 7.5.1 implies the following result.

Corollary 7.5.4 There exists a polynomial time algorithm for the minimum bounded degree

graph orientation problem which �nds an arc set of cost at most opt whose reversal makes

the digraph strongly k-arc-connected and such that the number of arcs reversed at each node

v is at most g(v) + 1, where opt is the cost of an optimal solution which satis�es all the

degree constraints.

Notes

The polyhedral result on submodular �ows is due to Edmonds and Giles [49], generaliz-

ing the result by Lucchesi and Younger [117] on directed cut cover and the polymatroid

intersection theorem by Edmonds [47]. This paper by Edmonds and Giles also introduced

the notion of totally dual integrality (TDI) and demonstrated the power of the uncrossing

technique, which was developed earlier by Lucchesi and Younger [117] and Lovász [115].

The starting point of graph orientation problems is the result by Robbins [143]

showing that a graph has a strongly connected orientation if and only if it is 2-edge-

connected. This result is extended by Nash-Williams [128] to obtain Theorem 7.4.7 and

a further generalization on local edge-connectivities. The reduction of graph orientation

problems to the submodular �ows problem is due to Frank (see [56] for a survey). The

result on degree constrained submodular �ow problem is from Kíraly et al [97]. Gabow [68]

also solves a degree constrained orientation problem using iterative rounding.
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Exercises

7.1 Fill in the details of the proof of Lemma 7.2.2.

7.2 Prove Claim 7.3.1.

7.3 (a) Generalize the proof of the integrality of the LP formulation for the submodular

�ow problem when box constraints are present.

(b) Generalize the proof of the integrality of the dual of submodular �ow when

the primal has box constraints. (Hint: Observe that upper and lower bound

introduce extra variables on arcs. Argue separately with tight arc constraints for

which these variables are zero and non-zero.)

7.4 Prove Theorem 7.4.5.

7.5 Prove the discrete separation theorem (Theorem 7.4.6) using a construction similar

to that for the polymatroid intersection theorem 7.4.5.

7.6 Verify that the degree-constrained graph-orientation problem introduced in Sec-

tion 7.4.3 by verifying that the extra degree constraints introduced there still result

in a submodular function in the right-hand side of the constraints.

7.7 Dilworth's Theorem states that in any partially ordered set, the size of the max-

imum anti-chain is equal to the minimum number of chains needed to cover the

whole set. Show that Dilworth's theorem is a special case of the submodular �ow

problem.

7.8 (Frank and Tardos [58]) We outline the reduction of the minimum cost rooted k-

connected subgraph problem (in Chapter 6) to the submodular �ow problem. The

proof is divided into two main steps.

(a) Let G = (A,B;E) be a simple bipartite graph. Let p be an intersecting su-

permodular function, and c a non-negative cost function on the edges. Call a

subset R ⊆ E supporting if ΓR(X) ≥ p(X) for every X ⊆ A, where ΓR(X) :=

{y ∈ B | yx ∈ R for some x ∈ A}. Prove that the minimum-cost supporting

set of a bipartite graph can be found in polynomial time via a reduction to the

submodular �ow problem.

(b) Let D = (V,E) be a directed graph. For sets X ⊆ V and F ⊆ E denote

OF (X) := {u ∈ V −X : there is a uv ∈ F with v ∈ X}. Let p be an intersecting

supermodular function, and c a non-negative cost function on the edges. We call

a subset F ⊆ E of edges out-supporting if |OF (X)| ≥ p(X) for every X ⊆ V .

Use (a) to prove that the minimum-cost out-supporting set of a digraph can be

found in polynomial time.

(c) Conclude from (b) that the minimum cost rooted k-connected subgraph problem

can be solved optimally in polynomial time.

7.9 Show that the minimum bounded degree submodular �ow problem can be solved

in polynomial time if there are only degree constraints on the in-degree and the
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out-degree of nodes. In particular, show that the method outlined in Section 7.5.3

works by showing that the modi�ed function f ′ is indeed submodular.

7.10 What do the results in this chapter (mainly Theorem 7.5.1) imply for the feedback

arc set problem in directed planar graphs?
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8

Network Matrices

†

In this chapter, we consider a simple model, based on a directed tree representation

of the variables and constraints, called network matrices. We show how this model as well

as its dual have integral optima when used as constraint matrices with integral right-hand

sides. Finally we show the applications of these models, especially in proving the integrality

of the dual of the matroid intersection problem in Chapter 5, as well as the dual of the

submodular �ow problem in Chapter 7.

While our treatment of network matrices is based on its relations to uncrossed struc-

tures and their representations, they play a crucial role in the characterization of totally

unimodular matrices which are all constraint matrices which yield integral polytopes when

used as constraint matrices with integral right hand sides [150]. Note that total unimodu-

larity of network matrices automatically implies integrality of the dual program when the

right hand sides of the dual are integral.

The integrality of the dual of the matroid intersection and submodular �ow polyhedra

can be alternately derived by showing the Total Dual Integrality of these systems [150].

While our proof of these facts use iterative rounding directly on the dual, there is a close

connection between these two lines of proof since both use the underlying structure on

span of the constraints de�ning the extreme points of the corresponding linear program.

8.1 The Model and Main Results

Let T = (V,E(T )) be a directed tree (where all the arcs do not necessarily point towards a

root - hence it is a weakly directed spanning tree, or a spanning tree on V in the undirected

sense) and let D = (V,E(D)) be a directed graph on the same vertex set V .

De�ne N , an |E(T )| × |E(D)| matrix in the following way for arcs e ∈ E(T ) and

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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b b

b

b

b

e2e1

e3 e4

f1

f2
f3

f4

f5

f1 f2 f3 f4 f5

e1 1 -1 0 0 0

e2 1 0 0 1 0

e3 0 0 -1 -1 -1

e4 0 0 -1 0 0

(a) (b)

Fig. 8.1. In Figure (a), tree T is shown in bold edges and graph D in dotted edges. In Figure (b),
the corresponding network matrix is shown.

f ∈ E(D). Let P be the path from tail of f to the head of f in T . See Figure 8.1 for an

example.

Nef =


0 if e does not occur on P

+1 if e occurs in the forward direction on P

−1 if e occurs in the reverse direction on P


Such {0,+1,−1} matrices arising from a given directed tree T and a given directed

graph D on the same set of vertices are called network matrices.

A well-known result in combinatorial optimization is the integrality of linear pro-

grams with network constraint matrices.

Theorem 8.1.1 Let N be a network matrix and b be an integral vector. Then the extreme

point solutions of the linear program {max cTx : Nx ≤ b} are integral.

This follows from the result that network matrices are actually a subclass of a broader class

of constraint matrices that have integral extreme point solutions, called totally unimodular

matrices. The latter are matrices that have all square sub-determinants equal to 0, +1 or

−1, and permit several equivalent rich characterizations - for more on them, see the books

by Schrijver [149, 150].

In this chapter, we use an iterative method to prove both the above theorem as well

as its dual version below, and discuss some applications of these theorems.
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Theorem 8.1.2 Let N be a network matrix and c be an integral vector. Then the extreme

point solutions of the linear program {min bT y : yTN ≥ cT } are integral.

8.2 Primal Integrality

Following our framework we start with the natural linear programming relaxation for the

problem.

8.2.1 Linear Programming Relaxation

For a tree arc e ∈ E(T ), denote I(e) as the set of arcs in E(D) whose tail-head paths in

T contain e and are oriented in the same direction as e, and O(e) as the set of arcs whose

tail-head paths in T also contain e but are oriented in the opposite direction as e. We

denote the following linear program by LPnet(T,D).

maximize
∑

f∈E(D)

cf · xf

subject to
∑
f∈I(e)

xf −
∑

f∈O(e)

xf ≤ be ∀ e ∈ E(T )

xf ≥ 0 ∀ f ∈ E(D)

8.2.2 Characterization of Extreme Point Solutions

For an arc e ∈ E(T ), the corresponding inequality
∑

f∈I(e) xf −
∑

f∈O(e) xf ≤ be de�nes a
characteristic vector χ(e) ∈ R|E(D)|: the vector has an 1 corresponding to each arc f ∈ I(e),
a −1 corresponding to each arc f ∈ O(e), and 0 otherwise. The following lemma follows

directly from the Rank Lemma.

Lemma 8.2.1 Let x be any extreme point solution to LPnet(T,D) with non-zero xf for

each arc f ∈ E(D). Then there exists a subset R ⊆ E(T ) such that

(i)
∑

f∈I(e) xf −
∑

f∈O(e) xf = be for each e ∈ R.
(ii) The vectors in {χ(e) : e ∈ R} are linearly independent.

(iii) |R| = |E(D)|.

8.2.3 Iterative Algorithm

To devise an iterative algorithm, we look for a variable set to an integral value, and then

modify the network representation appropriately by deleting this element and updating

the constraint right hand sides appropriately. The algorithm is shown in Figure 8.2.
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Iterative Algorithm for Network Constrained Matrix Linear Programs

(i) While E(D) ̸= ∅ do
(a) Find an optimal extreme point solution x to LPnet(T,D).

(b) Fix an arc f = uv ∈ E(D) with xf = af for an integer af . For every

constraint e ∈ E(T ), update be ← be + sign(f, e) · af where sign(f, e) is

−1 if f ∈ I(e), +1 if f ∈ O(e) and 0 otherwise. Delete the arc f from D,

and its corresponding column from the constraint matrix.

(ii) Return the integral solution x.

Fig. 8.2. Algorithm for Network Constrained Matrix Problems

8.2.4 Correctness and Optimality

A simple veri�cation shows that while �xing the variables in the iterative algorithm, the

new constraint matrix is a network matrix as well. Indeed, for an arc f set to an integer

value, along with the appropriate changes in the right hand side to keep the residual

program feasible, the network representation of the remaining variables is induced by the

original one with the arc f removed from the directed graph D, while the tree T remains

unchanged. Thus, assuming the algorithm terminates successfully, a standard inductive

argument shows that the returned solution has optimal (maximum) cost.

Theorem 8.2.2 The iterative algorithm for Network Constrained Matrix Linear Programs

in Figure 8.2 returns an optimal integral solution in polynomial time.

The following lemma shows that the algorithm will terminate and completes the

proof of Theorem 8.2.2.

Lemma 8.2.3 For any extreme point solution x to LPnet(T,D), there is an arc f ∈ E(D)

with integer value, i.e. xf = af for an integer af .

The proof follows closely the proof of the similar lemma (Lemma 7.2.5) for the

submodular �ow problem. Suppose for contradiction that for each arc f ∈ D, we have

that xf is not integral. From Lemma 8.2.1, we start with a maximal set of tight constraints

that are linearly independent at the extreme point solution x, and denote the corresponding

subset of arcs by R. Note that every arc in D has xf > 0 since there are no integer valued

variables. We will show a contradiction to |R| = |E(D)| as stated in Lemma 8.2.1.

First, for ease of description, consider contracting the arcs in E(T ) \ R to get the

reduced tree T ′. Let V ′ denote the vertices in the contracted graph. We update the arcs

in E(D) by contracting the vertices accordingly, and call the resulting directed graph D′.

Observe that this contraction does not a�ect any constraint for an arc in R = E(T ′). We

again use a counting argument to derive a contradiction: For each arc in E(D′) correspond-

ing to a nonzero variable in x, one token is assigned to its head and one token is assigned
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to its tail. So the total number of tokens assigned is exactly 2|E(D′)|. These tokens will

be redistributed such that each arc e ∈ E(T ′) is assigned two tokens, and there are still

some excess tokens left. We use a simple token assignment scheme: every arc in E(T ′) gets

the tokens collected by its lower endpoint in the rooted tree. We then show that the root

of the tree also has some tokens. Thus we have |E(D)| ≥ |E(D′)| > |E(T ′)| = |R|, giving
the desired contradiction. The following lemma shows that the redistribution works.

Lemma 8.2.4 For the tree T ′ with root r, the tokens assigned to vertices in the tree can

be distributed such that every arc in the subtree gets at least two tokens and the root gets

at least two tokens.

Proof First consider a leaf arc in the tree corresponding to a tight constraint. The nonzero

variables contributing to this arc must have an endpoint at the lower end of this leaf arc.

Since the right hand side of this arc's constraint is integral and no nonzero variable is

integral, there must be at least two nonzero variables corresponding to arcs participating

in this constraint, and hence at least two arcs from D′ incident on the lower endpoint of

this leaf arc as required.

Next, consider an internal arc e = (u, v) ∈ T ′ oriented towards the root with lower

endpoint u (if it is oriented the other way, the argument is symmetric by switching the

signs appropriately). Let the arcs below e incident on u in T ′ be e1, e2 . . . ek. Consider the

tight constraints corresponding to e and subtract from it, those corresponding to e1, . . . , ek:

(
∑
f∈I(e)

xf −
∑

f∈O(e)

xf )−
k∑
i=1

dir(ei, e) ·
( ∑
f∈I(ei)

xf −
∑

f∈O(ei)

xf
)
= be −

k∑
i=1

dir(ei, e) · bei ,

where we de�ne dir(ei, e) to be +1 if both are oriented in the same direction (along the

path to the root) and −1 otherwise. Note that in the above sum we are only including

the nonzero a ∈ D′. If any arc a originates in a vertex below u in one of the subtrees and

ends in another vertex below u in a di�erent subtree, its two contributions in the left hand

side get canceled out. Also, if an arc a ∈ D′ has one endpoint in a vertex below u and the

other above u, then again, its two terms get canceled out in the left hand side. Thus the

only arcs whose contributions survive in the left hand side in the above equation are those

that have one endpoint in u, which are precisely those that give their tokens to u.

Now the left hand side of the above equation cannot be zero since in that case, we

have linear dependence between the tight constraints for arcs e, e1, . . . , ek, contradicting

Lemma 8.2.1. Thus the left hand side has a nonzero variable. But the right hand side is

an integer, and all the variables xa in the left hand side are non-integral. Therefore, there

must be at least two variables in the left hand side, thus giving two tokens to the endpoint

u as required.

To get extra tokens at the root of T ′, note that we can always root the tree T ′ at a

leaf, and the argument we provided above for a leaf applies to the root as well, giving it

at least two extra tokens, and hence the desired contradiction.
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This completes the proof of Lemma 8.2.3.

8.3 Dual Integrality

We now look at linear programs which are dual to network constrained problems, and argue

their integrality as well. Note that the constraint matrices of these dual linear programs

are transposes of network matrices.

8.3.1 Linear Programming Relaxation

We start with the given linear programming relaxation for the problem. As before, for a

tree arc e ∈ E(T ), denote I(e) as the set of arcs in D whose tail-head paths in T contain

e and are oriented in the same direction as e, and O(e) as the set of arcs whose tail-head

paths in T also contain e but are oriented in the opposite direction as e. Here cf is integral

for each f ∈ E(D).

minimize
∑

e∈E(T )

be · ye

subject to
∑

e:f∈I(e)

ye −
∑

e:f∈O(e)

ye ≥ cf ∀ f ∈ E(D)

ye ≥ 0 ∀ e ∈ E(T )

This is the dual of LPnet(T,D) in the previous section, and we denote it by LPdnet(T,D).

We proceed as in the previous section to prove the integrality of LPdnet(T,D), and hence

Theorem 8.1.2.

8.3.2 Characterization of Extreme Point Solutions

For an arc f ∈ E(D), the corresponding inequality
∑

e:f∈I(e) ye−
∑

e:f∈O(e) ye ≥ cf de�nes
a characteristic vector χ(f) ∈ R|E(T )|: the vector has an 1 corresponding to each arc e with

f ∈ I(e), a −1 corresponding to each arc e with f ∈ O(e), and 0 otherwise. The lemma

below follows directly from the Rank Lemma.

Lemma 8.3.1 Let y be any extreme point solution to LPdnet(T,D) with non-integral ye
for each arc e ∈ E(T ). Then there exists a subset D′ ⊆ E(D) such that

(i)
∑

e:f∈I(e) ye −
∑

e:f∈O(e) ye = cf for each f ∈ D′.

(ii) The vectors in {χ(f) : f ∈ D′} are linearly independent.

(iii) |D′| = |E(T )|.
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8.3.3 Iterative Algorithm

To devise an iterative algorithm, as before, we look for a variable set to an integral value,

and then modify the network representation appropriately by deleting this element and

updating the constraint right hand sides appropriately.

Iterative Algorithm for Duals of Network Constrained Matrix LP

(i) While E(T ) ̸= ∅ do
(a) Find an optimal extreme point solution y to LPdnet(T,D).

(b) Fix an arc e = uv ∈ E(T ) with ye = ae for an integer ae. For every

constraint f ∈ E(D), update cf ← cf + sign(e, f) · af where sign(e, f) is

−1 if f ∈ I(e), +1 if f ∈ O(e) and 0 otherwise. Contract the arc e from

T , and delete the corresponding column from the constraint matrix.

(ii) Return the integral solution y.

Fig. 8.3. Algorithm for Duals of Network Constrained Matrix Problems

8.3.4 Correctness and Optimality

A simple veri�cation shows that the update steps in the above algorithm lead to a constraint

matrix which is again a transpose of a network matrix, while the directed tree T and the

directed graph D are modi�ed by contracting the vertices {u, v} corresponding to the arc

e = {uv} �xed. Thus assuming the algorithm terminates successfully, it is straightforward

to verify that the returned solution has optimal (minimum) cost.

Theorem 8.3.2 The Iterative Algorithm for Duals of Network Constrained Matrix Linear

Programs in Figure 8.3 returns an optimal integral solution in polynomial time.

The following lemma shows that the algorithm will terminate.

Lemma 8.3.3 For any extreme point solution y to LPdnet(T,D), there is an arc e ∈ E(T )

with integer value, i.e. ye = ae for an integer ae.

Suppose for contradiction, ye is not an integer for any arc e ∈ E(T ). From Lemma 8.3.1,

we start with a maximal set of tight constraints that are linearly independent at the ex-

treme point solution y, and denote the corresponding subset of arcs by D′. Observe that

ye > 0 for each e ∈ T since no variable is integral. We will show a contradiction to

|D′| = |E(T )| as stated in Lemma 8.3.1.

We use a counting argument to derive a contradiction: The arcs in D′ corresponding

to tight constraints in y also form a graph over the vertices in V (T ). First we argue that

the graph formed by D′ is acyclic. Since |E(T )| = |D′| and T is a tree, this implies that D′
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also forms a tree. Then we use the path in D′ between the endpoints of an arc e ∈ E(T )

to show that the variable ye must be set to an integer value, giving us the lemma.

In detail, �rst suppose for a contradiction that there is a cycle C (in the undirected

sense) among the arcs in D′. Fix an orientation of the cycle and let the arcs encountered

in this order be f1, f2, . . . , fk (not necessarily all oriented in the same direction as the cycle

C). Consider the weighted sum of constraints corresponding to f1, . . . , fk.

k∑
i=1

sign(fi)(
∑

e:fi∈I(e)

ye −
∑

e:fi∈O(e)

ye),

where sign(fi) is +1 if it is oriented in the same direction as C and −1 otherwise. Switching
the order of summation this is the same as∑

e∈E(T )

ye ·
( ∑
fi∈I(e)

sign(fi)−
∑

fi∈O(e)

sign(fi)
)
.

It is now easy to verify that since the arcs fi form a cycle, the terms for every tree arc e

cancel out in the above summation to reduce it to zero, thus showing that a cycle of tight

constraints in D′ are linearly dependent, contradicting Lemma 8.3.1. Thus, there are no

cycles in D′, and hence D′ is also a tree.

Finally, consider an arc e ∈ E(T ) going from a leaf u ∈ T to its parent v (the case

when it is pointed to the leaf can be argued symmetrically). Since D′ is a tree, there is an

(undirected) path from u to v in D′, say, f1, f2, . . . , fp. Again, consider the sum of tight

inequalities
p∑
i=1

sign(fi)(
∑

e:fi∈I(e)

ye −
∑

e:fi∈O(e)

ye) =

p∑
i=1

cfi ,

where sign(fi) is +1 if it is oriented in the same direction as the path from u to v and −1
otherwise. Switching the summation to be over the arcs e ∈ E(T ), we can now see that

this sum simpli�es to either plus or minus the single term ye. On the other side, the right

hand sides of the constraints corresponding to the arcs f1, . . . , fp are all integers, and so

we �nally get that ye equals either plus or minus this sum which is an integer, as claimed.

This completes the proof of Lemma 8.2.3.

8.4 Applications

Traditional applications of the integrality of network matrices range from the integrality

of vertex cover and maximum matching problems in bipartite graphs to its generalization

to the max-�ow min-cut theorem in digraphs. In this section, we use the framework of

network matrices to show integrality of the dual LP's for various problems we encountered

earlier, such as the maximummatroid basis problem and the maximummatroid intersection

problem in Chapter 5, as well as the submodular �ow problem in Chapter 7.

135



8.4.1 Matroid

In this section, we show the integrality of the dual linear program for the maximum weight

basis problem as discussed in Section 5.4.1 and prove Theorem 5.4.2 which we state again.

Theorem 8.4.1 The linear programming formulation LPdmat(M) is integral.

Proof Let y be an optimal solution to LPdmat(M). Claim 5.4.1 implies that we can assume

that the support of y is a chain C. Moreover, the following restricted linear program,

denoted by LPrdmat(M), has the same objective value as LPdmat(M).

minimize
∑
T∈C

r(T )y(T )

subject to
∑

T∈C:e∈T
y(T ) ≥ we ∀ e ∈ S

y(T ) ≥ 0 ∀T ∈ C

In the following lemma, we show the constraint matrix of LPdmat(M) is the transpose

of a network matrix when C is a chain.

Lemma 8.4.2 Given a set S, let C be a chain over the subsets of S. Then the |S| × |C|
matrix N , with the entry (e,R) for e ∈ S and R ∈ C is 1 if and only if e ∈ R, is the

transpose of a network matrix.

Proof Construct a directed tree T with a root vertex r and one vertex for each set in C.
There is an arc from R ∈ C to R′ ∈ C if and only if R′ is the smallest set containing R.

Moreover there is an arc from the set R to root r where R is the largest set in C. Thus T
is a directed path towards r.

The graphD is de�ned over the same vertex set. For each element e in S which is contained

in some set of C, there is an arc from the vertex corresponding to the smallest set containing

e to the root r. See Figure 8.4. It is easy to check that the network matrix corresponding

to (T,D) is exactly the transpose of the matrix N .

Theorem 5.4.2 now follows from Theorem 8.1.2.

8.4.2 Matroid Intersection

In this section, we show the integrality of the dual linear program for the maximum weight

common independent set problem as discussed in Section 5.4.2 and prove Theorem 5.4.4

which we state again.

Theorem 8.4.3 The linear programming formulation LPdint(M1,M2) is integral.
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Fig. 8.4. In Figure (a), the chain C = {S1, S2, S3, S4} is shown where u ∈ S4 and v ∈ S2. In Figure
(b), the corresponding tree has a vertex r and one vertex for every set Si. Each element in S
corresponds to a non-tree arc from the smallest set containing it to r. Hence fu is from S4 to r
and fv is from S2 to r.

Proof Let y be an optimal solution to LPdint(M1,M2). Claim 5.4.1 implies that we can

assume that the set C1 = {T ⊆ S : y1(T ) > 0} and the set C2 = {T ⊆ S : y2(T ) > 0} are
chains over the ground set S. Moreover, the following restricted linear program, denoted

by LPrdint(M1,M2), has the same objective value as LPdint(M1,M2).

minimize
∑
T∈C1

r1(T )y1(T ) +
∑
T∈C2

r2(T )y2(T )

subject to
∑

T∈C1:e∈T
y1(T ) +

∑
T∈C2:e∈T

y2(T ) ≥ we ∀ e ∈ S

yi(T ) ≥ 0 ∀T ∈ Ci, 1 ≤ i ≤ 2

In the following lemma, we show the constraint matrix of LPrdint(M) is the transpose

of a network matrix when C1 and C2 are chains.

Lemma 8.4.4 Given a set S, let C1 and C2 be chains over the subsets of S. Consider the

|S| × (|C|1 + |C2|) matrix N , where the entry (e,R) for e ∈ S and R ∈ C1 ∪ C2 is 1 if and

only if e ∈ R. Then N is the transpose of a network matrix.

Proof Construct a directed tree T with a vertex r along with one vertex for each set in C1
or C2. For each set R in C1, there is an arc with its tail in R and its head in the smallest

set containing R in C1. If R is the largest set in C1 then the head of the arc is the root
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r. For each set R in C2, there is an arc with its tail in R and its head in the largest set

contained in R. For the largest set in C2 the tail of the arc is the root r. Thus the tree T

is a directed path towards the smallest set in C2.
We now de�ne the graph D with the same vertex set as T . For each element of S which

is contained in some set of C1 or C2, there is an arc from the smallest set in C1 containing

e to the smallest set in C2 containing e. If no set in C1 or C2 contains e, then the head or

the tail is changed to r accordingly. See Figure 8.5.

S4
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S2

S1

b

b

u

vR3

R2

R1

b

b

b

b

b

b

b

b

r

S1

S2

S3

S4

R1

R2

R3

fu

fv

(a) (b)

Fig. 8.5. In Figure (a), the chains C1 = {S1, S2, S3, S4} and C2 = {R1, R2, R3} are shown where
u ∈ S4 ∩R2 and v ∈ S2 ∩R1. In Figure (b), the corresponding tree has a vertex r and one vertex
for every set in C1 ∪ C2. Each element in S corresponds to a non-tree arc from the smallest set
containing it in C1 to the smallest containing it in C2. Hence fu is from S4 to R2 and fv is from
S2 to R1.

Again it is straightforward to check that the network matrix corresponding to (T,D) is

the transpose of the matrix N .

Theorem 5.4.4 now follows from Theorem 8.1.2.

8.4.3 Submodular Flows

In this section, we show that the dual linear program of the submodular �ow problem is

integral by reducing the constraint matrix to a network matrix as discussed in Section 7.3

and prove Theorem 7.3.2 which we state again.

Theorem 8.4.5 The linear program LPdsmf (D, f,w) is integral for any vector w ∈ Zm.
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Proof Let y be an optimal solution to LPdsmf (D, f,w). Claim 7.3.1 implies that we can as-

sume that the support of y is a cross-free family C. Moreover, the following restricted linear

program, denoted by LPrdsmf (D, f,w), has the same objective value as LPdsmf (D, f,w).

maximize
∑
S∈C

f(S) y(S)

subject to
∑

S∈C:a∈δin(S)

y(S)−
∑

S∈C:a∈δout(S)

y(S) ≤ wa ∀ a ∈ A

y(S) ≥ 0 ∀S ∈ C

We leave it as an exercise to verify that the the constraint matrix of LPrdsmf (D, f,w)

is the transpose of a network matrix when C is a cross-free family. (This also follows directly

from Corollary 13.21a of Schrijver [150].)

Notes

A matrix A is called totally unimodular if every square submatrix has determinant in

{0,+1,−1}. It is easy to see that if the constraint matrix of a linear program is totally

unimodular and the right hand side of the constraints is integral then the linear program is

integral. Total unimodularity is a very strong tool for proving integrality of linear programs

for many optimization problems. The fact that network matrices are totally unimodular

was proved by Tutte [158]. Total dual integrality (TDI), introduced by Edmonds and

Giles [49], is a weaker condition than total unimodularity but is also very powerful tool in

establishing integrality of linear programs for optimization problems. Indeed, almost all

integrality results discussed in this book have been proven to be integral showing that the

given linear programming description is also totally dual integral (see also [150]).

Exercises

8.1 Perhaps the most famous application of the fact that network matrix constraints

result in integer solutions for LPs is to show the max-�ow min-cut theorem: Given

a directed graph with nonnegative capacities on the arcs, and a source node s and

a sink node t, the maximum �ow problem asks for the maximum set of disjoint

paths from s to t obeying the capacities on the edges (i.e. the maximum number

of paths using an arc is at most its capacity).

Formulate a LP relaxation for the maximum �ow problem with the property

that its constraint matrix is a network matrix. (Hint: Write one constraint per

node except for t denoting �ow conservation at all nodes except s, and observe

that the constraint matrix is the node-arc incidence matrix of the digraph minus

one row; show that such matrices have a network representation).
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8.2 One can formulate a linear program for the max-�ow problem by �rst converting

it into a circulation problem: namely, adding an extra arc from t to s and now

insisting that the �ow is conserved at all nodes (in-�ow equals out-�ow everywhere).

To enforce a certain �ow, we can add lower and upper bound constraints on the

�ow through all the arcs in the digraph. Formalize this equivalence and show that

this extended formulation also continues to have integral extreme points by casting

it as a network matrix constrained problem.

8.3 Show using the integrality of the duals of network constrained matrices and strong

LP duality, that the maximum s− t �ow in a digraph is the capacity of a minumum

s− t cut.

8.4 Prove Theorem 8.4.5. (Hint: represent the cross-free family as a tree as in the proof

of Theorem 7.2.4 in Section 7.2.4.)
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9

Matchings

†

Given an weighted undirected graph, the maximum matching problem is to �nd a

matching with maximum total weight. In his seminal paper, Edmonds [45] described an

integral polytope for the matching problem, and the famous Blossom Algorithm for solving

the problem in polynomial time.

In this chapter, we will show the integrality of the formulation given by Edmonds [45]

using the iterative method. The argument will involve applying uncrossing in an involved

manner and hence we provide a detailed proof. Then, using the local ratio method, we

will show how to extend the iterative method to obtain approximation algorithms for the

hypergraph matching problem, a generalization of the matching problem to hypergraphs.

9.1 Graph Matching

Matching in bipartite graph are considerably simpler than matchings in general graphs;

indeed, the linear programming relaxation considered in Chapter 3 for the bipartite match-

ing problem is not integral when applied to general graphs. See Figure 9.1 for a simple

example.

9.1.1 Linear Programming Relaxation

Given an undirected graph G = (V,E) with a weight function w : E → R on the edges,

the linear programming relaxation for the maximum matching problem due to Edmonds

is given by the following LPM (G). Recall that E(S) denotes the set of edges with both

endpoints in S ⊆ V and x(F ) is a shorthand for
∑

e∈F xe for F ⊆ E.

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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Fig. 9.1. In this example, if the weight of the cut edge is small, then the above fractional solution
is an optimal solution to the linear program with only degree constraints.

maximize
∑
e∈E

we xe

subject to x(δ(v)) ≤ 1 ∀ v ∈ V

x(E(S)) ≤ |S| − 1

2
∀S ⊂ V, |S| odd

xe ≥ 0 ∀ e ∈ E

Although there are exponentially many inequalities in LPM (G), there is an e�cient

separation oracle for this linear program, obtained by Padberg and Rao using Gomory-Hu

trees. We refer the reader to the exercises for a description of the separation algorithm. In

this section we prove the following main theorem.

Theorem 9.1.1 Every extreme point solution to the linear program LPM (G) is integral.

9.1.2 Characterization of Extreme Point Solutions

We prove the following crucial lemma characterizing extreme point solutions to LPM (G).

Again the uncrossing technique and the Rank Lemma form the basis of the argument, but

there are also some parity arguments involved since the constraints are only de�ned on

odd-sets. For a subset of arcs F ⊆ E, it de�nes a characteristic vector χ(F ) ∈ R|E| with

an 1 corresponding to each edge in F and 0 otherwise.

Lemma 9.1.2 Let x be an extreme point solution to LPM (G) with 0 < xe < 1 for each

edge e ∈ E(G). Then there exists a laminar family L of odd-sets and a set of vertices

T ⊆ V such that

(i) x(E(S)) = (|S| − 1)/2 for each S ∈ L and x(δ(v)) = 1 for each v ∈ T .
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(ii) The vectors in {χ(E(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ T} are linearly independent.

(iii) E(S) is connected for each set S ∈ L.
(iv) |E| = |L|+ |T |.

To prove Lemma 9.1.2, we �rst prove the following claim about tight odd-sets, which

are the sets S with |S| odd and x(E(S)) = (|S| − 1)/2.

Lemma 9.1.3 If A,B are tight odd-sets and A∩B ̸= ∅, then one of the following is true:

(i) A ∩ B and A ∪ B are tight odd-sets and χ(E(A)) + χ(E(B)) = χ(E(A ∩ B)) +

χ(E(A ∪B)).

(ii) A \ B and B \ A are tight odd-sets, the degree constraints in A ∩ B are tight, and

χ(E(A)) + χ(E(B)) = χ(E(A \B)) + χ(E(B \A)) +
∑

v∈A∩B χ(δ(v)).

Proof First consider the case that |A∩B| is odd. Since |A|+ |B| = |A∩B|+ |A∪B|, this
implies that |A ∪B| is also odd. Hence, we have

|A| − 1

2
+
|B| − 1

2
= x(E(A)) + x(E(B))

≤ x(E(A ∩B)) + x(E(A ∪B))

≤ |A ∩B| − 1

2
+
|A ∪B| − 1

2

=
|A| − 1

2
+
|B| − 1

2
,

where the �rst inequality follows from supermodularity of the function |E(S)| (Proposi-
tion 2.3.6), and the second inequality follows from the constraints of LPM (G). Hence both

inequalities are satis�ed at equality. The second inequality thus implies that A ∩ B and

A∪B are tight odd-sets, while the �rst inequality implies that there are no edges between

A \B and B \A and thus χ(E(A)) + χ(E(B)) = χ(E(A ∩B)) + χ(E(A ∪B)).

Next we consider the case when |A ∩B| is even, in which case |A \B| is odd. Since
|A|+ |B| = |A \B|+ |B \A|+ 2|A ∩B|, it follows that |B \A| is also odd, and hence:

|A| − 1

2
+
|B| − 1

2
= x(E(A)) + x(E(B))

≤ x(E(A \B)) + x(E(B \A)) +
∑

v∈A∩B
x(δ(v))

≤ |A \B| − 1

2
+
|B \A| − 1

2
+ |A ∩B|

=
|A| − 1

2
+
|B| − 1

2
,

where the �rst inequality can be veri�ed by counting the contribution of each edge, and

the second inequality follows from the odd-set constraints of A \ B and B \ A and the

degree constraints in A ∩ B. Therefore both inequalities must hold as equalities. The

second inequality thus implies that A \ B and B \ A are both tight odd-sets, and also all

the degree constraints in A ∩ B are tight. The �rst inequality implies that there are no
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edges with one endpoint in A ∩ B and another endpoint in V − (A ∪ B), and therefore

χ(E(A)) + χ(E(B)) = χ(E(A \B)) + χ(E(B \A)) +
∑

v∈A∩B χ(δ(v)).

The next claim shows that a tight odd-set that is not connected can be �replaced�

by a connected tight odd-set and some tight degree constraints.

Claim 9.1.4 If S is a tight odd-set for which E(S) is not connected, then there exists

a tight odd-set R ⊂ S such that R is a connected component in S, and 2χ(E(S)) =

2χ(E(R)) +
∑

v∈S\R χ(δ(v)) and x(δ(v)) = 1 for each v ∈ S \R.

Proof Since |S| is odd, there exists a connected component R of E(S) with |R| odd, and

|S| − 1 = 2x(E(S))

= 2x(E(R)) + 2x(E(S −R))
= 2x(E(R)) +

∑
v∈S−R

x(δ(v))− x(δ(S −R))

≤ |R| − 1 + |S −R| − x(δ(S −R))
= |S| − 1− x(δ(S −R)),

where the second equality follows because R is a connected component, the third equality

follows from the fact that
∑

v∈S\R x(δ(v)) = 2(x(E(S − R))) + x(δ(S − R)), and the

inequality follows because of the odd-set constraint of R and the degree constraints for

vertices in S − R. Hence the inequality must hold as an equality, which implies that R

is a tight odd-set that is connected, and x(δ(v)) = 1 for each v ∈ S \ R. Furthermore,

we must have x(δ(S − R)) = 0, which implies that δ(S − R) = ∅ and thus 2χ(E(S)) =

2χ(E(R)) +
∑

v∈S\R χ(δ(v)).

With the uncrossing operations developed in Lemma 9.1.3 and Claim 9.1.4, we are

now ready to prove Lemma 9.1.2.

Proof of 9.1.2: The proof structure is similar to that of Lemma 4.1.5, but the details

are more subtle. Let F = {S | x(E(S)) = (|S| − 1)/2} be the set of tight odd-sets and

T = {{v} | x(δ(v)) = 1} be the set of tight vertices for an extreme point solution x to

LPM (G). Denote by span(F ∪ T ) the vector space generated by the characteristic vectors

in {χ(E(S)) | S ∈ F} ∪ {χ(δ(v)) | v ∈ T}. Let L be a maximal laminar family of F
with the additional property that each set S ∈ L is connected. Using Lemma 9.1.3 and

Claim 9.1.4, we will prove that span(L ∪ T ) = span(F ∪ T ), and then the lemma follows

directly from the Rank Lemma.

Suppose, by way of contradiction, that span(L ∪ T ) ⊂ span(F ∪ T ). Recall that

two sets A and B intersect if A ∩B,A−B,B −A are all non-empty. As in Lemma 4.1.5,

we de�ne intersect(A,L) = |{B ∈ L | A and B are intersecting}|, i.e. the number of sets
in L that intersect A. Since span(L ∪ T ) ⊂ span(F ∪ T ), there exists a set A ∈ F with

χ(E(A)) /∈ span(L ∪ T ). Choose such a set A with minimum intersect(A,L) and then

minimum |A|. We will show that χ(E(A)) ∈ span(L ∪ T ), leading to a contradiction.
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First suppose that intersect(A,L) = 0, then Amust be disconnected; otherwise L∪A
is also a laminar family with each set in L∪A connected, contradicting the maximality of

L. By Claim 9.1.4, there is a tight odd-set B which is a connected component in A, and

2χ(E(A)) = 2χ(E(B)) +
∑

v∈A\B

χ(δ(v)), (9.1)

where every vertex inA\B is in T . By Claim 9.1.5 we have intersect(B,L) ≤ intersect(A,L) =
0. Since |B| < |A|, by the choice of A, χ(E(B)) ∈ span(L ∪ T ), and hence by (9.1) it

follows that χ(E(A)) ∈ span(L ∪ T ), a contradiction.

Therefore intersect(A,L) ≥ 1, and let B ∈ L be a set that intersects A. Since A,B

are tight odd sets, by Lemma 9.1.3, either A ∩ B and A ∪ B are both tight odd sets, or

A \ B and B \ A are both tight odd sets. First consider the case when A ∩ B and A ∪ B
are tight odd sets. By Claim 9.1.6, both intersect(A ∩B,L) and intersect(A ∪B,L) are
smaller than intersect(A,L). Since A and B are both connected, A∪B is also connected,

and thus χ(E(A ∪ B)) ∈ span(L ∪ T ) by the choice of A. If A ∩ B is also connected,

then we have χ(E(A ∩ B)) ∈ span(L ∪ T ) by the choice of A. Otherwise, if A ∩ B is not

connected, then by Claim 9.1.4 there is a tight odd-set R which is a connected component

in A ∩B such that

2χ(E(A ∩B)) = 2χ(E(R)) +
∑

v∈(A∩B)\R

χ(δ(v)), (9.2)

where every vertex in (A ∩ B) \ R is in T . By Claim 9.1.5 and Claim 9.1.6 we have

intersect(R,L) ≤ intersect(A∩B,L) < intersect(A,L), and thus χ(E(R)) ∈ span(L∪T )
by the choice of A, and hence χ(E(A∩B)) ∈ span(L∪T ) by (9.2). Therefore, in either case,
we have χ(E(A∩B)) ∈ span(L∪T ). Since χ(E(A))+χ(E(B)) = χ(E(A∩B))+χ(E(A∪B))

by Lemma 9.1.3 and χ(E(B)), χ(E(A∩B)), χ(E(A∪B)) are all in span(L∪T ), this implies

that χ(E(A)) ∈ span(L ∪ T ) as well, a contradiction.

Finally we consider the case when A\B and B\A are tight odd sets. By Lemma 9.1.3,

we have

χ(E(A)) + χ(E(B)) = χ(E(A \B)) + χ(E(B \A)) +
∑

v∈A∩B
χ(δ(v)), (9.3)

where each vertex in A ∩ B is in T . By Claim 9.1.6 both intersect(A \ B,L) and

intersect(B \A,L) are smaller than intersect(A,L). If A \B is connected, then χ(E(A \
B)) ∈ span(L ∪ T ) by the choice of A. Otherwise, if A \ B is not connected, we

can use a similar argument (using Claim 9.1.4) as in the previous paragraph to show

that χ(E(A \ B)) ∈ span(L ∪ T ). Similarly we have χ(E(B \ A)) ∈ span(L ∪ T ).
Since χ(E(B)), χ(E(A \ B)), χ(E(B \ A)) are all in span(L ∪ T ), by (9.3) we also have

χ(E(A)) ∈ span(L ∪ T ), a contradiction.

To �nish the proof of Lemma 9.1.2 it remains to prove the following two claims,

whose proofs are deferred to the exercises.
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Claim 9.1.5 If A is not connected and R is a connected component in A, then we have

intersect(R,L) ≤ intersect(A,L).

Claim 9.1.6 If A /∈ L and B ∈ L are intersecting, then all the four numbers intersect(A∩
B,L), intersect(A∪B,L), intersect(A \B,L) and intersect(B \A,L) are strictly smaller

than intersect(A,L).

9.1.3 Iterative Algorithm

The following is a simple iterative procedure which returns a matching of optimal cost and

also shows that LPM (G) is integral.

Iterative Matching Algorithm

(i) Initialization F ← ∅.
(ii) While V (G) ̸= ∅ do

(a) Find an optimal extreme point solution x to LPM (G) and remove every

edge e with xe = 0 from G.

(b) If there is an edge e = {u, v} with xe = 1 then update F ← F ∪ {e},
G← G \ {u, v}.

(iii) Return F .

Fig. 9.2. General Matching Algorithm

9.1.4 Correctness and Optimality

Assuming that we can always �nd an edge e with xe = 1 in Step (ii)(b) of the algorithm,

the returned solution is a maximum matching by using the by-now standard inductive

argument. It remains to show that the algorithm always �nds an edge e with xe = 1 in

Step (ii)(b).

Lemma 9.1.7 Given any extreme point x to LPM (G) there must exist an edge e with

xe = 0 or xe = 1.

Proof Suppose for contradiction that 0 < xe < 1 for each edge e ∈ E. Let L be a laminar

family of tight odd-sets and T be a set of tight vertices satisfying the properties given by

Lemma 9.1.2. Let L′ = L∪T be the extended laminar family. We show a contradiction to

the fact that |E| = |L| + |T | = |L′| by a token counting argument. Initially, each edge is

given one token, for a total of |E| tokens. Each edge will give its token to the smallest set
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in L′ that contains both of its endpoints. Then we will redistribute the tokens inductively

so that each member in L′ receives one token and there are some tokens left. This will

imply that |E| > |L′| giving us the desired contradiction.

Recall that a laminar family naturally de�nes a forest L as follows: Each node of L

corresponds to a set in L′, and there is an edge from set S to set R if S is the smallest

set containing R, in which case we say S is the parent of R and R is a child of S. In this

problem, the number of tokens a set S ∈ L′ received is equal to the number of edges induced
in S but not induced in the children of S. Henceforth, when we consider S ∈ L′, it is more

convenient to consider the graph GS formed by contracting the children of S in G[S] into

singletons. See Figure 9.3. For a vertex v ∈ GS , we let Rv ∈ L′ be the corresponding child
of S in G[S]. The following claim shows that GS and G[S] have similar properties.

Claim 9.1.8 For S ∈ L′, |GS | is odd and x(E(GS)) =
|GS |−1

2 .

Proof Let the children of S be R1, R2, . . . , Rk. Since each Ri is of odd cardinality, con-

tracting it into a singleton does not change the parity of the size, and hence |GS | is odd
since |S| is odd. Also, since each Ri is a tight odd-set, we have

x(E(GS)) = x(E(S))−
k∑
i=1

x(E(Ri)) =
|S| − 1

2
−

k∑
i=1

|Ri| − 1

2
=
|GS | − 1

2
.

We say a set S ∈ L′ is degree-tight if x(δ(S)) = 1 and the characteristic vector

χ(δ(S)) can be written as a linear combination of the characteristic vectors in the subtree

of L rooted at S. Note that the tight vertices in T are the singleton degree-tight sets. The

following claim gives a partial characterization when a set S ∈ L′ − T is degree-tight.

Claim 9.1.9 A set S ∈ L′ − T is degree-tight if every vertex v in GS is degree-tight.

Proof Since S ∈ L′, by Claim 9.1.8, we have 2x(E(GS)) = |GS | − 1. Therefore x(δ(S)) =

x(δ(GS)) =
∑

v∈GS
x(δ(v))− 2x(E(GS)) = |GS | − (|GS | − 1) = 1. Note that

χ(δ(S)) =
∑
v∈GS

χ(δ(v))− 2χ(E(GS)). (9.4)

As each v is degree-tight, each χ(δ(v)) can be written as a linear combination of the

characteristic vectors in the subtree of L rooted at Rv. Note also that χ(E(GS)) =

χ(E(S))−
∑

v∈GS
χ(E(Rv)). Therefore, by (9.4), χ(δ(S)) can be written as a linear com-

bination of the characteristic vectors in the subtree of L rooted at S, and hence S is a

degree-tight set.

The token is redistributed inductively by the following lemma, in which degree-tight

sets play a special role.

Lemma 9.1.10 For any rooted subtree of L with root S, the tokens assigned to edges
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induced in S can be distributed such that every node in the subtree gets at least one token.

Furthermore the root S gets at least one token unless S is degree-tight.

Proof We prove the lemma by induction. Let the degree-tight children of S beR1, R2, . . . , Rk.

Note that if a child R of S is not degree-tight, then R has already received one token from

the edges induced in R by the induction hypothesis. Let m := |E(GS)| be the number

of edges in GS . Since each edge in GS gives one token to S, hence S has m tokens. If

m ≥ k+1, then the tokens received by S can be redistributed so that each Ri receives one

token and S receives one token, as desired.

Hence we assume that m ≤ k. Since G[S] is connected by Lemma 9.1.2, GS is also

connected and thus m ≥ |GS | − 1. Suppose m = |GS |. Then k ≥ m = |GS | and so every

vertex in GS is degree-tight, and hence S is a degree-tight set by Claim 9.1.9. Therefore,

by redistributing the m = k tokens of S to give one token to each Ri, the lemma follows.

Henceforth we assume that m = |GS | − 1. Since GS is connected, it implies that GS is a

tree, and thus is a bipartite graph. Let G1 and G2 be the bipartition of GS . See Figure 9.3.

Since |GS | is odd, we can assume |G1| < |G2|, which implies that |G1| ≤ |GS |−1
2 .

S

R1

R2

R3

b

b

R4

R5

Grapℎ G[S]

b

b

b

b

b

R1

R2

R3

R4

R5

Grapℎ GS

Fig. 9.3. In this example, the nodes R2 and R4 are in G1 and R1, R3 and R5 are in G2.

Since GS is bipartite, we have E(GS) ⊆
∪
v∈G1

δ(v), and thus

|GS | − 1

2
= x(E(GS)) ≤

∑
v∈G1

x(δ(v)) ≤ |G1| ≤
|GS | − 1

2
, (9.5)

where the second inequality of (9.5) follows from the degree constraints of vertices in G1.

Thus equalities hold as equalities. The second inequality of (9.5) implies that x(δ(v)) = 1

for each v ∈ G1, and it follows that

x(δ(S)) =
∑
v∈GS

x(δ(v))− 2x(E(G(S))) = |GS | − (|GS − 1) = 1. (9.6)
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The �rst inequality of (9.5) implies that χ(E(GS)) =
∑

v∈G1
χ(δ(v)), and so

χ(E(S)) = χ(E(GS)) +
∑
v∈GS

χ(E(Rv)) =
∑
v∈G1

χ(δ(v)) +
∑
v∈GS

χ(E(Rv)). (9.7)

Recall that we assume that k ≥ m = |GS | − 1. Suppose k = |GS |. Then each vertex v

in G1 is degree-tight, and therefore each χ(δ(v)) can be written as a linear combination

of the characteristic vectors in the subtree of L rooted at Rv. It follows from (9.7) that

χ(E(S)) can be written as a linear combination of the characteristic vectors in the subtree

of L rooted at S (but not including S itself), contradicting the linear independence of the

characteristic vectors in L′ as described in Lemma 9.1.2.

Therefore, since we assume k ≥ m, the only case left is k = |GS |− 1, in which case exactly

one vertex w in S is not degree-tight. If w ∈ G2, then every vertex v in G1 is degree-

tight, then we would have the same contradiction as in the previous paragraph. Therefore,

we assume w ∈ G1, and thus every vertex in G2 is degree-tight. Since χ(E(GS)) =∑
v∈G1

χ(δ(v)) (see the sentence preceding (9.7)), we have

χ(δ(S)) =
∑

v∈G1∪G2

χ(δ(v))− 2χ(E(GS)) =
∑
v∈G2

χ(δ(v))− χ(E(GS)).

As each vertex v in G2 is degree-tight, χ(δ(v)) can be written as a linear combination of

the characteristic vectors in the subtree of L rooted in Rv. Note also that χ(E(GS)) =

χ(E(S)) −
∑

v∈GS
χ(E(Rv)), and thus χ(δ(S)) can be written as a linear combination of

the characteristic vectors in the subtree of L rooted at S. This and (9.6) imply that S is

a degree-tight set. Therefore, by redistributing the m = k = |GS | − 1 tokens of S to give

one token to each Ri, the lemma is satis�ed.

To complete the proof of Lemma 9.1.7, we consider the graph GV formed by contract-

ing the roots of L′ in G into singletons. Let the degree-tight vertices of GV be v1, . . . , vl,

and let Rvi be the corresponding odd-set of vi in G. By Lemma 9.1.10 v1, . . . , vl are the

only vertices in GV requiring a token. Each edge in GV has an unassigned token; we let

m := |E(GV )|. To prove Lemma 9.1.7, it su�ces to show that m > l. Since each vi is

degree-tight and there is no edge e with 0 < xe < 1, each vi is of degree at least two in

GV . Hence

2m =
∑
v∈GV

|δ(v)| ≥
l∑

i=1

|δ(vi)| ≥ 2l.

Suppose for contradiction that m = l. Then the inequalities must hold as equalities. The

second inequality implies that GV is a disjoint union of cycles, while the �rst inequality

implies that every vertex in the cycles is a degree-tight vertex. Consider a cycle C in

GV . Since every vertex in C is degree-tight, we have 2x(E(C)) =
∑

v∈C x(δ(v)) = |C|.
Therefore, C cannot be an odd cycle; otherwise

∪
v∈C Rv is an odd set violating the cor-

responding odd set constraint in LPM (G). So C is an even cycle, and let C1, C2 be the
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bipartition of C. Then ∑
v∈C1

χ(δ(v)) =
∑
v∈C2

χ(δ(v)) (9.8)

As each vertex v ∈ C is degree-tight, χ(δ(v)) can be written as a linear combination of

the characteristic vectors in the subtree of L rooted in Rv. Hence (9.8) implies a linear

dependence among the constraints in L′, contradicting Lemma 9.1.2. Therefore m > l,

and this implies that |E| > |L′|, completing the proof.

9.2 Hypergraph Matching

A hypergraph H = (V,E) consists of a set V of vertices and a set E of hyperedges, where

each hyperedge e ∈ E is a subset of vertices. A subset M ⊆ E(H) of hyperedges is a

matching if every pair of hyperedges in M has an empty intersection. Given a hypergraph,

a weight we on each hyperedge e, the hypergraph matching problem is to �nd a matching

with maximum total weight. The graph matching problem is the special case when every

hyperedge has exactly two vertices. A hypergraph is called k-uniform if every hyperedge

has exactly k vertices. A hypergraph H is called k-partite if H is k-uniform and the set

of vertices can be partitioned into k disjoint sets V1, V2, . . . , Vk so that each hyperedge

intersects every set of the partition in exactly one vertex. Note that a bipartite graph is a

2-partite hypergraph. The main result of this section is the following theorem.

Theorem 9.2.1 For the hypergraph matching problem, there is a polynomial time (k −
1 + 1

k )-approximation algorithm for k-uniform hypergraphs, and a (k − 1)-approximation

algorithm for k-partite hypergraphs.

We prove Theorem 9.2.1 for 3-partite hypergraphs. This is also known as the 3-

dimensional matching problem, one of the classical NP-complete problem. The generaliza-

tions to k-uniform and k-partite hypergraphs are deferred to the exercises.

9.2.1 Linear Programming Relaxation

We use the standard linear programming relaxation for the hypergraph matching problem.

In the following δ(v) denotes the set of hyperedges that contains v.

maximize
∑
e∈E

we xe

subject to
∑
e∈δ(v)

xe ≤ 1 ∀ v ∈ V

xe ≥ 0 ∀ e ∈ E

150



For the analysis of the iterative algorithm, we consider a slightly more general linear

program, denoted by LPM (H,B), where B denotes the vector of all degree bounds 0 ≤
Bv ≤ 1 for each vertex v ∈ V . Initially Bv = 1 for each v ∈ V .

maximize
∑
e∈E

we xe

subject to
∑
e∈δ(v)

xe ≤ Bv ∀ v ∈ V

xe ≥ 0 ∀ e ∈ E

9.2.2 Characterization of Extreme Point Solutions

The lemma below follows by a direct application of the Rank Lemma 1.2.3.

Lemma 9.2.2 Given any extreme point solution x to LPM (H,B) with xe > 0 for each

e ∈ E, there exists W ⊆ V such that

(i) x(δ(v)) = Bv > 0 for each v ∈W .

(ii) The vectors in {χ(δ(v)) : v ∈W} are linearly independent.

(iii) |W | = |E|.

9.2.3 Iterative Algorithm and Local Ratio Method

The algorithm consists of two phases. In the �rst phase we use an iterative algorithm to

provide a �good� ordering of the hyperedges. In the second phase we apply the local ratio

method to this good ordering to obtain a matching with cost at most twice the optimum.

The algorithm is presented in Figure 9.4. In the following let N [e] be the set of hyperedges

that intersect the hyperedge e. Note that e ∈ N [e].

We remark that if the problem is unweighted, then there is a direct iterative rounding

algorithm; see exercises. Also, after we have the ordering, there is an alternative (but

ine�cient) rounding method based on a greedy coloring procedure. See the exercises at

the end of this chapter for more details about these two remarks.

The Local-Ratio routine described below provides an e�cient procedure to obtain

a 2-approximate solution for the 3-dimensional matching problem.

To prove the correctness of the algorithm, we show that the iterative algorithm

always succeed in �nding an ordering with a �good� property. Then, using the property of

the ordering, we prove that the local ratio method will return a matching with cost at least

half the optimum. The good property of the ordering is de�ned in the following theorem.

Theorem 9.2.3 After Step (ii) of the iterative algorithm in Figure 9.4, there is an ordering
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Iterative 3-Dimensional Matching Algorithm

(i) Find an optimal extreme point solution x to LPM (H,B) with Bv = 1 for all v.

Initialize F ← ∅.
(ii) For i from 1 to |E(H)| do

(a) Find a hyperedge e with x(N [e]) ≤ 2.

(b) Set fi ← e and F ← F ∪ {fi}.
(c) Remove e from H.

(d) Decrease Bv by xe for all v ∈ e.
(iii) M ← Local-Ratio(F,w), where w is the weight vector of the hyperedges.

(iv) Return M .

Fig. 9.4. 3-Dimensional Matching Algorithm

Local-Ratio(F,w)

(i) Remove from F all hyperedges with non-positive weights.

(ii) If F = ∅, then return ∅.
(iii) Choose from F the hyperedge e with the smallest index. Decompose the weight

vector w = w1 + w2 where

w1(e
′) =

{
w(e) if e′ ∈ N [e],

0 otherwise.

(iv) M ′ ← Local-Ratio(F,w2).

(v) If M ′ ∪ {e} is a matching, return M ′ ∪ {e}; else return M ′.

Fig. 9.5. The Local Ratio Routine

of the hyperedges with x(N [ei] ∩ {ei, ei+1, . . . , em}) ≤ 2 for all 1 ≤ i ≤ m, where m is the

number of hyperedges in x with positive fractional value.

The proof of Theorem 9.2.3 consists of two steps. First, in Lemma 9.2.4, we prove

that there is a hyperedge e with x(N [e]) ≤ 2 in an extreme point solution to LPM (H,B).
Since the initial solution x is an extreme point solution, this implies that the �rst itera-

tion of Step (ii) of the iterative algorithm will succeed. Then we prove in Lemma 9.2.5

that the remaining solution (after removing e and updating Bv) is still an extreme point

solution to LPM (H,B). Therefore, by applying Lemma 9.2.4 inductively, the iterative

algorithm will succeed in �nding an ordering of hyperedges {e1, . . . , em} with x(N [ei] ∩
{ei, ei+1, . . . , em}) ≤ 2 for all 1 ≤ i ≤ m. Now we prove Lemma 9.2.4.

Lemma 9.2.4 Suppose x is an extreme point solution to LPM (H,B). If xe > 0 for all

e ∈ E, then there is a hyperedge e with x(N [e]) ≤ 2.
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Proof Let W be the set of tight vertices as described in Lemma 9.2.2. To show that there

is a hyperedge with the required property, we �rst prove that in any extreme point solution

to LPM (H,B) there is a vertex in W of degree at most two. Suppose for contradiction

that every vertex in W is of degree at least three. This implies that

|W | = |E| =
∑

v∈V |δ(v)|
3

≥
∑

v∈W |δ(v)|
3

≥ |W |,

where the �rst equality follows from Lemma 9.2.2, the second equality follows because every

hyperedge contains exactly three vertices. Hence the inequalities must hold as equalities.

In particular the �rst inequality implies that every hyperedge is contained in W . Let

V1, V2, V3 be the tri-partition of V , and Wi = W ∩ Vi for 1 ≤ i ≤ 3. Since each hyperedge

intersects Wi exactly once, we have∑
v∈W1

χ(δ(v)) =
∑
v∈W2

χ(δ(v)).

This implies that the characteristic vectors inW are not linearly independent, contradicting

Lemma 9.2.2. Therefore there is a vertex u ∈ W of degree at most two. Let e = {u, v, w}
be the hyperedge in δ(u) with larger weight. Since u is of degree at most two, this implies

that 2xe ≥ x(δ(u)). Therefore,

x(N [e]) ≤ x(δ(u)) + x(δ(v)) + x(δ(w))− 2xe ≤ x(δ(v)) + x(δ(w)) ≤ Bv +Bw ≤ 2.

The following lemma allows Lemma 9.2.4 to be applied inductively to complete the

proof of Theorem 9.2.3.

Lemma 9.2.5 In any iteration of Step (ii) of the algorithm in Figure 9.4, the restriction

of the fractional solution is an extreme point solution to LPM (H,B).

Proof Suppose the graph in the current iteration is H = (V,E). Let xE be the restriction

of the initial extreme point solution x to E. We prove by induction on the number of

iterations that xE is an extreme point solution to LPM (H,B). This holds in the �rst

iteration by Step (i) of the algorithm. Let e = {v1, v2, v3} be the hyperedge found in

Step (ii)(a) of the algorithm. Let E′ = E − e and H ′ = (V,E′). Let B′ be the updated

degree bound vector. We prove that xE′ is an extreme point solution to LPM (H ′,B′).
Since the degree bounds of v1, v2, v3 are decreased by exactly xe, it follows that xE′ is

still a feasible solution. Suppose to the contrary that xE′ is not an extreme point solution

to LPM (H ′,B′). This means that xE′ can be written as a convex combination of two

di�erent feasible solutions y1 and y2 to LPM (H ′,B′). Extending y1 and y2 by setting the

fractional value on e to be xe, this implies that xE can be written as a convex combination

of two di�erent feasible solutions to LPM (H,B), contradicting that xE is an extreme point

solution. Hence xE′ is an extreme point solution to LPM (H ′,B′).

Now we use the local ratio method to obtain an e�cient approximation algorithm
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for the 3-dimensional matching problem. We need the following basic result of the local

ratio method.

Theorem 9.2.6 (Local Ratio Theorem [11]) Let C be a set of vectors in Rn. Let

w,w1, w2 ∈ Rn be such that w = w1 + w2. Suppose x ∈ C is r-approximate with respect to

w1 and r-approximate with respect to w2. Then x is r-approximate with respect to w.

Using the ordering in Theorem 9.2.3, we prove the performance guarantee of the

approximation algorithm. Note that by construction the local ratio routine returns a

matching. It remains to prove that the cost of the returned matching is at least half the

optimum.

Theorem 9.2.7 Let x be an optimal extreme point solution to LPM (H,B). The matching

M returned by the algorithm in Figure 9.5 satis�es w(M) ≥ 1
2 · w · x.

Proof The proof is by induction on the number of hyperedges having positive weights.

The theorem holds in the base case when there are no hyperedges with positive weights.

Let e be the hyperedge e chosen in Step (iii) of the algorithm. Since e has the smallest

index in the ordering, by Theorem 9.2.3, we have x(N [e]) ≤ 2. Let w,w1, w2 be the

weight vectors computed in Step (iii) of the algorithm. Let y′ and y be the characteristic

vectors for M ′ and M obtained in Step (iv) and Step (v) respectively. Since w(e) > 0

and w2(e) = 0, w2 has fewer hyperedges with positive weights than w. By the induction

hypothesis, w2 · y′ ≥ 1
2 · w2 · x. Since w2(e) = 0, this implies that w2 · y ≥ 1

2 · w2 · x.
By Step (v) of the algorithm, at least one hyperedge in N [e] is in M . Since x(N [e]) ≤ 2

and w1(e
′) = w(e) for all e′ ∈ N [e], it follows that w1 · y ≥ 1

2 · w1 · x. Therefore, by

Theorem 9.2.6, we have w · y ≥ 1
2 · w · x. This shows that M is a 2-approximate solution

to the 3-dimensional matching problem.

9.2.4 Partial Latin Square

As an application, we show that the partial Latin square problem can be directly reduced

to the 3-dimensional matching problem. A partial Latin square of order n is an n-by-n

array whose cells are empty or contain one color from {1, . . . , n}, with the restriction that

each color appears at most once in each row and at most once in each column. For a partial

Latin square L, the number of non-empty cells in L is denoted by |L|, and the color of a

non-empty cell in row i and column j is denoted by L(i, j). For two partial Latin squares

L and L′, we say L ≼ L′ if L(i, j) = L′(i, j) for each non-empty cell in L. Given a partial

Latin square L, the partial Latin square extension problem is to �nd a partial Latin square

L′ with L ≼ L′ and |L′| − |L| maximized.

We show an approximation ratio preserving reduction from the partial Latin square

extension problem to the 3-dimensional matching problem. Given a partial Latin square

L of order n, we construct a tri-partite hypergraph H = (V,E) with 3n2 vertices. Let
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Vxy, Vxz, Vyz be the tri-partition of V . In Vxy there is one vertex xiyj corresponding to

each pair of row i and column j for all 1 ≤ i, j ≤ n. Similarly, in Vxz there is one vertex

xizk corresponding to each pair of row i and color k for all 1 ≤ i, k ≤ n, and in Vyz there

is one vertex yjzk corresponding to each pair of column j and color k for all 1 ≤ j, k ≤ n.
There is a hyperedge e = {xiyj , xizk, yjzk} in H if the cell in row i and column j is

empty and the color k does not appear in row i or column j. There is an one-to-one

correspondence between matchings of size m in H and valid extensions of m cells for L.

Indeed, if e = {xiyj , xizk, yjzk} is in the matching, then we �ll the cell in row i and column

j by color k, and vice versa.

Notes

The work of Edmonds [45] �rst showed the polyhedral characterization for the general

matching problem. It forms the �rst class of polytopes whose characterization does not

simply follow just from total unimodularity, and its description was a "break-through

in polyhedral combinatorics" [150]. Cunningham and Marsh [41] showed that Edmonds'

description is actually totally dual integral. In the same paper [45] Edmonds also presented

the famous Blossom algorithm for solving the maximum matching problem in polynomial

time.

Most existing algorithms for the 3-dimensional matching problem are based on local

search [88, 6, 31, 16]. Hurkens and Schrijver [88] gave a (k2 + ϵ)-approximation algorithm

for the unweighted problem, and Berman [16] gave a (k+1
2 +ϵ)-approximation algorithm for

the weighted problem. The result presented in this chapter is by Chan and Lau [30], giving

an algorithmic proof for the results by Füredi [63] and Füredi, Kahn and Seymour [64].

There is a local search 1.5-approximation algorithm for the partial Latin square extension

problem [83]; the reduction in Section 9.2.4 shows that the result in [83] can be derived

from the result in [88].

Exercises

9.1 Verify Claim 9.1.5 and Claim 9.1.6.

9.2 Adapt the arguments in this chapter to show an integral formulation for the maxi-

mum weight k-matching problem of choosing a set of k independent edges of max-

imum weight in a given undirected graph. In particular, argue that it su�ces

to add one equality constraint insisting that the sum of chosen edges is k to our

formulation for maximum matchings to achieve this.

9.3 In an instance of the T -join problem, we are given a graph G = (V,E) with weight

function w : E →R+ and a set T of even cardinality, the task is to �nd a subgraph

H such that the degree of v in H, dH(v) is even if v /∈ T and odd if v ∈ T .
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(a) Show that if T = V then the optimal T -join is the minimum weight perfect

matching.

(b) Generalize the linear programming formulation for the perfect matching

problem to obtain a formulation for the T -join.

(c) Generalize the argument for the perfect matching problem to obtain inte-

grality of the linear programming formulation for the T -join problem.

9.4 (Padberg and Rao [133]) A Gomory-Hu (cut-equivalent) tree for graph G = (V,E)

with weight function w on edges is a tree T with vertex set V and a new weight

function w′ on edges of T . The edges of T can be distinct from the edges of G (i.e.,

T need not be a subgraph of G). The tree satis�es the following properties.

(i) For every pair of vertices u, v, the weight of minimum (u, v)-cut in G (w.r.t

w) is equal to the weight of the minimum (u, v)-cut in T (w.r.t w′).

(ii) For each edge e ∈ E(T ), w′(e) is the weight of the cut δG(S) where the

removal of e from T results in components S and V \ S.
Given a weighted undirected graph, a Gomory-Hu tree for it can be constructed in

polynomial time (see e.g. [37] for details). Use this fact to prove the following.

(a) Show that the minimum weight odd cut (which has odd number of vertices

on either side) can be obtained using the Gomory-Hu tree.

(b) Obtain an e�cient separation oracle for the perfect matching problem in

general graphs.

(c) Can you use the ideas above to also supply an e�cient separation oracle for

LPM (G) for the maximum matching problem in general graphs?

9.5 Let T = {S ⊆ V : |S| is odd and x∗(δ(S)) = 1} where x∗ is an extreme point of

LPM (G). Solving the linear program using the ellipsoid method enables us to get

a set family F ⊆ T such that constraints for sets in F are independent and span

all the tight constraints in T . But F need not be laminar. Give a polynomial time

algorithm that, given F , returns a laminar family L ⊆ T such that constraints for

sets in L are independent and span all the tight constraints in T .

9.6 Modify Lemma 9.2.4 to prove that there is an edge e with x(N [e]) ≤ k−1+ 1
k for k-

uniform hypergraphs, and an edge e with x(N [e]) ≤ k−1 for k-partite hypergraphs.
Use this to generalize the 3-dimensional matching result to prove Theorem 9.2.1.

9.7 Show that the algorithm in Figure 9.4 can be modi�ed to give a direct iterative

rounding 2-approximation algorithm (without using the local-ratio routine) for the

unweighted problem.

9.8 This exercise is to develop an alternative proof that the integrality gap of the 3-

dimensional matching problem is at most 2. Given a hypergraph H with fractional

value xe on each edge, a fractional hyperedge coloring is a set of weighted matchings

{M1, . . . ,Ml} of H so that
∑

i:e∈Mi
w(Mi) = xe. A fractional hyperedge coloring is

called a fractional hyperedge k-coloring if the total weight on the matchings is equal

to k. Use a greedy coloring algorithm on the ordering in Theorem 9.2.3 to obtain
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a fractional hyperedge 2-coloring of the hypergraph. Conclude that the integrality

gap of the 3-dimensional matching problem is at most 2.

9.9 Consider the following colorful graph matching problem. Given a undirected graph

in which each edge e has weight we and a color c(e), the colorful graph matching

problem is to �nd a maximum weighted matching in which each color appears

at most once. Extend the argument in this chapter to obtain a 2-approximation

algorithm for this problem.

9.10 A projective plane is a hypergraph which satis�es the following properties:

(a) Given any two vertices, there is a unique hyperedge that contains both of

them.

(b) Given any two hyperedges, there is exactly one vertex contained in both of

them.

(c) There are four vertices such that no hyperedge contains more than two of

them.

It is known that a r-uniform projective plane exists if r−1 is a prime power (see e.g.

[119]). A truncated r-uniform projective plane is obtained by removing a vertex

and all of its incident hyperedges from a r-uniform projective plane. Prove that a

k-uniform projective plane has integrality gap k−1+ 1
k , and a truncated k-uniform

projective plane has integrality k− 1 for the linear programming relaxation for the

hypergraph matching problem.

9.11 Can you demonstrate any application of the weighted hypergraph matching problem

to the partial Latin square extension problem?
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10

Network Design

†

In this chapter we study the survivable network design problem. Given an undirected

graph G = (V,E) and a connectivity requirement ruv for each pair of vertices u, v, a Steiner

network is a subgraph of G in which there are at least ruv edge-disjoint paths between u and

v for every pair of vertices u, v. The survivable network design problem is to �nd a Steiner

network with minimum total cost. In the �rst part of this chapter, we will present the

2-approximation algorithm given by Jain [91] for this problem. We will present his original

proof, which introduced the iterative rounding method to the design of approximation

algorithms.

Interestingly, we will see a close connection of the survivable network design problem

to the traveling salesman problem (TSP). Indeed the linear program, the characterization

results, and presence of edges with large fractional value are identical for both problems.

In the (symmetric) TSP we are given an undirected graph G = (V,E) and cost function

c : E → R+ and the task is to �nd a minimum cost Hamiltonian cycle. In the second

part of this chapter, we will present an alternate proof of Jain's result, which also proves

a structural result about extreme point solutions to the traveling salesman problem.

In the �nal part of this chapter, we consider the minimum bounded degree Steiner

network problem, where we are also given a degree upper bound Bv for each vertex v ∈ V ,
and the task is to �nd a minimum cost Steiner network satisfying all the degree bounds.

Using the idea of iterative relaxation, we show how to extend Jain's technique to this more

general problem. We will �rst present a constant factor bicriteria approximation algorithm,

and then show how to improve it to obtain additive approximation guarantee on the degree

violation.

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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10.1 Survivable Network Design Problem

The survivable network design problem generalizes the minimum Steiner tree problem, the

minimum Steiner forest problem, and the minimum k-edge-connected subgraph problem.

Hence the results in this chapter also applies to these problems.

10.1.1 Linear Programming Relaxation

To formulate the problem as a linear program, we represent the connectivity requirements

by a skew supermodular function. As stated in De�nition 2.3.10, a function f : 2V → Z is

called skew supermodular if at least one of the following two conditions holds for any two

subsets S, T ⊆ V .

f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T )
f(S) + f(T ) ≤ f(S\T ) + f(T\S)

It can be veri�ed that the function f de�ned by f(S) = maxu∈S,v/∈S {ruv} for each subset

S ⊆ V is a skew supermodular function; see Exercise 2.10. Thus one can write the following

linear programming relaxation for the survivable network design problem, denoted by

LPsndp, with the function f being skew supermodular.

minimize
∑
e∈E

ce xe

subject to x(δ(S)) ≥ f(S) ∀S ⊆ V
0 ≤ xe ≤ 1 ∀ e ∈ E

It is not known whether there is a polynomial time separation oracle for a general skew

supermodular function f . This linear program for the minimum Steiner network prob-

lem, however, can be solved in polynomial time by using a maximum �ow algorithm as a

separation oracle.

10.1.2 Characterization of Extreme Point Solutions

For a subset S ⊆ V , the corresponding constraint x(δ(S)) ≥ f(S) de�nes a characteristic

vector χ(δ(S)) in R|E|: the vector has an 1 corresponding to each edge e ∈ δ(S), and a

0 otherwise. By the strong submodularity of the cut function of undirected graphs (see

Section 2.3.1), we have

x(δ(X)) + x(δ(Y )) ≥ x(δ(X ∩ Y )) + x(δ(X ∪ Y )) and

x(δ(X)) + x(δ(Y )) ≥ x(δ(X − Y )) + x(δ(Y −X)),

for any two subsets X and Y . When f is skew supermodular, it follows from standard

uncrossing arguments, as in spanning trees (Chapter 4) and maximum matchings (Chap-

ter 9), that an extreme point solution to LPsndp is characterized by a laminar family of
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tight constraints. Lemma 10.2.1 below follows from these uncrossing arguments and the

Rank Lemma.

Lemma 10.1.1 Let the requirement function f of LPsndp be skew supermodular, and let x

be an extreme point solution to LPsndp with 0 < xe < 1 for every edge e ∈ E. Then, there
exists a laminar family L such that:

(i) x(δ(S)) = f(S) for each S ∈ L.
(ii) The vectors in {χ(δ(S)) : S ∈ L} are linearly independent.

(iii) |E| = |L|.

10.1.3 Iterative Algorithm

The following is Jain's iterative rounding algorithm.

Iterative Minimum Steiner Network Algorithm

(i) Initialization F ← ∅, f ′ ← f ;

(ii) While f ′ ̸≡ 0 do

(a) Find an optimal extreme point solution x to LPsndp with cut requirement

f ′ and remove every edge e with xe = 0.

(b) If there exists an edge e with xe ≥ 1/2, then add e to F and delete e from

the graph.

(c) For every S ⊆ V : update f ′(S)← max{f(S)− dF (S), 0}.
(iii) Return H = (V, F ).

Fig. 10.1. Minimum Steiner Network Algorithm

10.1.4 Correctness and Performance Guarantee

Jain developed a token counting argument and proved an important theorem about the

extreme point solutions to LPsndp.

Theorem 10.1.2 Suppose f is an integral skew supermodular function and x is an extreme

point solution to LPsndp. Then there exists an edge e ∈ E with xe ≥ 1
2 .

Assuming Theorem 10.1.2, the iterative algorithm will terminate, and it can be

shown by an inductive argument that the returned solution is a 2-approximate solution

(see Theorem 6.3.2 for a similar proof). We prove Theorem 10.1.2 by a counting argument,

following the original proof of Jain, which will be useful later for the minimum bounded

degree Steiner network problem.
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Suppose for a contradiction that every edge e has 0 < xe <
1
2 . By Lemma 10.2.1,

there is a laminar family L of tight constraints that de�nes x. We assign two tokens to

each edge, one to each endpoint, for a total of 2|E| tokens. Then we will redistribute the

tokens so that each member in L receives at least 2 tokens and there are some tokens left.

This would imply that |E| > |L|, contradicting Lemma 10.2.1.

Let S be a subset of vertices. De�ne its co-requirement coreq(S) :=
∑

e∈δ(S)(
1
2−xe).

We call a set S ∈ L special if coreq(S) = 1
2 . Given a laminar family, it can be represented

as a forest of trees if its sets are ordered by inclusion. Recall that in this forest, a set R ∈ L
is a child of S ∈ L if S is the smallest set in L that contains R. We say an endpoint v is

owned by S if S is the smallest set in L that contains v. The following lemma is useful to

establish that a certain set is special. A proof can be found in Vazirani's book [161], and

it is omitted here.

Lemma 10.1.3 Suppose S has α children and owns β endpoints where α + β = 3. If all

children of S are special, then S is special.

The redistribution of tokens is by an inductive argument based on the following

lemma, which would yield the contradiction that |E| > |L|.

Lemma 10.1.4 For any rooted subtree of the forest L with root S, the tokens assigned to

vertices in S can be redistributed such that every member in the subtree gets at least two

tokens, and the root S gets at least three tokens. Furthermore, S gets exactly three tokens

only if S is special; otherwise S gets at least four tokens.

Proof The proof is by induction. For the base case, consider a leaf node S in the laminar

family. Since f(S) ≥ 1 and xe <
1
2 for all e, this implies that d(S) ≥ 3 and thus S

can collect three tokens. Furthermore, S collects exactly three tokens only if coreq(S) =

d(S)/2− x(δ(S)). In this case, f(S) = 1 and d(S) = 3, and thus S is special. This veri�es

the base case.

For the induction step, consider a non-leaf node S. For a child R of S, we say R has

one excess token if R has three tokens, and R has at least two excess tokens if R has at

least four tokens. By the induction hypothesis, each child has at least one excess token,

and has exactly one excess token only if it is special. We will divide the cases by the

number of children of S.

(i) S has at least 4 children: Then S can collect 4 tokens by taking one excess token

from each child.

(ii) S has 3 children: If any child of S has two excess tokens or if S owns any endpoint,

then S can collect 4 tokens. Otherwise, all three children of S are special and S

does not own any enpdoint, but then S is special by Lemma 10.1.3, and so 3 tokens

are enough for the induction hypothesis.

(iii) S has 2 children: If both children have two excess tokens, then S can collect 4

tokens. So assume that one child of S is special, but then it can be shown that S
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must own at least one endpoint (see the exercises or Lemma 23.20 of [161]). If both

children of S are special, then S is special by Lemma 10.1.3, and so three tokens

are enough for the induction hypothesis. Otherwise S can collect 4 tokens.

(iv) S has one child R: Since χ(δ(S)) and χ(δ(R)) are linearly independent, S must

owns at least one endpoint. As both f(S) and f(R) are integers and there is no

edge of integral value, this actually implies that S cannot own exactly one endpoint,

and thus S owns at least two endpoints. If R is not special, then S can collect 4

tokens; otherwise, S is special by Lemma 10.1.3 and so 3 tokens are enough for the

induction hypothesis.

The extra tokens in the roots of the laminar family give us the desired contradiction.

This proves Theorem 10.1.2, and thus the 2-approximation algorithm for the survivable

network design problem follows.

10.2 Connection to the Traveling Salesman Problem

In this section we formulate a generalization of the survivable network design problem and

the traveling salesman problem. Then we present a proof that any extreme point solution

of this generalization has an edge e with xe ≥ 1
2 , and in some cases, xe = 1. This will

generalize Jain's result and a result of Boyd and Pulleyblank on the traveling salesman

problem. The new proof uses the fractional token technique, and does not need the notion

of special sets used in the previous section to prove Jain's result.

10.2.1 Linear Programming Relaxation

The following is a linear programming relaxation which models both the survivable network

design problem and the traveling salesman problem, denoted by LPf , where f is a skew

supermodular function. It is similar to the linear programming relaxation for the minimum

bounded degree Steiner network problem in the next section.

minimize
∑
e∈E

ce xe

subject to x(δ(S)) ≥ f(S) ∀S ⊆ V
x(δ(v)) = f(v) ∀ v ∈W

0 ≤ xe ≤ 1 ∀ e ∈ E

For the survivable network design problem we set f(S) = maxu∈S,v/∈S {ruv} for each
subset S ⊆ V and set W = ∅. For the traveling salesman problem we set f(S) = 2 for

each S ⊂ V , f(V ) = 0 and W = V .
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10.2.2 Characterization of Extreme Point Solutions

The following characterization follows from a straightforward application of the uncrossing

technique using the fact that f is skew-supermodular and the same characterization of

extreme point solutions as in Lemma 10.2.1 holds for LPf to give the following lemma.

Lemma 10.2.1 Let the requirement function f of LPf be skew supermodular, and let x be

an extreme point solution to LPf with 0 < xe < 1 for every edge e ∈ E. Then, there exists
a laminar family L such that:

(i) x(δ(S)) = f(S) for each S ∈ L.
(ii) The vectors in {χ(δ(S)) : S ∈ L} are linearly independent.

(iii) |E| = |L|.

10.2.3 Existence of Edges with Large Fractional Value

Boyd and Pulleyblank [22] proved that there is an edge e with xe = 1 in any extreme point

solution to the traveling salesman problem. The following theorem provides a common

generalization to their result and Jain's result (Theorem 10.1.2).

Theorem 10.2.2 Let f be an integral skew supermodular function, and x be an extreme

point solution to LPf with xe > 0 for all e. Then there exists an e ∈ E with xe ≥ 1
2 .

Moreover, if f(S) is an even integer for each subset S ⊆ V then there exists an edge e with

xe = 1.

Proof [First part]: We �rst prove that xe ≥ 1
2 for some edge e ∈ E in any extreme point

solution x to LPf . Suppose for a contradiction that 0 < xe <
1
2 for each e ∈ E. Then we

will show that |E| > |L|, contradicting Lemma 10.2.1. The proof is by a fractional token

counting argument. We give one token to each edge in E, and then we will reassign the

tokens such that we can collect one token for each member in L and still have extra tokens

left, giving us the contradiction that |E| > |L|. Each edge e = uv is given one token which

is reassigned as follows.

(i) (Rule 1) Let S ∈ L be the smallest set containing u and R ∈ L be the smallest set

containing v. Then e gives xe tokens each to S and R.

(ii) (Rule 2) Let T be the smallest set containing both u and v. Then e gives 1− 2xe
tokens to T .

We now show that each set S in L receives at least one token. Let S be any set with

children R1, . . . , Rk where k ≥ 0 (if S does not have any children then k = 0). We have

the following equalities.

x(δ(S)) = f(S)

x(δ(Ri)) = f(Ri) ∀ 1 ≤ i ≤ k
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Subtracting we obtain,

x(δ(S))−
k∑
i=1

x(δ(Ri)) = f(S)−
k∑
i=1

f(Ri). (10.1)

We divide the edges involved in the left hand side of (10.1) into three types, where

A = {e : |e ∩ (∪iRi)| = 0, |e ∩ S| = 1}
B = {e : |e ∩ (∪iRi)| = 1, |e ∩ S| = 2}
C = {e : |e ∩ (∪iRi)| = 2, |e ∩ S| = 2}.

Then (10.1) can be rewritten as:

S

R1 R2−1B

−2

C

+1A

0

b

b

b b

b

b

b

b

Fig. 10.2. Example for expression x(δ(S))−
∑k

i=1 x(δ(Ri)) with k = 2 children. The dashed edges
cancel out in the expression. Edge-sets A,B,C shown with their respective coe�cients.

x(A)− x(B)− 2x(C) = f(S)−
k∑
i=1

f(Ri). (10.2)

Observe that A ∪ B ∪ C ̸= ∅; otherwise the characteristic vectors χ(δ(S)), χ(δ(R1)),

. . . , χ(δ(Rk)) are linearly dependent. For each edge e ∈ A, S receives xe tokens from e

by Rule 1. For each edge e ∈ B, S receives 1 − xe tokens from e by Rule 1 and Rule 2.

For each edge e ∈ C, S receives 1− 2xe tokens from e by Rule 2. Hence, the total tokens

received by S is exactly ∑
e∈A

xe +
∑
e∈B

(1− xe) +
∑
e∈C

(1− 2xe)

= x(A) + |B| − x(B) + |C| − 2x(C)

= |B|+ |C|+ f(S)−
k∑
i=1

f(Ri),

164



where the last equality follows from (10.2). Since f is integral and the above expression

is non-zero (since A ∪ B ∪ C ̸= ∅), the right hand side is at least one, and thus every set

S ∈ L receives at least one token in the reassignment.

It remains to show that there are some unassigned tokens, which would imply the

contradiction that |E| > |L|. Let R be any maximal set in L. Consider any edge e ∈ δ(R).
The fraction of the token by Rule 2 for edge e is unassigned, as there is no set T ∈ L with

|T ∩ e| = 2, gives us the desired contradiction. This proves the �rst part of the theorem.

[Second part]: The proof of the second part is almost identical to the proof of the �rst

part, except that we use scaled token assignment rules. Each edge e = uv is given one

token which it reassigns as follows.

(i) (Rule 1') Let S be the smallest set containing u andR be the smallest set containing

v in L. Then e gives xe/2 tokens each to S and R.

(ii) (Rule 2') Let T be the smallest set containing both u and v. Then e gives 1− xe
tokens to T .

We now show that each set in L receives at least one token. Let S be any set with children

R1, . . . , Rk where k ≥ 0. We have the following equalities.

x(δ(S)) = f(S)

x(δ(Ri)) = f(R) ∀ 1 ≤ i ≤ k

Dividing by two and subtracting we obtain,

x(δ(S))−
∑

i x(δ(Ri))

2
=
f(S)−

∑
i f(Ri)

2

The edges involved in the left hand side are divided into types A,B,C exactly as in the

�rst part. Then the above equation becomes

x(A)− x(B)

2
− x(C) =

f(S)−
∑

i f(Ri)

2
.

Observe that A∪B ∪C ̸= ∅; otherwise there is a linear dependence among the constraints

for S and its children. Also, S receives xe
2 tokens for each edge e ∈ A by Rule 1', 1 − xe

2

tokens for each edge e ∈ B by Rule 1' and Rule 2', and 1− xe tokens for each edge e ∈ C
by Rule 2'. Hence, the total tokens received by S is exactly∑

e∈A

xe
2

+
∑
e∈B

(1− xe
2
) +

∑
e∈C

(1− xe)

=
x(A)

2
+ |B| − x(B)

2
+ |C| − x(C)

= |B|+ |C|+
f(S)−

∑
i f(Ri)

2
.

Since A ∪ B ∪ C ̸= ∅ and f is an even-valued function, this is a positive integer. Thus

every set S ∈ L receives at least one token in the reassignment.

Now, we show that there are some unassigned tokens showing the strict inequality

|L| < |E|. Let R be any maximal set L. Then, consider any edge e ∈ δ(R). Then, token
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by Rule 2' for edge e is unassigned as there is no set T ∈ L with |T ∩ e| = 2. This gives us

the desired contradiction.

10.3 Minimum Bounded Degree Steiner Networks

In the minimum bounded degree Steiner network problem, given an undirected graph

G = (V,E) with edge costs, connectivity requirements ruv for each pair u, v ∈ V and

degree bounds bv for each vertex v ∈ V , the task is to �nd a subgraph H of G of minimum

cost such that there are ruv edge disjoint paths between u and v for each u, v ∈ V and

degree of vertex v in H is at most bv. In general, the minimum bounded degree Steiner

network problem does not admit any polynomial factor approximation algorithm, since

the minimum cost Hamiltonian cycle problem is a special case. Instead, we will present

bicriteria approximation algorithms, that both violate the degree bounds as well as delivers

a suboptimal cost solution. In this section, we will �rst present a (2, 2Bv+3)-approximation

algorithm for the minimum bounded degree Steiner network problem, where Bv denotes

the degree upper bound on node v. By this, we mean that the algorithm outputs a Steiner

network whose cost is at most twice that of the objective value of the linear programming

relaxation, and whose degree at any node v is at most 2Bv + 3. In the next section, we

will present an algorithm with only an additive violation on the degree bounds.

10.3.1 Linear Programming Relaxation

The linear programming formulation for the minimum bounded degree Steiner network

problem, denoted by LPbdsn, is a straightforward generalization of LPsndp for the survivable

network design problem, with f(S) = maxu∈S,v/∈S {ruv} for each subset S ⊆ V . Notice

that the degree constraints are only present on a subset W ⊆ V of vertices.

minimize
∑
e∈E

ce xe

subject to x(δ(S)) ≥ f(S), ∀S ⊆ V
x(δ(v)) ≤ Bv, ∀ v ∈W

0 ≤ xe ≤ 1 ∀ e ∈ E

10.3.2 Characterization of Extreme Point Solutions

As the degree constraints are de�ned only on single vertices, the same uncrossing technique

(as in Lemma 10.2.1) can be applied to show that an optimal extreme point solution is

characterized by a laminar family of tight constraints.
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Lemma 10.3.1 Let the requirement function of LPbdsn be skew supermodular, and let x

be an extreme point solution to LPbdsn with 0 < xe < 1 for every edge e ∈ E. Then, there
exists a laminar family L of tight sets such that L partitions into a set of singletons L′ for
the degree constraints, and the remaining sets L′′ = L−L′ for the connectivity constraints,

such that:

(i) x(δ(v)) = Bv > 0 for all {v} ∈ L′ and x(δ(S)) = f(S) ≥ 1 for all S ∈ L′′.
(ii) The vectors in {χ(δ(S)) : S ∈ L} are linearly independent.

(iii) |E| = |L|.

10.3.3 Iterative Algorithm

The iterative algorithm is similar to that for the minimum Steiner network problem, with

a new relaxation step where we remove degree constraints of vertices with low degree.

Iterative Minimum Bounded Degree Steiner Network Algorithm

(i) Initialization F ← ∅, f ′ ← f .

(ii) While f ′ ̸≡ 0 do

(a) Find an optimal extreme point solution x with cut requirement f ′ and

remove every edge e with xe = 0.

(b) (Relaxation): If there exists a vertex v ∈W with degree at most 4, then

remove v from W .

(c) (Rounding): If there exists an edge e = (u, v) with xe ≥ 1/2, then add e

to F and delete e from the graph and decrease Bu and Bv by 1/2.

(d) For every S ⊆ V : update f ′(S)← max{f(S)− dF (S), 0}.
(iii) Return H = (V, F ).

Fig. 10.3. Minimum Bounded Degree Steiner Network Algorithm

10.3.4 Correctness and Performance Guarantee

The performance guarantee follows by an inductive argument as in Lemma 6.3.2, assuming

the algorithm terminates. We will prove the following lemma showing that the algorithm

will terminate.

Lemma 10.3.2 Let x be an extreme point solution to LPbdsn with xe > 0 for every edge

e, and W be the set of vertices with degree constraints. Then either one of the following

holds:

(i) There exists an edge e with xe ≥ 1
2 .

(ii) There exists a vertex v ∈W with degree d(v) ≤ 4.
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In the following we use a token counting argument to prove Lemma 10.3.2. The

counting argument is similar to that of Theorem 10.1.2. Each edge is assigned two tokens,

for a total of 2|E| tokens. For each edge e, one token is assigned to each endpoint. We

shall show that if none of the steps in the algorithm can be applied, then each set in L′′
and each degree constraint in L′ can collect two tokens, and there are some tokens left.

This would imply |E| > |L|, contradicting that x is an extreme point solution.

We prove the same statement as in Lemma 10.1.4 to get the contradiction. The

counting argument is similar and we only highlight the di�erences here. By Step 2(b), we

may assume that d(v) ≥ 5 for each v ∈ W , and hence each degree constraint has three

extra tokens. The case when the node S ∈ L does not own a vertex in W is exactly the

same as in Lemma 10.1.4. Henceforth we consider a node S ∈ L that owns a vertex v ∈W .

If S has another child R, then S can collect three tokens from v and at least one token

from R, as desired. Otherwise, by linear independence of χ(δ(S)) and χ(δ(v)), S owns at

least one endpoint and thus S can collect three tokens from v and at least one more token

from the endpoints it owns as required. This completes the proof of Lemma 10.3.2.

10.4 An Additive Approximation Algorithm

In this section we show how to achieve additive guarantee on the degree bounds that

depend only on the maximum connectivity requirement, denoted by rmax = maxu,v{ruv}.

Theorem 10.4.1 There is a polynomial time (2, Bv+6rmax+3)-approximation algorithm

for the minimum bounded degree Steiner network problem, which returns a solution with

cost at most twice the optimum while the degree of each vertex v is at most Bv+6rmax+3.

For minimum bounded degree Steiner trees, since the maximum connectivity require-

ment is one, this algorithm will output a solution that violates the degree bounds only by

an additive constant, and of cost within twice the optimal.

10.4.1 Iterative Algorithm

The iterative algorithm uses the same linear programming relaxation LPbdsn as in the

previous section. The di�erence is that we only pick an edge e with xe ≥ 1
2 when both

endpoints have �low� degrees.

10.4.2 Correctness and Performance Guarantee

First we show that the degree of any vertex v in the returned solution H is at most

Bv +6rmax+3, assuming that the algorithm terminates. We de�ne the set Wh of vertices

(de�ned in Step (ii)(a) of the algorithm) with fractional degree at least 6rmax as high
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Additive Approximation for Minimum Bounded Degree Steiner Network

(i) Initialization F ← ∅, f ′ ← f .

(ii) While f ′ ̸≡ 0 do

(a) Find an optimal extreme point solution x to LPbdsn satisfying f ′ and re-

move every edge e with xe = 0. Set Wh = {v ∈ W |
∑

e∈δ(v) xe ≥ 6rmax}
and Bv =

∑
e∈δ(v) xe for v ∈W .

(b) If there exists an edge e = (u, v) with xe = 1, then add e to F and remove

e from G and decrease Bu and Bv by 1.

(c) (Relaxation): If there exists a vertex v ∈W with degree at most 4, then

remove v from W .

(d) (Rounding): If there exists an edge e = (u, v) with xe ≥ 1
2 and u, v /∈Wh,

then add e to F and remove e from G and decrease Bu and Bv by xe.

(e) For every S ⊆ V : f ′(S)← max{f(S)− dF (S), 0}.
(iii) Return H = (V, F ).

Fig. 10.4. Additive Approximation for Minimum Bounded Degree Steiner Network

degree vertices. Observe that the fractional degree of each vertex is non-increasing during

the algorithm, since we reset the degree upper bound in Step (ii)(a) in each iteration.

Consider an edge e with v as an endpoint. When v ∈ Wh, e is picked only if xe = 1 in

Step (ii)(b) of the algorithm. Hence, while v ∈ Wh, at most Bv − 6rmax edges incident

at v are added to H. While v ∈ W \Wh, e is picked only if xe ≥ 1
2 in Step (ii)(d) of

the algorithm. Hence, while v ∈W \Wh, strictly less than 12rmax edges incident at v are

added to H. Finally, by Step (ii)(c) of the algorithm, a degree constraint is removed only if

v is incident to at most four edges, where possibly all of them are added to H. Therefore,

the degree of v in H is strictly less than (Bv − 6fmax) + 12fmax + 4 = Bv + 6fmax + 4.

As Bv is an integer, the degree of v in H is at most Bv + 6fmax + 3. Moreover, since we

always included edges with value at least half in F in each iteration, by induction, the cost

of the �nal solution is at most twice the optimal objective value of LPbdsn. This proves

Theorem 10.4.1, assuming that the algorithm terminates.

The following lemma proves that the algorithm will always terminate. With the same

characterization as in Lemma 10.3.1, we use a more careful counting argument to prove

stronger properties of the extreme point solutions to LPbdsn than those in Lemma 10.3.2.

Lemma 10.4.2 Let x be an extreme point solution to LPbdsn with xe > 0 for all e, and W

be the set of vertices with degree constraints, and Wh = {v ∈ W |
∑

e∈δ(v) xe ≥ 6rmax}.
Then at least one of the following holds.

(i) There exists an edge e with xe = 1.

(ii) There exists an edge e = {u, v} with xe ≥ 1/2 and u, v /∈Wh.

(iii) There exists a vertex v ∈W with degree at most 4.
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We will prove Lemma 10.4.2 by a token counting argument as in Lemma 10.3.2.

Suppose for contradiction that none of the conditions in Lemma 10.4.2 holds. Then each

edge e has xe < 1, and each edge e with 1
2 ≤ xe < 1 (we call such an edge a heavy edge)

must have at least one endpoint in Wh, and each vertex in W must have degree at least

�ve. We give two tokens to each edge for a total of 2|E| tokens. Then, the tokens will be
reassigned so that each member of L′′ gets at least two tokens, each vertex in L′ gets at
least two tokens, and there are still some excess tokens left. This will imply that |E| > |L|,
contradicting Lemma 10.3.1.

The main di�erence from Lemma 10.3.2 is the existence of heavy edges (with an

endpoint in Wh) which our algorithm is not allowed to pick. Since there exist heavy edges,

a set S ∈ L may only have two edges in δ(S), and hence S may not be able to collect

three tokens as in Lemma 10.1.4. To get around this, we use a di�erent token assignment

scheme and revise the de�nition of co-requirement, so that a similar induction hypothesis

would work.

Token assignment scheme: If e = uv is a heavy edge with u ∈ Wh and v /∈ W , then v

gets two tokens from e and u gets zero token. For every other edge e, one token is assigned

to each endpoint of e.

Co-requirement: We revise the de�nition of co-requirement for the presence of heavy

edges:

coreq(S) =
∑

e∈δ(S), xe<1/2

(1/2− xe) +
∑

e∈δ(S), xe≥1/2

(1− xe).

It is useful to note that this de�nition reduces to the original de�nition of co-requirement,

if every edge e with xe ≥ 1
2 is thought of as two parallel edges, each aiming to achieve a

value of 1
2 and each has fractional value xe

2 : summing 1
2 −

xe
2 over both edges gives 1− xe.

We say a set is special if coreq(S) = 1
2 as in the proof of Jain's theorem.

After this initial assignment, each vertex in V \Wh receives at least as many tokens

as their degree. Moreover, each vertex in W \ Wh receive at least �ve tokens, as their

degree is at least �ve. Note that a vertex v ∈ Wh might not have any tokens if all the

edges incident at it are heavy edges. However, by exploiting the fact that f(S) ≤ rmax, we
will show that vertices in Wh can get back enough tokens. We prove the following lemma

which shows that the tokens can be reassigned in a similar way as in Lemma 10.1.4.

Lemma 10.4.3 For any subtree of L rooted at S, we can reassign tokens such that each node

in the subtree gets at least two tokens and the root S gets at least three tokens. Moreover,

the root S gets exactly three tokens only if S is special; otherwise it gets at least four tokens.

The following is a key claim showing if S owns a vertex inWh, then there are enough

tokens for S and the vertices in Wh that it owns.

Claim 10.4.4 Suppose S owns w ≥ 1 vertices in Wh. Then the number of excess tokens
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from the children of S, plus the number of tokens owned by S, plus the number of tokens

left with vertices in Wh ∩ S is at least 2w + 4.

Proof Suppose S has c children. As each child has at least one excess token by the induction

hypothesis, if c ≥ 6w then we have 6w tokens which is at least 2w + 4. Henceforth we

assume that c < 6w. Let B :=
∑

v∈Wh
x(δ(v)), where the sum is over all vertices v ∈ Wh

owned by S. Note that B ≥ 6wrmax by the de�nition of Wh. For a child R of S, as

x(δ(R)) = f(R) ≤ rmax, at most rmax units of B are contributed by the edges in δ(R).

Similarly, at most rmax units of B are contributed by the edges in δ(S). Hence, at least

rmax(6w − c − 1) units of B are from the edges with both endpoints owned by S. Since

there is no edge e with xe = 1, there are at least rmax(6w − c − 1) + 1 such edges. Let

e = uv be such an edge with v ∈ Wh owned by S. If u ∈ W , then both u and v get one

token from e in the initial assignment. If u /∈ W , then u gets two tokens from e in the

initial assignment, but these two tokens are owned by S. Hence, the number of tokens

owned by S plus the number of tokens left with vertices in Wh owned by S is at least

rmax(6w − c − 1) + 1. Furthermore, S can also collect one excess token from each child.

So, the total number of tokens that S can collect is at least rmax(6w− c−1)+ c+1, which

is a decreasing function of c. As c < 6w, the number of tokens is minimized at c = 6w− 1,

which is at least 2w + 4, proving the claim.

We now proceed by induction on the height of the subtree to prove Lemma 10.4.3.

Base Case: S is a leaf node. Claim 10.4.4 implies that S can collect enough tokens if it

owns vertices in Wh. Hence assume S ∩Wh = ∅. First consider the case when S ∩W ̸= ∅.
Any vertex v ∈ W \Wh has at least �ve tokens, and thus has three excess tokens. If S

owns two such vertices or S owns another endpoint, then S gets at least four tokens as

required. Otherwise, we have χ(δ(v)) = χ(δ(S)), contradicting Lemma 10.3.1.

Henceforth we consider the case when S ∩W = ∅. Then S can get at least |δ(S)| =
d(S) tokens from the vertices owned by S. Note that d(S) ≥ 2, as x(δ(S)) is an integer

and there is no edge e with xe = 1. If d(S) ≥ 4, then S gets at least four tokens. If

d(S) = 3 and d(S) contains a heavy edge, then S can get four tokens from the vertices it

owns. If it does not contain a heavy edge, then S receives three tokens and coreq(S) = 1
2 ,

for which three tokens are enough. If d(S) = 2, then at least one edge is a heavy edge. If

both edges are heavy then S can get four tokens; otherwise if only one edge is heavy then

coreq(S) = 1
2 and so three tokens are enough.

Induction Step: If S owns any vertex in Wh, then we are done by Claim 10.4.4. Thus we

can assume that S does not own any vertex in Wh. By the induction hypothesis, any child

of S has at least one excess token. So, if S owns a vertex in W \Wh, then S can collect

at least four tokens. Hence, we can assume that S does not own any vertex in W , and

the proof of these cases are almost identical to that in Lemma 10.1.4 with the de�nition

of co-requirement revised; the details are omitted.
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10.4.3 Steiner Forests

In the special cases of Steiner trees and Steiner forests, the connectivity requirement func-

tion is a {0, 1}-function and hence rmax = 1. Theorem 10.4.1 thus implies that there is a

(2, Bv + 9)-approximation algorithm for this problem, but it is possible to obtain a better

bound.

Theorem 10.4.5 There is a polynomial time (2, Bv + 3)-approximation algorithm for the

minimum bounded degree Steiner network problem when rmax = 1.

The iterative algorithm is similar where the improvement comes from the following

fact [111, 153]: there is a heavy edge between two vertices without degree constraints. The

proof is by a more involved counting argument that uses a di�erent induction hypothesis.

Notes

The algorithm for the survivable network design problem is due to Jain [91], who introduced

the iterative rounding method in the design of approximation algorithms. Subsequently the

iterative rounding method has been applied to other network design problems, including

directed network design [120, 67, 96], element-connectivity network design and vertex-

connectivity network design [54, 34]. The existence of an 1-edge in the traveling salesman

problem is due to Boyd and Pulleyblank [22], and the proof presented in this chapter is from

the work of Nagarajan, Ravi and Singh [127]. The algorithm for the minimum bounded

degree Steiner network problem is by Lau, Naor, Salavatipour and Singh [110], who �rst

used the iterative relaxation idea in degree-bounded network design problems. The subse-

quent work with additive violation on the degree bounds is by Lau and Singh [111]. Louis

and Vishnoi [114] improved the bicriteria bound to obtain a (2, 2B + 2)-approximation.

The weighted degree constrained network design problem were considered by Fukunaga

and Nagamochi [61] and Nutov [132].

Exercises

10.1 Prove Lemma 10.1.3.

10.2 Show the following statement in the proof of Lemma 10.1.4: If set S has two

children, one of which has a co-requirement of 1/2, then it must own at least one

endpoint.

10.3 Give a 2-approximation algorithm for the traveling salesman problem, using the

fact there is always an edge e with xe = 1 in the linear programming relaxation

LPf .

10.4 Show that the result of Boyd and Pulleyblank on the existence of a 1-edge in the

subtour relaxation for the TSP can be derived as a corollary of the result of Jain on

172



the existence of a 1
2 -edge for the SNDP. In particular show that an extreme point

for the former scaled down by a factor of two is feasible and is an extreme point

for the spanning tree case of SNDP to derive the result.

10.5 Consider the subtour elimination LP for asymmetric TSP [84]. Find the largest

value ρ such that there is always some arc variable with xa ≥ ρ.

10.6 Design a bicriteria approximation algorithm for the minimum bounded degree

strongly k-arc-connected subgraph problem in directed graphs.

(a) Write a �cut-cover� linear programming relaxation for the problem. Show

that the connectivity requirement function for this problem is a crossing

supermodular function.

(b) Use the uncrossing technique to show that an extreme point solution is

de�ned by a cross-free family of tight constraints.

(c) (Gabow [67]) Prove that there is an arc with value at least 1
3 in any extreme

point solution when there are no degree constraints in the problem.

(d) Apply the iterative relaxation step to obtain a bicriteria approximation al-

gorithm for the problem.

10.7 Let P be the Peterson graph, and let w1, w2, w3 be the neighbors of a vertex v

in P . Take three copies of P − v and three new vertices v1, v2, v3, and attach

them as follows: for 1 ≤ j ≤ 3, add edges from vj to each wj in the three copies of

P−v. Prove that the resulting graph is a 3-regular 3-edge-connected graph with no

Hamiltonian cycle. By setting Bv = 1 for each vertex and connectivity requirement

ruv = 1 for each pair of vertices, show that this is an integrality gap example in

which there is a feasible solution to LPbdsn but there is no Steiner network with

degree at most 2Bv (or Bv + 1) for each vertex.

10.8 Show that the following example gives an integrality gap of at least an additive

n/4 for the degree violation for LPbdsn. The input is a complete bipartite graph

B = (X,Y,E) where X = {x1, x2} and Y = {y1, . . . , yn}. We set the connectivity

requirements between yi and yj to be 1 for all i, j, between x1 and x2 to be n
2 , and

0 otherwise.

10.9 Can you use the fractional token technique in Section 10.2 to obtain the results for

the minimum bounded degree Steiner network problem presented in this chapter?
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11

Constrained Optimization Problems

In previous chapters, we have used the iterative relaxation method to obtain approximation

algorithms for degree bounded network design problems. In this chapter, we illustrate that

similar techniques can be applied to other constrained optimization problems. In the �rst

part we study the partial vertex cover problem, and show an iterative 2-approximation

algorithm for the problem. In the second part we study the multicriteria spanning tree

problem, and present a polynomial time approximation scheme for the problem.

11.1 Vertex Cover

We �rst give a simple iterative 2-approximation algorithm for the vertex cover problem,

and then show that it can be extended to the partial vertex cover problem.

Given a graph G = (V,E) and a cost function c on vertices, the goal in the vertex

cover problem is to �nd a set of vertices with minimum cost which covers every edge, i.e.

for every edge at least one endpoint is in the vertex cover. In Chapter 3 we showed that the

vertex cover problem in bipartite graphs is polynomial time solvable, and gave an iterative

algorithm for �nding the minimum cost vertex cover. In general graphs, the vertex cover

problem is NP-hard. Nemhauser and Trotter [129] gave a 2-approximation for the problem.

Indeed they prove a stronger property of half-integrality of the natural linear programming

relaxation. We prove this result and its extensions to the partial vertex cover problem in

the next section.

11.1.1 Linear Programming Relaxation

The linear programming relaxation, denoted by LPvc, is the same as in Section 3.4 for the

vertex cover problem in bipartite graphs.
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minimize
∑
v∈V

cv xv

subject to xu + xv ≥ 1 ∀ e = {u, v} ∈ E
xv ≥ 0 ∀ v ∈ V

We shall prove the following theorem of Nemhauser and Trotter using the simple

characterization of the extreme point solutions to the linear program.

Theorem 11.1.1 Let x be an extreme optimal solution to LPvc. Then xv ∈ {0, 12 , 1} for
each v ∈ V .

Theorem 11.1.1 implies Theorem 11.1.2 as a corollary

Theorem 11.1.2 There exists a 2-approximation algorithm for the vertex cover problem.

Proof Let x be the optimal extreme point solution to LPvc. Construct a vertex cover by

picking each vertex v such that xv = 1
2 or xv = 1. Theorem 11.1.1 implies that it is a

feasible vertex cover and it costs at most twice that of the fractional solution x.

11.1.2 Characterization of Extreme Point Solutions

We use the same characterization as in Lemma 3.4.3 for the vertex cover problem in

bipartite graphs. For a set W ⊆ V , let χ(W ) denote the vector in R|V |: the vector has

an 1 corresponding to each vertex v ∈ W , and 0 otherwise. This vector is called the

characteristic vector of W .

Lemma 11.1.3 Given any extreme point x to LPvc with xv > 0 for each v ∈ V , there

exists F ⊆ E such that

(i) xu + xv = 1 for each e = {u, v} ∈ F .
(ii) The vectors in {χ({u, v}) : {u, v} ∈ F} are linearly independent.

(iii) |V | = |F |.

11.1.3 Iterative Algorithm

We now give a simple iterative rounding algorithm for obtaining a 2-approximation algo-

rithm for the vertex cover problem.
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Iterative Vertex Cover Algorithm

(i) Initialization W ← ∅ ;
(ii) Find an optimal extreme point solution x to LPvc.

(iii) While E ̸= ∅ do
(a) For all vertices v ∈ V with xv = 1 include v ∈W and remove v from G.

(b) For all vertices v ∈ V with xv = 0, remove v from G.

(c) For all vertices v ∈ V with xv =
1
2 , include v ∈W and remove v from G.

(iv) Return W .

Fig. 11.1. Vertex Cover Algorithm

11.1.4 Correctness and Performance Guarantee

We now present the proof of Theorem 11.1.1 which also shows the correctness of the

algorithm in Figure 11.1.

Proof In Step (iii)(a), we select all vertices with xv = 1 and remove all such vertices. Then

any vertex with xv = 0 must now be an isolated vertex and hence can be removed. Thus

we obtain a vertex cover instance on the remaining graph. We assume the remaining graph

is connected; otherwise we apply the same argument to each connected component. From

Lemma 11.1.3 there is a subset of edges F with linearly independent tight constraints. As

|F | = |V |, it follows that F contains a cycle C. We will show that xv =
1
2 for each vertex

in C. First notice that C must be an odd cycle; otherwise the characteristic vectors in

{χ({u, v}) : {u, v} ∈ E(C)} are linearly dependent (the sum of the vectors for the �odd"

edges is the same as that for the �even" edges in the cycle). As C is an odd cycle, the unique

solution to these equations is xv =
1
2 for each v ∈ C. Now, observing that xv + xu = 1 for

any {u, v} ∈ F and xv = 1
2 imply that xu = 1

2 , each vertex u reachable from the cycle C

in F must also have xu = 1
2 , proving Theorem 11.1.1.

11.2 Partial Vertex Cover

We now show how to extend the 2-approximation algorithm for the vertex cover problem

to the more general partial vertex cover problem. Given a graph G = (V,E) and a cost

function c on vertices and a bound L, the goal in the partial vertex cover problem is to �nd

a set of vertices with minimum cost which covers at least L edges. The problem is NP-hard

since it generalizes the vertex cover problem when L = |E|. We give a 2-approximation

algorithm based on iterative rounding of a natural linear programming relaxation.

Theorem 11.2.1 There is a 2-approximation algorithm for the partial vertex cover prob-

lem.
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11.2.1 Linear Programming Relaxation

We proceed by �rst performing a pruning step where we guess the costliest vertex, say v

in the optimal solution. We then obtained the pruned graph where we remove all vertices

with cost more than v and include v in the solution. Since there are at most n = |V |
choices for the costliest vertex, we can consider all these choices and return the cheapest

of the solutions returned by the algorithm on each of the pruned graphs.

We now formulate a linear program for the pruned instance. The linear program,

denoted by LPpvc, has a variable xv for each vertex v and a variable ye for each edge e ∈ E.
In an integral solution ye is set to one only if one of the endpoints is picked in the partial

vertex cover.

minimize
∑
v∈V

cv xv

subject to
∑
v∈e

xv ≥ ye ∀ e ∈ E∑
e∈E

ye = L

0 ≤ xv ≤ 1 ∀ v ∈ V
0 ≤ ye ≤ 1 ∀ e ∈ E

As we proceed with the iterative algorithm, we will work with a graph where edges could

be of size one only. For example, when we have a variable with xv = 0, we will remove v

from all edges containing v. Such edges will contain only one vertex but not two vertices.

11.2.2 Characterization of Extreme Point Solutions

We give a simple characterization of the extreme point solutions based on the Rank Lemma.

Lemma 11.2.2 Given an extreme point solution x to LPpvc with 0 < xv < 1 for all v ∈ V
and 0 < ye < 1 for all e ∈ E, there is a subset F ⊆ E of edges such that

(i)
∑

v∈e xv = ye for each e ∈ F .
(ii) The constraints in {

∑
v∈e xv = ye : e ∈ F} ∪ {

∑
e∈E yv = L} are linearly indepen-

dent.

(iii) |F |+ 1 = |V |+ |E|.

11.2.3 Iterative Algorithm

The following is an iterative algorithm for the partial vertex cover problem.
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Iterative Partial Vertex Cover Algorithm

(i) Initialization W ← ∅;
(ii) While E ̸= ∅ do

(a) Find an optimal extreme point solution (x, y) to LPpvc. If there is an edge

e ∈ E with ye = 0, then remove e from G. If there is a vertex v ∈ V with

xv = 0, then remove v from G and from all the edges containing it, i.e,

e← e \ {v} for all e ∈ E.
(b) If there is a vertex v ∈ V with xv ≥ 1

2 , then include v ∈ W and remove v

and all the edges incident at v from G. Update L← L− |{e : e ∋ v}|.
(c) If G contains a single vertex v, then include v ∈ W and remove v and all

the edges incident at v from G. Update L← L− |{e : e ∋ v}|.
(iii) Return W .

Fig. 11.2. Partial Vertex Cover Algorithm

11.2.4 Correctness and Performance Guarantee

We now show that the algorithm in Figure 11.2 is a 2-approximation algorithm for the

pruned instances, proving Theorem 11.2.1 for the correct guess of the costliest vertex in

the optimal solution. The following lemma shows that the algorithm will terminate.

Lemma 11.2.3 Let G be a graph with |V (G)| ≥ 2. Then at least one of the following must

hold.

(i) There exists a vertex v with xv ∈ {0, 1}.
(ii) There exists an edge e with ye = 0.

(iii) There exists an edge e with ye = 1 and therefore xv ≥ 1
2 for some v ∈ e.

Proof Suppose for contradiction that none of the above condition holds. Then we have

0 < xv < 1 for all vertices and 0 < ye < 1 for all edges. From Lemma 11.2.2 there exists a

subset of edges F such that |F |+1 = |E|+ |V |. Since |F | ≤ |E|, this implies that |V | ≤ 1,

a contradiction.

Now, we prove that the iterative algorithm is a 2-approximation algorithm for the

correct guess of the costliest vertex.

Proof of Theorem 11.2.1: Whenever we pick a vertex with xv ≥ 1
2 , a simple

inductive argument shows that we pay a cost of at most twice the optimal fractional

solution. Moreover whenever ye = 1 we must have xv ≥ 1
2 for some v ∈ e as |e| ≤ 2 for

each edge e. For the last vertex picked in Step (ii)(c), the cost of this vertex is at most the

cost of the costliest vertex. Since the LP value of the costliest vertex was set to 1 in the

preprocessing step, the cost of the last vertex picked is also charged to the LP solution.
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11.3 Multi-criteria Spanning Trees

In the multi-criteria spanning tree problem, we are given a graph G = (V,E) and cost

functions c0, c1, . . . , ck on the edges and bounds L1, L2, . . . , Lk for each of the cost function

ci for 1 ≤ i ≤ k. The goal is to �nd a minimum c0-cost tree which has ci-cost at most Li.

Ravi and Goemans [138] gave an algorithm for two cost functions c0 and c1 which,

given a positive ϵ, returns a tree T with optimal c0-cost and c1(T ) ≤ (1+ϵ)L1. The running

time of the algorithm is polynomial for any �xed ϵ. We present the following generalization

of their result.

Theorem 11.3.1 Given a graph G = (V,E) and cost functions c0, c1, . . . , ck on the edges

and bounds L1, L2, . . . , Lk for each of the cost function except c0. Given any �xed ϵ > 0

there exists an algorithm which returns a tree of optimal c0-cost and has ci-cost at most

(1 + ϵ)Li. The running time of the algorithm is polynomial for �xed k and ϵ.

11.3.1 Linear Programming Relaxation

We formulate the following linear programming relaxation, denoted by LPmcst, which is

a straightforward extension of the linear program for minimum spanning tree problem

considered in Section 4.1.

minimize
∑
e∈E

c0(e)xe

subject to x(E(V )) = |V | − 1,

x(E(S)) ≤ |S| − 1, ∀S ⊂ V∑
e∈E

ci(e)xe ≤ Li, ∀ 1 ≤ i ≤ k

xe ≥ 0 ∀ e ∈ E

11.3.2 Characterization of Extreme Point Solutions

We now give a characterization of the extreme point solutions to LPmcst. This follows

directly from the Rank Lemma and the characterization of extreme point solutions of the

spanning tree linear program considered in Section 4.1.

Lemma 11.3.2 Let x be an extreme point solution to LPmcst with xe > 0 for each edge e.

Then there exists a set J ⊆ {1, . . . , k} and a laminar family L such that:

(i)
∑

e∈E ci(e)xe = Li for each i ∈ J and x(E(S)) = |S| − 1 for each S ∈ L.
(ii) The vectors in {χ(E(S)) : S ∈ L} are linearly independent.

(iii) |L|+ |J | = |E|.
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11.3.3 Iterative Algorithm

The �rst step in the algorithm is a pruning step. Observe that no feasible solution can

include an edge whose ci-cost is more than Li. We extend this step further and guess all

the edges in the optimal solution whose ci-cost is at most ϵ
kLi. For any i there can be at

most k
ϵ such edges in the optimal solution. Thus the number of possibilities is at most

m
k
ϵ where m denotes the number of edges. There are k cost functions to try, and so the

total possibilities is at most m
k2

ϵ . After guessing these edges correctly, we throw away all

other edges which have ci-cost at least
ϵ
kLi and contract the guessed edges in the input

graph. Clearly, the rest of the edges in the optimal solution form a spanning tree in the

contracted graph, for the correct choice of the guessed edges.

Now we have an instance where ci(e) ≤ ϵ
kLi for each e and i. We update the

bound Li by subtracting the ci-costs of the guessed edges, and let L′
i denote the residual

bounds. We solve the linear program LPmcst with the updated bounds L′
i. Step (iii) of the

algorithm can be interpreted as removing all the k constraints bounding the length under

the cost functions c1, . . . , ck. Removing these constraints gives us the linear program for

the spanning tree problem which is integral and its optimal solution is a minimum c0-cost

spanning tree.

Algorithm for Multi-Criteria Spanning Tree

(i) Guess all the edges in the optimal solution with ci(e) ≥ ϵ
kLi for some i ∈ [k].

Include these edges in the solution and contract them. Delete all other edges from

G with ci(e) ≥ ϵ
kLi. Update Li for all i ∈ [k].

(ii) Find an optimal extreme point solution x to LPmcst and remove every edge e

with xe = 0.

(iii) Pick any minimum c0-cost tree in the support graph.

Fig. 11.3. Multi-criteria Spanning Tree Algorithm

11.3.4 Correctness and Performance Guarantee

To prove Theorem 11.3.1, �rst we claim that the support of LPmcst on a graph with n

vertices has at most n+ k− 1 edges. In fact, from Lemma 11.3.2, we have |E| = |L|+ |J |.
But |L| ≤ n− 1 since L is a laminar family without singletons (see Proposition 4.1.7) and

|J | ≤ k proving the claim. By the results in Chapter 4, the c0-cost of the tree T returned

by the algorithm is at most the c0-cost of the LP-solution and hence is optimal for the

correct guess of costly edges. Now we show that the ci-cost returned by the algorithm is at

most L′
i + ϵLi. Note that any tree must contain n− 1 edges out of the n+ k − 1 edges in

the support graph. Hence, the maximum ci-cost tree has cost at most k · ϵkLi = ϵLi more

than that of the minimum ci-cost tree in this support graph. In turn, the minimum ci-cost

tree has cost at most the ci-cost of the optimal fractional solution, which is at most L′
i

180



by feasibility. Altogether, the maximum ci-cost of the solution returned is no more than

L′
i + ϵLi. Adding the cost of the edges guessed in the �rst step we obtain that the tree

returned by the algorithm has ci-cost at most (L′
i + ϵLi) + (Li − L′

i) = (1 + ϵ)Li, proving

Theorem 11.3.1.

Notes

The paper by Bshouty and Burroughs [24] was the �rst to give a 2-approximation algorithm

for the partial vertex cover problem using LP-rounding. Subsequently other combinato-

rial 2-approximation algorithms based on the local-ratio method [10] and the primal-dual

algorithm [76] were proposed.

Ravi and Goemans [138] presented a polynomial time approximation scheme (PTAS)

for the bicriteria spanning tree problem via the Lagrangian relaxation method. The re-

sult presented in this chapter for the multi-criteria spanning problem is from the work of

Grandoni, Ravi and Singh [78].

Exercises

11.1 Weighted Partial Vertex Cover: In an instance of weighted vertex cover problem,

we are given a graph G = (V,E) with cost function c on vertices and a weight

function w on edges and a weight target B. The goal is to �nd a vertex set V ′ ⊆ V
of minimum cost such that the edges covered by V ′ weight at least B.

(a) Write a linear programming formulation for the partial vertex cover problem.

(b) Extend the proof of Theorem 11.2.1 to obtain a 2-approximation for this

problem.

11.2 Partial Set Cover: In an instance of the set cover problem, we are given a ground

set V , a collection of subsets S = {S1, S2, . . . , Sm} of V with a cost function c on

the subsets, a weight function w on the elements of V and a weight target B. The

goal is to �nd a subset S ′ ⊆ S of minimum cost such that the elements covered by

S ′ weight at least B.

(a) Write a linear programming formulation for the partial set cover problem.

(b) Extend the proof of the weighted partial vertex cover problem to obtain a

f -approximation algorithm for the problem, where f denotes the maximum

number of subsets in S containing a particular element in V .

11.3 Prize Collecting Vertex Cover: In an instance of Prize Collecting Vertex Cover,

we are given a graph G = (V,E) with cost function c on vertices and a penalty

function w on edges. The cost of any solution de�ned by V ′ ⊂ V is the cost of

vertices in V ′ plus the penalty of the edges not covered by V ′. The task is to �nd

a subset V ′ ⊂ V of minimum total cost.
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(a) Write a linear programming formulation for the prize collecting vertex cover

problem.

(b) Give a simple iterative procedure to achieve a 2-approximation for the prob-

lem.

(c) Can you show that approximation factor of 2 needs to be paid only for

the vertex cost and not for the edge penalties, i.e., the total cost of your

approximate solution is at most the penalty cost for the edges paid by the

LP solution plus twice the LP cost for the vertices.

11.4 Multi-Criteria Matroid Basis: In this problem, we are given a matroid M = (V, I),
cost functions ci : V → R for 0 ≤ i ≤ k, bounds Li for each 1 ≤ i ≤ k and the task

is to the �nd the minimum c0-cost basis of M such that ci-cost is at most Li.

(a) Write a linear programming relaxation for the multi-criteria matroid basis

problem.

(b) Extend the proof of Theorem 11.3.1 to give a polynomial time approximation

scheme for the problem, with running time polynomial for �xed ϵ and k.
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12

Cut Problems

†

In this chapter we present 2-approximation algorithms for three �cut� problems: the

triangle cover problem, the feedback vertex set problem on bipartite tournaments, and the

node multiway cut problem. All the algorithms are based on iterative rounding but require

an additional step: as usual the algorithms will pick variables with large fractional values

and compute a new optimal fractional solution iteratively, but unlike previous problems

we do not show that an optimal extreme point solution must have a variable with large

fractional value. Instead, when every variable in an optimal fractional solution has a small

fractional value, we will use the complementary slackness conditions to show that there are

some special structures which can be exploited to �nish rounding the fractional solution.

These algorithms do not use the properties of extreme point solutions, but we will need

the complementary slackness conditions stated in Section 2.1.4. The results in this chapter

illustrate an interesting variant and the �exibility of the iterative rounding method.

12.1 Triangle Cover

Given an undirected graph with weights on the edges, the triangle cover problem is to �nd

a subset of edges F with minimum total weight that intersects all the triangles (3-cycles)

of the graph, i.e. G− F is triangle free.

12.1.1 Linear Programming Relaxation

The following is a simple linear programming formulation for the triangle cover problem,

denoted by LPtri(G), in which xe is a variable for edge e and we is the weight of edge e.

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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minimize
∑
e∈E

wexe

subject to
∑
e∈T

xe ≥ 1 ∀ triangle T

xe ≥ 0 ∀ e ∈ E

12.1.2 Iterative Algorithm

The algorithm will �rst iteratively pick edges with large fractional value. When there is

no edge with xe ≥ 1
2 and the graph is still not triangle-free, the algorithm will compute a

bipartite subgraph H with at least half the total weight of the edges, and add all the edges

not in H to the solution.

Iterative Triangle Cover Algorithm

(i) Initialization F ← ∅.
(ii) Compute an optimal fractional solution x to LPtri(G).

(iii) While there is an edge e with xe ≥ 1
2 do

(a) For an edge e with xe ≥ 1
2 , update F ← F ∪ {e} and G← G− e.

(b) Compute an optimal fractional solution x to LPtri(G).

(iv) If G is not triangle-free, then �nd a bipartite subgraph H with at least half the

total weight, and update F ← F ∪ (E(G)− E(H)).

(v) Return F .

Fig. 12.1. Triangle Cover Algorithm

12.1.3 Correctness and Performance Guarantee

The algorithm in Figure 12.1 can be implemented in polynomial time: there is a simple

linear time algorithm to �nd a bipartite subgraph with at least half the total weight in

Step (iv). In particular, consider the following greedy algorithm: process the nodes in an

arbitrary order, and put them in one of two sides of the bipartition, greedily putting a

node on the side so that at least half of the edges from it to the existing nodes crosses

the bipartition. In the end, at least half of all the edges cross the bipartition, which is a

2-approximation to the maximum-weight cut.

To prove the approximation guarantee of the algorithm, the key step is to prove that

Step (iv) gives a 2-approximate solution in the remaining graph, for which we will need

the complementary slackness conditions.
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Theorem 12.1.1 The algorithm in Figure 12.1 is a 2-approximation algorithm for the

triangle cover problem.

Proof The main di�erence from previous iterative algorithms is in the last step, where

we add all the edges not in H to F . Notice that in this last step the algorithm does

not consider the fractional values of the remaining edges, but only consider their weights.

Suppose we could prove that ∑
e∈E(G)−E(H)

we ≤ 2
∑

e∈E(G)

wexe, (12.1)

where the right hand side is twice the objective value in the remaining fractional solution

after the while loop. Then we know that E(G) − E(H) is a 2-approximate solution for

the triangle cover problem in the remaining graph, as the objective value is a lower bound

on the optimal value. Since we only pick edges with fractional value at least 1
2 in the

loop, by a standard inductive argument as in previous chapters, we could show that the

iterative algorithm in Figure 12.1 is an overall 2-approximation algorithm for the triangle

cover problem.

We now use the complementary slackness conditions to prove (12.1). The following

is the dual program of LPtri(G), in which there is one variable for each triangle T in G.

maximize
∑
T

yT

subject to
∑
T :e∈T

yT ≤ we ∀ e ∈ E

yT ≥ 0 ∀ triangle T ∈ G

We can assume without loss of generality that every edge e in G belongs to some triangle;

otherwise we could delete e from G without changing any minimal solution to the triangle

cover problem. Also, there is no edge with fractional value at least 1
2 in Step (iv) of the

algorithm because of the termination condition of the while loop. Since every edge e is

in some triangle T , this implies that xe > 0 for every edge e in Step (iv); otherwise some

other edge in T must have a fractional value of at least 1
2 in order to satisfy the constraint

for T in LPtri(G). As x is an optimal solution for LPtri(G), by the primal complementary

slackness conditions (see Section 2.1.4.1), in any dual optimal solution y we must have∑
T :e∈T

yT = we

for every edge e in G. Hence, the objective value of any dual optimal solution y is:∑
T

yT =
1

3

∑
e∈E

∑
T :e∈T

yT =
1

3

∑
e∈E

we,

where the �rst equality follows because every triangle is counted exactly thrice on the

right hand side, and the second equality follows from the primal complementary slackness

conditions. By the LP duality theorem (Theorem 2.1.9), the objective value of the primal
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program is equal to that of the dual program. Therefore, in Step (iv) of the algorithm, the

objective value for the primal solution is∑
e∈E

wexe =
∑
T

yT =
1

3

∑
e∈E

we.

As H computed in Step (iv) satis�es the property that
∑

e∈E(H)we ≥
1
2

∑
e∈E(G)we, we

have ∑
e∈E(G)−E(H)

we ≤
1

2

∑
e∈E(G)

we =
3

2

∑
e∈E(G)

wexe.

This implies (12.1), completing the proof of the theorem.

A similar result holds for the directed triangle cover problem; see the exercises.

12.2 Feedback Vertex Set on Bipartite Tournaments

Given a directed graph D with weights on the vertices, the feedback vertex set problem is

to �nd a subset of vertices S with minimum total weight that intersects all the directed

cycles, i.e. D−S has no directed cycles. There is no known constant factor approximation

algorithm for this problem. In this section we present a 2-approximation algorithm for the

feedback set problem on a special class of directed graphs called bipartite tournaments. A

bipartite tournament is obtained from an undirected complete bipartite graph by assigning

exactly one direction to each edge, i.e. for each edge uv, exactly one of the arcs in {uv, vu} is
present in the bipartite tournament. The feedback vertex set problem is easier in bipartite

tournaments because of the following property.

Proposition 12.2.1 A bipartite tournament has no directed cycle if and only if it has no

directed cycle of length four.

Proof Suppose there is a directed cycle of length 2k for k ≥ 3, say x1, y1, x2, y2, . . . , x2k, y2k.

Consider the orientation of the arc between x1 and y2. If it is oriented from y2 to x1, we

have found a directed 4-cycle; else, we can shortcut the cycle to a 2(k−1) cycle and proceed

by induction on k to complete the proof.

12.2.1 Linear Programming Relaxation

By Proposition 12.2.1 the problem of intersecting all directed cycles in a bipartite tourna-

ment is equivalent to the problem of intersecting all directed 4-cycles. Thus we can write

the following simple linear programming formulation for the feedback vertex set problem

on bipartite tournaments, denoted by LP4cyc(D), in which xv is the variable for vertex v

and wv is the weight of vertex v.
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minimize
∑
v∈V

wvxv

subject to
∑
v∈C

xv ≥ 1 ∀ directed cycle C of length 4

xv ≥ 0 ∀ v ∈ V

12.2.2 Iterative Algorithm

The algorithm will �rst iteratively pick vertices with large fractional value. When there is

no vertex with xv ≥ 1
2 , the algorithm will then add all the vertices with positive fractional

value on one side of the bipartite graph to the solution.

Iterative Feedback Vertex Set Algorithm on Bipartite Tournaments

(i) Initialization S ← ∅.
(ii) Compute an optimal fractional solution to LP4cyc(D).

(iii) While there is a vertex v with xv ≥ 1
2 do

(a) For a vertex v with xv ≥ 1
2 , update S ← S ∪ {v} and D ← D − v.

(b) Compute an optimal fractional solution x to LP4cyc(D).

(iv) Let the bipartition of D be X and Y , and let X+ be the set of vertices in X with

positive fractional value.

(v) Return S ∪X+.

Fig. 12.2. Feedback Vertex Set Algorithm on Bipartite Tournaments

12.2.3 Correctness and Performance Guarantee

First we prove that the solution returned by the algorithm is indeed a feedback vertex

set. Every directed cycle C of length 4 has exactly two vertices in X and two vertices

in Y , where X and Y are the bipartition of D. Let the vertices in C be {x1, y1, x2, y2}
where {x1, x2} ⊆ X and {y1, y2} ⊆ Y . After the loop, the fractional value of each vertex

is smaller than 1
2 . So if C is still present after the loop, then at least one of x1 or x2

must have positive fractional value to satisfy the constraint for C in LP4cyc(D). Hence X+

(as de�ned in Step (iv)) intersects all directed cycles of length 4 in the remaining graph.

Therefore S ∪X+ is a feedback vertex set in the original graph. To prove the performance

guarantee, we will prove that X+ is a 2-approximate solution in the remaining graph, for

which we need the complementary slackness conditions.

Theorem 12.2.2 The algorithm in Figure 12.2 is a 2-approximation algorithm for the

feedback vertex set problem on bipartite tournaments.
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Proof The main di�erence from standard iterative algorithms is in Step (iv), where we

add all the vertices in X+ to the solution regardless of their fractional values. Suppose we

could prove that ∑
v∈X+

wv ≤ 2
∑
v∈V

wvxv, (12.2)

where the right hand side is twice the objective value in the remaining fractional solution

after the while loop. Then we know that X+ is a 2-approximate solution for the feedback

vertex set problem in the remaining graph. As we only pick vertices with fractional value

at least 1
2 in the loop, by an inductive argument as in previous chapters, we could show

that the iterative algorithm in Figure 12.2 is an overall 2-approximation algorithm for the

feedback vertex set problem in bipartite tournaments.

We use the complementary slackness conditions to prove (12.2). The following is

the dual program of LP4cyc(D), in which there is one variable for each directed cycle C of

length 4 in D.

maximize
∑
C

yC

subject to
∑
C:v∈C

yC ≤ wv ∀ v ∈ V

yC ≥ 0 ∀ directed cycle C of length 4

As x is an optimal solution, by the primal complementary slackness conditions, in any

optimal dual solution y, we must have∑
C:v∈C

yC = wv

for each vertex v ∈ X+. Hence the objective value of any dual optimal solution y is∑
C

yC ≥
1

2

∑
v∈X+

∑
C:v∈C

yC =
1

2

∑
v∈X+

wv,

where the �rst inequality follows because each directed 4-cycle intersects X+ at most twice.

By the LP duality theorem, we have∑
v∈V

wvxv =
∑
C

yC ≥
1

2

∑
v∈X+

wv.

This proves (12.2), completing the proof of the theorem.

12.3 Node Multiway Cut

Given an undirected graph G with weights on the vertices and a subset T ⊂ V of terminal

vertices, the node multiway cut problem is to �nd a subset S of vertices in V − T with

minimum total weight that intersects every path with both endpoints in T , i.e. in G − S
there is no path between any pair of vertices in T .
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12.3.1 Linear Programming Relaxation

The node multiway cut problem can be formulated by the following linear program, denoted

by LPcut(G). In the following xv denotes the indicator variable for vertex v ∈ V − T , wv
denotes the weight of the vertex v ∈ V − T , and P denotes the set of all paths between

any two terminal vertices.

minimize
∑

v∈V−T
wvxv

subject to
∑
v∈P

xv ≥ 1 ∀P ∈ P

xv ≥ 0 ∀ v ∈ V − T

There could be exponentially many constraints in LPcut(G), but this can still be solved by

the ellipsoid algorithm in polynomial time, since we can use a shortest path algorithm to

construct a separation oracle for this linear program.

12.3.2 Iterative Algorithm

The iterative algorithm is similar to the previous algorithms in this chapter. It will �rst

iteratively pick vertices set to integral value. When there is no vertex with xv = 1, the

algorithm will then add all the �boundary� vertices of the terminal vertices to the solution.

Iterative Node Multiway Cut Algorithm

(i) Initialization S ← ∅.
(ii) Compute an optimal fractional solution x to LPcut(G).

(iii) While there is a vertex v with xv = 1 do

(a) For a vertex v with xv = 1, update S ← S ∪ {v} and G← G− v.
(b) Compute an optimal fractional solution x to LPcut(G).

(iv) For each vertex v ∈ T , let Zv be the set of vertices which can be reached from v

by paths of total fractional value zero, and let Bv be the set of vertices that are

adjacent to Zv, i.e. Bv = {w ∈ V − Zv | ∃u ∈ Zv with uw ∈ E}.
(v) Return S ∪

∪
v∈T Bv.

Fig. 12.3. Node Multiway Cut Algorithm

12.3.3 Correctness and Performance Guarantee

Let B := ∪u∈TBu be the set of all boundary vertices of terminal vertices. Since each path

between two terminal vertices has total fractional value at least one, it follows that B is a
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node multiway cut in the remaining graph after the while loop; otherwise there would be a

path between two terminals with total fractional value zero. To prove the approximation

guarantee, we show that B is a 2-approximate solution in Step (iv), for which we will use

(both) the complementary slackness conditions.

Theorem 12.3.1 The algorithm in Figure 12.3 is a 2-approximation algorithm for the

node multiway cut problem.

Proof As in the previous algorithms in this chapter, the main di�erence from standard

iterative algorithms is in the last step, where we add all the vertices in B to the solution

regardless of their fractional values. Note that every vertex in B has positive fractional

value. Suppose we could prove that∑
v∈B

wv ≤ 2
∑

v∈V−T
wvxv, (12.3)

which is twice the objective value in the remaining fractional solution after the while loop.

Then we know that B is a 2-approximate solution for the node multiway cut problem in

the remaining graph. As we only pick vertices with value 1 in the loop, by an inductive

argument as in previous chapters, we could show that the iterative algorithm in Figure 12.1

is an overall 2-approximation algorithm for the node multiway cut problem.

We use the complementary slackness conditions to prove (12.3). The following is the

dual program of LPcut(G), in which there is one variable for each path P of P.

maximize
∑
P

yP

subject to
∑
P :v∈P

yP ≤ wv ∀ v ∈ V − T

yP ≥ 0 ∀P ∈ P

As x is an optimal solution, by the primal complementary slackness conditions, in any

optimal dual solution y, we must have∑
P :v∈P

yP = wv

for each vertex v ∈ B. By the dual complementary slackness conditions, in any optimal

primal solution x, we must have ∑
v∈P

xv = 1

for each path P ∈ P with yP > 0.

We now argue that each path P with yP > 0 contains exactly two vertices in B. Let

P be a path with yP > 0 connecting two terminals s and t. Since there is no vertex v with

xv = 1, Bs and Bt must be disjoint; otherwise there would be a path from s to t with total

fractional value less than one. Hence P must contain one vertex in Bs and one vertex in

Bt. Suppose to the contrary that P contains another vertex in Br. If r ∈ {s, t}, then we
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can shortcut the path P to use one fewer vertex in B and obtain a shorter path P ′ from s

to t. However, since every vertex in B has a positive fractional value and
∑

v∈P xv = 1 by

the dual complementary slackness condition, this implies that
∑

v∈P ′ xv < 1, contradicting

the fact that x is a feasible solution to LPcut(G). If r /∈ {s, t}, then we can shortcut the

path P to obtain a path P ′′ from s to r, which is shorter than P since it avoids a vertex in

Bt. This implies that
∑

v∈P ′′ xv < 1, as every vertex in B has a positive fractional value

and
∑

v∈P xv = 1. Since P ′′ is a path connecting two terminals s and r, this contradicts

the fact that x is a feasible solution to LPcut(G). Therefore, each path P with yP > 0

contains exactly two vertices in B. Hence the objective value of any dual optimal solution

y is ∑
P

yP =
1

2

∑
v∈B

∑
P :v∈P

yP =
1

2

∑
v∈B

wv,

where the �rst equality holds because each path P with yP > 0 uses exactly two vertices

in B, and the second equality follows from the complementary slackness conditions. By

the LP duality theorem, we have∑
v∈V−T

wvxv =
∑
P

yP =
1

2

∑
v∈B

wv.

This proves (12.3), completing the proof of the theorem.

Notes

The result for the triangle cover problem is from the work of Krivelevich [107]. The

algorithm for the feedback vertex set problem on bipartite tournaments is due to van

Zuylen [159], improving a 3.5-approximation algorithm by Cai, Deng and Zang [25] and

an iterative rounding 3-approximation algorithm by Sasatte [146]. The result for the node

mulitway cut problem is due to Garg, Vazirani and Yannakakis [71].

Exercises

12.1 Design a 1
2 -approximation algorithm for the maximum weighted bipartite subgraph

problem.

12.2 Consider the directed triangle cover problem: Given a directed graph with weights

on the arcs, �nd a subset of arcs with minimum total weight that intersect all the

directed triangle. Obtain a 2-approximation algorithm for this problem.

12.3 Consider the following �complement� problem to the triangle cover problem: Given

an undirected graph with weights on the edges, �nd a triangle-free subgraph with

maximum total weight. Design a 3
2 -approximation algorithm for this problem.

(Hint: use the 2-approximation algorithm for the triangle cover problem and the

ideas therein.)
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12.4 Generalize the result for the triangle cover problem to obtain a (k−1)-approximation

algorithm for the k-cycle cover problem when k is odd. What about the case when

k is even?

12.5 Consider the feedback vertex set problem on tournaments. A tournament is ob-

tained from a complete undirected graph by assigning exactly one direction to each

edge.

(a) Prove that a tournament has a directed cycle if and only if it has a directed

3-cycle.

(b) Use part (a) to write a linear programming relaxation for the problem.

(c) Obtain a 3-approximation algorithm for the problem using the above linear

program.

12.6 Consider the directed 4-cycle cover problem in bipartite directed graph (a directed

graph with the underlying undirected graph bipartite): Given a bipartite directed

graph with weights on the arcs, �nd a subset of arcs with minimum total weight

to intersect all the directed 4-cycles. Design a 2-approximation algorithm for this

problem.

Can you also obtain a 2-approximation algorithm for the node-weighted case

where the objective is to �nd a subset of nodes with minimum total weight to

intersect all the directed 4-cycles?

12.7 Consider the feedback arc set problem on bipartite tournaments, where the objec-

tive is to �nd a subset of arcs with minimum total weight to intersect all the directed

cycles. What is the best performance guarantee you can obtain in polynomial time?

12.8 Work out the details of the separation oracle for solving LPcut.

12.9 Show that there is an approximation-ratio preserving reduction from the minimum

vertex cover problem to the node multiway cut problem.

12.10 Prove that LPcut(G) is actually half-integral: there is always an optimal solution

to LPcut(G) with xv ∈ {0, 12 , 1} for every vertex v ∈ V (G).

12.11 Consider the multicut problem on trees: Given a tree T with weights on the edges

and a set of l pairs of vertices {(si, ti) : 1 ≤ i ≤ l}, the objective is to �nd a subset

of edges F with minimum total weight that intersect all the si-ti paths, i.e. there

is no si-ti path in T \ F for 1 ≤ i ≤ l.
(a) Write a linear programming relaxation for this problem.

(b) Assume the tree T is rooted at a speci�c vertex r. An instance of the

problem is called non-crossing, if for each pair (si, ti), si is a descendant

of ti in the rooted tree (T, r). Prove that the above linear programming

relaxation always has integral optimal solutions for non-crossing instances.

(c) Use part (b) to obtain a 2-approximation algorithm for the multicut problem

on trees. (Hint: construct a non-crossing instance from a non-non-crossing

instance.)
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12.12 Can you obtain a 2-approximation algorithm for the multicut problem on trees by

an iterative rounding algorithm?
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13

Iterative Relaxation: Early and Recent Examples

†

Even though we mentioned the paper by Jain [91] as the �rst explicit application

of the iterative method to approximation algorithms, several earlier results can be reinter-

preted in this light, which is what we set out to do in this chapter. We will �rst present

a result by Beck and Fiala [14] on hypergraph discrepancy, whose proof is closest to other

proofs in this book. Then we will present a result by Steinitz [156] on rearrangements of

sums in a geometric setting, which is the earliest application that we know of. Then we

will present an approximation algorithm by Skutella [152] for the single source unsplittable

�ow problem. Then we present the additive approximation algorithm for the bin packing

problem by Karmarkar and Karp [93], which is still one of the most sophisticated uses of

the iterative relaxation method. Finally, we sketch a recent application of the iterative

method augmented with randomized rounding to the undirected Steiner tree problem [23]

following the simpli�cation due to Chakrabarty et al. [28].

13.1 A Discrepancy Theorem

In this section we present the Beck-Fiala theorem from discrepancy theory using an iterative

method. Given a hypergraph G = (V,E), a 2-coloring of the hypergraph is de�ned as an

assignment ψ : V → {−1,+1} on the vertices. The discrepancy of a hyperedge e is de�ned

as discχ(e) =
∑

v∈e ψ(v), and the discrepancy of the hypergraphG is de�ned as discψ(G) =

maxe∈E(G) |{discψ(e)}|. Beck and Fiala gave an upper bound on the discrepancy based on

the maximum degree of the hypergraph (de�ned as maxv |{e : v ∈ e}|).

Theorem 13.1.1 Given a hypergraph G = (V,E) with maximum degree d, there is a

coloring ψ with discrepancy discψ(G) ≤ 2d− 1.

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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13.1.1 Linear Programming Relaxation

Consider the following feasibility linear program LPdisc for the hypergraph 2-coloring prob-

lem. There is a variable xv for each vertex v ∈ V , which is either 1 or −1 depending on

whether ψ(v) = 1 or ψ(v) = −1. Initially we set Be = 0 for each hyperedge e ∈ E, as
xv = 0 for all v is a feasible solution to this linear program (even though it may not be an

extreme point solution). ∑
v∈e

xv = Be ∀ e ∈ E

−1 ≤ xv ≤ 1 ∀ v ∈ V

13.1.2 Characterization of Extreme Point Solutions

For a hyperedge e the corresponding constraint
∑

v∈e xv = Be de�nes a characteristic

vector χ : E → R|V | with an 1 corresponding to each vertex v ∈ e and 0 otherwise. The

following characterization is a direct application of the Rank Lemma.

Lemma 13.1.2 Given any extreme point solution to LPdisc with −1 < xv < 1 for each

v ∈ V , there exists a subset F ⊆ E such that

(i)
∑

v∈e xv = Be for each e ∈ F .
(ii) The characteristic vectors for the constraints in F are linearly independent.

(iii) |F | = |V |.

13.1.3 Iterative Algorithm

The iterative algorithm is similar to that for the minimum bounded degree spanning tree

problem. In each iteration we either �x the variables with value +1,−1 or remove the

constraint for a �small� hyperedge.

Iterative Algorithm for Beck-Fiala Theorem

(i) Initialization ψ(v)← 0 for all v ∈ V ;
(ii) While V (G) ̸= ∅ do

(a) Find an optimal extreme point solution x to LPdisc.

(b) If there is a variable with xv = 1 or xv = −1, then set ψ(v) = xv and set

Be = Be − xv for each hyperedge e containing v and remove v from G.

(c) If there exists a hyperedge e ∈ E with |e| ≤ d, then remove the constraint

for e and remove e from G.

(iii) Return ψ.

Fig. 13.1. Beck-Fiala Discrepancy Theorem
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13.1.4 Correctness and Performance Guarantee

We �rst show that the discrepancy of ψ is at most 2d − 1 assuming that the algorithm

terminates. Consider any hyperedge e. Note that the updates of Be over the course of

the algorithm ensure that the updated LPs solved in the subsequent iterations continue to

remain feasible. We prove by induction that Be + discψ(e) = 0 while the constraint for e

is present, where Be is the current target discrepancy in the linear program and discψ(e)

is the current discrepancy in the partial solution constructed so far. This condition holds

initially as Be = 0 and discψ(e) = 0 since xv = 0 for every vertex v. Whenever we

set ψ(v) = 1 or ψ(v) = −1, discψ(e) increases by ψ(v) and Be decreases by ψ(v) for

each hyperedge e that contains v, and hence the equality continues to hold. When the

constraint for a hyperedge e is removed, there are at most d vertices left in e. Since each

variable v has value −1 < xv < 1, the equality
∑

v∈e xv = Be = −discψ(e) implies that

|discψ(e)| = |
∑

v∈e xv| < d. Hence, after the constraint is removed, even if we color the

remaining vertices arbitrarily, the maximum discrepancy of this edge is strictly less than

2d.

To complete the proof of Theorem 13.1.1 we show that the algorithm will terminate

by a simple counting argument.

Lemma 13.1.3 Given any extreme point solution x of LPdisc(G), at least one of the

following must hold.

(i) There exists a vertex v with xv ∈ {−1, 1}.
(ii) There exists an edge e ∈ E with |e| ≤ d.

Proof Suppose that neither is true. From Lemma 13.1.2 there is a subset of hyperedges

F ⊆ E with |F | = |V |. Thus the number of variables |V | is at most |E|. As each hyperedge

contains strictly more than d vertices,∑
e∈E
|e| > d|E|,

but as each variable occurs in at most d hyperedges we have∑
e∈E
|e| =

∑
v∈V

dE(v) ≤ d|V |

Thus we must have |V | > |E| which is a contradiction.

13.2 Rearrangments of Sums

In this section we will present Steinitz's result on rearrangments of sums in a geometric

setting using an iterative method. Let V be a subset of vectors in the unit ball Bd in the

d-dimensional Euclidean space. Assume that
∑

v∈V v = 0. The question is whether there

is an ordering v1, v2, . . . , vn of the elements of V such that all partial sums along this order
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are bounded by a number that only depends on d. Steinitz [156] answers this question

a�rmatively.

Theorem 13.2.1 Given a �nite set V ⊆ Bd with
∑

v∈V v = 0, there is an ordering

v1, v2, . . . , vn of the elements of V such that

||
k∑
i=1

vi|| ≤ d for all 1 ≤ k ≤ n,

where ||v|| is the Euclidean norm of v.

13.2.1 Linear Programming Relaxation

The approach is not to directly formulate the problem as an optimization problem, instead

the key idea is to consider an auxiliary linear program. In the following k is a constant

whose value will be chosen in the range between n and d+ 1.∑
v∈V

αvv = 0 (13.1)∑
v∈V

αv = k − d (13.2)

0 ≤ αv ≤ 1 for all v ∈ V (13.3)

Note that since each vector v ∈ V is d-dimensional, the equality constraint (13.1) is actually

an abbreviation of d linear equality constraints.

13.2.2 Characterization of Extreme Point Solutions

The following lemma is used to �create� a zero-valued variable in the auxiliary linear

program.

Lemma 13.2.2 When k = |V |−1, given any extreme point solution to the auxiliary linear

program, there exists a vector v with αv = 0.

Proof There are |V | variables in this linear program. By the Rank Lemma there are |V |
constraints satis�ed as equalities in an extreme point solution. The �rst two constraints

contribute d+1 equalities. If αv > 0 for all v ∈ V , then there are at least |V |−d−1 = k−d
vectors with αv = 1. Hence, to satisfy the equality constraint (13.2) in the auxiliary linear

program, the remaining d+ 1 variables must be zero, a contradiction.
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13.2.3 Iterative Algorithm

The iterative algorithm produces the ordering in reverse order. In each iteration the right

hand side of equality (13.2) of the linear program decreases, and some vector with coe�cient

zero will be put at the end of the ordering among the current vectors.

Iterative Algorithm for Steinitz Theorem

(i) Initialization k = |V | − 1;

(ii) While |V | > d+ 1 do

(a) Compute an extreme point solution x to the auxiliary linear program.

(b) Find a vector u with αv = 0. Set vk+1 := u. Remove u from the problem.

Set k := k − 1.

(iii) Order the remaining d+ 1 vectors arbitrarily to obtain v1, v2, . . . , vd+1.

(iv) Return the ordering {v1, v2, . . . , v|V |}.

Fig. 13.2. Steinitz's Theorem on Rearrangments of Sums

13.2.4 Correctness and Performance Guarantee

First we prove that the algorithm will succeed in producing an ordering. There are two

parts: one is to show that the linear program is always feasible, and the other is to show that

there is always a vector with coe�cient zero. For the �rst part, initially when k = |V | − 1

the solution αv = (|V | − 1 − d)/|V | for all v is feasible since
∑

v∈V v = 0. Now suppose

there is a feasible solution in the current iteration. When k is decreased by one, we can

obtain a feasible solution by scaling down the current solution by a factor of k−1−d
k−d . So by

induction there is always a feasible solution to the linear program. The second part follows

directly from Lemma 13.2.2.

Finally we prove that the norm of all partial sums is at most d. This is trivial for

the �rst d vectors. Now consider the case when k ≥ d + 1. In the following let αv be the

coe�cient of vector v in the iteration when there are exactly k vectors left; note that we

can scale down the solution in the last iteration to obtain a feasible solution for k = d+1.

k∑
i=1

vi =

k∑
i=1

vi −
k∑
i=1

αvivi =

k∑
i=1

(1− αvi)vi,

where the �rst equation follows because
∑k

i=1 αvivi = 0 by the equality constraint (13.1)

in the linear program. Taking norms and using that 1− αvi ≥ 0 and ||vi|| ≤ 1 gives

||
k∑
i=1

vi|| = ||
k∑
i=1

(1− αvi)vi|| ≤
k∑
i=1

||(1− αvi)vi|| ≤
k∑
i=1

(1− αvi) = k − (k − d) = d,
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where the second last equation follows from the equality constraint (13.2) of the linear

program. This completes the proof of Theorem 13.2.1.

13.3 Minimum Cost Circulation

In this section, we show the integrality of a linear programming relaxation for the minimum

cost circulation problem. This proof will serve as a basis for the iterative algorithm for the

minimum cost unsplittable �ow problem in the next section.

In an instance of the minimum cost circulation problem, we are given a directed graph

D = (V,A) with arc costs c : A→ R, capacities u→ R+ and a demand function b : V → R.

The task is to �nd a minimum cost �ow x : A→ R+ such that x(δout(v))− x(δin(v)) = bv
for each v ∈ V . Recall that x(F ) for F ⊆ A is a shorthand for

∑
e∈F xe. The vertices with

bv > 0 are referred to as sources and vertices with bv < 0 are referred to as sinks. Note

that for feasibility, we must have
∑

v bv = 0. In the following theorem we prove that when

the demands and the capacities are multiples of some integer d, then there is an optimal

�ow which is d-integral.

Theorem 13.3.1 Consider an instance of the minimum cost circulation problem with d|bv
(bv is divisible by d) for each v ∈ V and d|ua for each a ∈ A for some d ∈ Z+. Then there

must exist a minimum cost solution x such that d|xa for each arc a ∈ A.

13.3.1 Linear Programming Relaxation

The following is a standard linear programming formulation for the minimum cost circu-

lation problem, denoted by LPcirc.

minimize
∑
a∈A

ca xa

subject to x(δout(v))− x(δin(v)) = bv ∀ v ∈ V
0 ≤ xa ≤ ua ∀ a ∈ A

13.3.2 Characterization of Extreme Point Solutions

For each vertex v, the corresponding constraint x(δout(v))−x(δin(v)) de�nes a characteris-
tic vector χ(v) in R|A| with an 1 corresponding to each arc in δout(v) and a−1 corresponding
to each arc in δin(v) and 0 otherwise. The lemma below is a direct consequence of the

Rank Lemma.

Lemma 13.3.2 Given any extreme point solution x to LPcirc with 0 < xa < ua for each

a ∈ A, there exists a subset W ⊆ V such that
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(i) x(δout(v))− x(δin(v)) = bv for each v ∈W .

(ii) The vectors in {χ(v) : v ∈W} are linearly independent.

(iii) |A| = |W |.

The following corollary states the property that will be used later.

Corollary 13.3.3 Given any extreme point solution x to LPcirc with 0 < xa < ua for each

a ∈ A, we must have |A| ≤ |V | − 1.

Proof By Lemma 13.3.2 we have |A| = |W |. Note that
∑

v∈V χ(v) = 0, since every arc

is counted exactly once as a positive term and exactly once as a negative term. As the

constraints in W are linearly independent, this implies that |W | ≤ |V | − 1, and thus the

corollary follows.

13.3.3 Iterative Algorithm

We now present the iterative algorithm for the minimum cost circulation problem, which

will return an optimal solution x with the property that d|xa for each a ∈ A.

Iterative Minimum Cost Circulation Algorithm

(i) Initialization F ← ∅.
(ii) While V (G) ̸= ∅ do

(a) Find an optimal extreme point solution x to LPcirc.

(b) Fix every arc a with fa = 0. Add a to F with this value setting and delete

a from G. Also delete vertices with no arcs incident to them.

(c) If there exists (v, w) ∈ A such that x(v,w) = u(v,w) then �x (v, w) with this

value setting, add a to F and delete a from G. Update bv ← bv − x(v,w)
and bw ← bw + x(v,w).

(d) Find a vertex v with at most one arc a incident on it. Fix a with value xa
and add a to F . Update G← G\{v}. If a is an out-arc (v, w), then update
bw ← bw + x(v,w); otherwise, a = (w, v) and update bw ← bw − x(v,w).

(iii) Return F .

Fig. 13.3. Minimum Cost Circulation Algorithm

13.3.4 Correctness and Optimality

Observe that each of the update steps maintains the property that the �ow �xed on each

arc is a multiple of d, since it is either �xed to ua or is �xed to ±bv for some vertex v.

Optimality of the cost follows from a simple inductive argument. To prove Theorem 13.3.1,
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it remains to prove that the algorithm terminates by showing that one of the choices in

the while loop is available in each iteration.

Lemma 13.3.4 For any extreme point solution x to LPcirc with 0 < xa < ua, there is a

vertex v with d(v) = dout(v) + din(v) ≤ 1.

Proof Suppose for contradiction that d(v) ≥ 2 for each v ∈ V . Thus we have |A| =
1
2

∑
v∈V d(v) ≥ |V |. This contradicts Corollary 13.3.3.

Thus we obtain a d-integral minimum cost �ow as an optimal solution proving The-

orem 13.3.1.

13.4 Minimum Cost Unsplittable Flow

In this section we show an application of the iterative relaxation method on the minimum

cost single source unsplittable �ow problem. In an instance of this problem, we are given

a graph G = (V,A) with edge costs c : A → R+, edge capacities u : A → R+, a source

s ∈ V and a set of sinks T = {t1, . . . , tk} with demands d1, d2, . . . , dk. The task is to �nd

a minimum cost unsplittable �ow from the source to the sinks that satis�es the capacity

constraints. A �ow is called unsplittable if the total �ow to each sink follows exactly one

�ow path. A �ow is called splittable if the total �ow to each sink can use multiple paths.

Theorem 13.4.1 Given an instance of the unsplittable �ow problem with di|dj or dj |di for
each 1 ≤ i, j ≤ k, there exists an unsplittable �ow which violates the capacity constraint

on any arc by at most dmax = max1≤i≤k di, with total cost at most the optimal cost of any

splittable �ow that satis�es all the capacity constraints.

A similar but weaker theorem holds without any assumption on the demands; see the

exercises. We prove Theorem 13.4.1 by an iterative relaxation algorithm. The underlying

integral problem is the min-cost circulation problem and we will use Theorem 13.3.1.

13.4.1 Linear Programming Relaxation

We obtain the following linear programming formulation, denoted by LPunsplit, for the

minimum cost unsplittable �ow problem, by casting it as a minimum cost circulation

problem. Here bv = −dv for each v ∈ T and bs =
∑

v∈T dv and bv = 0 for each v ∈
V \ (T ∪ s).
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minimize
∑
a∈A

ca xa

subject to x(δout(v))− x(δin(v)) = bv ∀ v ∈ V
0 ≤ xa ≤ ua ∀ a ∈ A

Since the linear program is the same as LPcirc, we obtain the same characterization as in

Lemma 13.3.2 as well as in Corollary 13.3.3.

13.4.2 Iterative Algorithm

We now present the iterative algorithm proving Theorem 13.4.1. The main idea is to relax

the capacity constraints on the arcs so that Theorem 13.3.1 can be applied.

Iterative Minimum Cost Unsplittable Flow Algorithm

(i) Initialization F ← ∅.
(ii) While V (G) ̸= ∅ do

(a) Let dmin = min{dv : v ∈ T}. Round up ua to the closest multiple of dmin
for all arcs a ∈ A.

(b) Find an optimal extreme point solution x to LPunsplit and remove all arcs

with xa = 0.

(c) Find a path from from s to v ∈ T where dv = dmin. Route the �ow to v

on this path. Update T ← T \ {v} and reduce capacities on the arcs on

the path by dmin.

(iii) Return the set of �ow paths discovered.

Fig. 13.4. Minimum Cost Unsplittable Flow Algorithm

13.4.3 Correctness and Performance Guarantee

In each step, when a �ow is routed to some sink v, Theorem 13.3.1 implies that each arc

carries �ow which is at least dv = dmin. Thus it is possible to route dmin �ow on this path

as required by the algorithm. The optimality of the cost follows from a standard inductive

argument, since at each step we only relax the capacity constraints. We now show that the

capacity on each arc is violated by at most dmax, completing the proof of Theorem 13.4.1.

Lemma 13.4.2 The iterative algorithm for the minimum cost unsplittable �ow problem

returns an unsplittable �ow such that the capacity on each arc is violated by at most dmax.
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Proof The routed �ow is unsplittable by construction. The capacities are violated in

Step (ii)(a) when they are rounded up. Let the demands be d1 ≤ d2 ≤ . . . ≤ dk in the

increasing order. Observe that d1|d2| . . . |dk. We now show by induction that when the

demands d1, . . . , di have been routed, the capacity on each arc is at most di more than

its initial capacity and is a multiple of di for each 1 ≤ i ≤ k. The claim clearly holds for

i = 1. By the induction hypothesis we assume the claim is true for i− 1, i.e, the capacity

is violated by at most di−1 and is a multiple of di−1. While routing di, the capacity is

increased to a multiple of di. Since di−1|di, the increase in the ith step is bounded by

di − di−1 which bounds the total violation at the end of ith step by di as required.

13.5 Bin Packing

In this section we show the Karmarkar-Karp algorithm for the bin packing problem. This is

one of the earliest and is still one of the most sophisticated instances of using the iterative

technique for an approximation algorithm. In an instance I of the one-dimensional bin

packing problem, we are given n items each of which has a size between 0 and 1. The

objective is to pack the items into a minimum number of unit-size bins. Let opt(I) denote

the number of bins required in an optimal solution to instance I. We present the following

theorem due to Karmarkar and Karp.

Theorem 13.5.1 There is a polynomial time algorithm which returns a solution with at

most opt(I) +O(log2 opt(I)) bins.

13.5.1 Linear Programming Relaxation

A natural linear programming relaxation is to require that each item is put in at least

one bin and each bin can pack items of total size at most one, but this relaxation has a

(multiplicative) integrality gap of 2; see exercises. To obtain an additive approximation,

we need a so-called con�guration linear programming relaxation for the problem. Consider

an instance I of the bin packing problem with n(I) items of m(I) di�erent types. For

1 ≤ i ≤ m(I), let bi be the total number of items of type i and si be the common size of

these items. Let T1, . . . , TN be all the possible con�gurations in which a single bin can be

packed:

{T1, . . . , TN} := {(k1, . . . , km(I)) ∈ Zm+ :

m∑
i=1

kisi ≤ 1}.

Note that N can be exponential in n(I) and m(I). Let Tj = (tj1, . . . , tjm(I)) where

tji denotes the number of items of type i in con�guration j. The con�guration linear

203



programming relaxation for the bin packing problem is as follows.

minimize
N∑
j=1

xj

subject to
N∑
j=1

tjixj ≥ bi ∀ 1 ≤ i ≤ m(I)

xj ≥ 0 ∀ 1 ≤ j ≤ N,

where the constraints ensure that the con�gurations chosen contain at least bi items for

each type i. This linear programming has exponentially many variables, but there is a

polynomial time algorithm to compute a fractional solution di�ering from the optimum by

at most δ. Consider the dual of the linear program.

maximize

m(I)∑
i=1

biyi

subject to

m(I)∑
i=1

tjiyi ≤ 1 ∀ 1 ≤ j ≤ N

yi ≥ 0 ∀ 1 ≤ i ≤ m(I),

The dual program has m variables but exponentially many constraints, but if there is a

polynomial time separation oracle to determine if a given y is a feasible solution, then the

dual program can be solved by the ellipsoid algorithm. The separation problem for the dual

linear program is to determine, given y, if there exists a con�guration T = {t1, t2, . . . , tm}
so that

∑m(I)
i=1 tiyi > 1. This is equivalent to the following maximization problem on the

variables ti. Recall that si denotes the size of items of type i.

maximize

m(I)∑
i=1

yiti

subject to

m(I)∑
i=1

siti ≤ 1

ti ∈ Z+ ∀ 1 ≤ i ≤ m(I),

where the constraint is the de�nition of a con�guration. This is a knapsack problem where

si and yi correspond to the size and pro�t of item i respectively. So the separation problem

is equivalent to a knapsack problem, which is NP-hard to solve optimally. Nevertheless,

if there is a polynomial time weak separation oracle to determine whether a given y is a

feasible dual solution with error at most δ on the dual objective function or y is an infeasible

dual solution, then the dual program can be approximated by the ellipsoid algorithm with

an error at most δ.

In the following we sketch how to obtain an approximate solution to the (primal)

con�guration linear program using the ellipsoid algorithm. For the dual program, we
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can solve the weak separation problem by rounding each yi down to the nearest rational

number that is a multiple of δ
2n , and then use a dynamic programming algorithm to solve

the resulting knapsack problem optimally in polynomial time. Using the ellipsoid algorithm

with the weak separation oracle, we can then obtain a solution y∗ to the dual problem with

y∗b ≥ optdual−δ, where b is the vector of the number of items of each type and optdual is

the optimal value of the dual program. Let T ′
1, T

′
2, . . . , T

′
N ′ be the bin con�gurations that

appeared as a separating hyperplane during the execution of the ellipsoid algorithm, where

N ′ is bounded by a polynomial in n(I) and m(I). Consider the dual program restricted to

the constraints that correspond to T ′
1, . . . , T

′
N ′ and let the optimal value of this restricted

dual program be opt
′
dual. Then y∗b ≥ opt

′
dual − δ, since the weak separation oracle can

always give the same answer as for the original problem. To obtain an approximate solution

to the primal program, we obtain an optimal solution to the restricted primal program in

which we use only the variables that correspond to the con�gurations in T ′
1, . . . , T

′
N ′ and

delete all other variables; in other words, we obtain an optimal solution to the dual of the

restricted dual program. Since there are only polynomially many variables and constraints,

this resticted primal program can be solved optimally in polynomial time. Let opt′
primal

be the optimal value of the restricted primal program. Then we have

opt
′
primal − δ = opt

′
dual − δ ≤ y∗b ≤ optdual = optprimal.

Therefore an optimal solution to the restricted primal program is an approximate solution

to the primal program with additive error at most δ.

13.5.2 Characterization of Extreme Point Solutions

The following lemma is a direct consequence of the Rank Lemma.

Lemma 13.5.2 Given any extreme point solution to the con�guration linear program, there

are at most m(I) nonzero variables, where m(I) is the number of di�erent types of items

in instance I.

To illustrate the use of Lemma 13.5.2, we show a very simple algorithm with a

good performance guarantee when the number of di�erent types of items is small. Let

lin(I) denote the optimal value of the con�guration LP associated with instance I. Let

size(I) =
∑m(I)

i=1 sibi be the sum of the sizes of all the items in instance I.

Lemma 13.5.3 opt(I) ≤ lin(I) + m(I)+1
2 .

Proof Let x be an optimal extreme point solution of the con�guration LP for instance I.

Then, by Lemma 13.5.2, x has at most m(I) nonzero variables. We open ⌊xj⌋ bins with
con�guration j for each j. The remaining items form an instance I ′. Let fj = xj − ⌊xj⌋.
Then size(I ′) ≤ lin(I ′) =

∑
j fj . We now �nd a packing for instance I ′ of cost at most

size(I ′) + m(I)+1
2 . A packing for instance I ′ of cost at most m(I) can be constructed by
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using one new bin for each con�guration j with nonzero fj , and then removing excess items

(the items that appear in more than one con�guration). On the other hand, any greedy

packing algorithm will give a solution for instance I ′ of cost at most 2size(I ′)+1, since each

bin, except possibly one, will be at least half full. Hence, the better of these two packings

has cost at most the average, which is size(I ′) + m(I)+1
2 ≤

∑
j fj +

m(I)+1
2 , which in turn

gives a packing for instance I with cost at most
∑

j⌊xj⌋+
∑

j fj+
m(I)+1

2 = lin(I)+m(I)+1
2 ,

proving the lemma.

13.5.3 De�ning Residual Problems: Grouping and Elimination

Given Lemma 13.5.3, one would like to reduce the number of distinct item sizes of the

input instance. The idea of grouping is to divide the items into groups of similar sizes, and

create a residual problem by increasing the sizes of each item to the largest item size in

its group, so as to decrease the number of distinct item sizes in the residual problem. By

doing so, however, the total item size of the residual problem and hence the optimum of

the residual problem increases, and so there is a tradeo� in choosing the parameters. The

main idea of the Karmarkar-Karp algorithm is to de�ne the residual problem iteratively,

so that in each iteration the number of distinct item sizes decrease by a constant factor,

while the optimum in the residual problem increases by only an extra O(log(opt)) number

of bins. Applying this procedure inductively will lead to Theorem 13.5.1.

The following is a simple method to bound the optimum of the residual problem. Let

I and J be two bin packing instances. We write I ≼ J if there is an injective function f

mapping items in I into items in J so that size(a) ≤ size(f(a)) for each item a ∈ I, where
size(a) is the size of item a. Clearly, if I ≼ J , then opt(I) ≤ opt(J), lin(I) ≤ lin(J)

and size(I) ≤ size(J). This method will be used throughout to analyze the performance

of the grouping techniques.

13.5.3.1 Linear Grouping

The following process is called linear grouping with parameter k. Let I be an instance

of the bin packing problem and let k be a positive integer. Divide the set I into groups

G1, G2, . . . , Gq so that G1 contains the k largest items, G2 contains the next k largest items

and so on. Hence G1 ≽ G2 ≽ · · · ≽ Gq and |Gi| = k for all groups except the last group.

Let G′
i be the multi-set of items obtained by increasing the size of each item in group Gi

to the maximum size of an item in that group. Then G1 ≽ G′
2 ≽ G2 ≽ · · · ≽ G′

q ≽ Gq.

Let J := ∪qi=2G
′
i and J

′ := G1. Then J ≼ I ≼ J ∪ J ′. Note that the items in J ′ can be

trivially packed in k new bins, by using one new bin for each item. Therefore, we have the

following after linear grouping.

Lemma 13.5.4 After linear grouping with parameter k, we have

• opt(J) ≤ opt(I) ≤ opt(J) + k,
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• lin(J) ≤ lin(I) ≤ lin(J) + k,

• size(J) ≤ size(I) ≤ size(J) + k.

13.5.3.2 Geometric Grouping

The following re�nement of linear grouping is called geometric grouping with parameter

k. This is the key idea in the Karmarkar-Karp algorithm to reduce the number of distinct

item sizes iteratively.

Let I be an instance of the bin packing problem. Let α(I) denote the size of the

smallest item in instance I. For 0 ≤ r ≤ ⌊log2 1
α(I)⌋, let Ir be the instance consisting of

those items from I whose sizes are in the interval [2−(r+1), 2−r). Let Jr and J ′
r be the

instances obtained by applying linear grouping with parameter k · 2r to Ir. Let J := ∪rJr
and J ′ := ∪rJ ′

r.

Lemma 13.5.5 After geometric grouping with parameter k, we have

• opt(J) ≤ opt(I) ≤ opt(J) + k⌈log2 1
α(I)⌉,

• lin(J) ≤ lin(I) ≤ lin(J) + k⌈log2 1
α(I)⌉,

• size(J) ≤ size(I) ≤ size(J) + k⌈log2 1
α(I)⌉,

• m(J) ≤ 2
ksize(I) + ⌈log2

1
α(I)⌉.

Proof From Lemma 13.5.4 it follows that Jr ≼ Ir ≼ Jr∪J ′
r and thus J ≼ I ≼ J∪J ′. Hence

opt(J) ≤ opt(I) ≤ opt(J ∪ J ′) ≤ opt(J) + opt(J ′). Note that opt(J ′) ≤
∑

r opt(J
′
r).

Each J ′
r contains at most k · 2r items each of size less than 2−r. Hence J ′

r can be packed

into at most k bins. Thus opt(J ′) ≤ k⌈log2 1
α(I)⌉, and therefore opt(J) ≤ opt(I) ≤

opt(J) + k⌈log2 1
α(I)⌉. The proofs of the next two inequalities are similar.

For each r, since we apply linear grouping with parameter k · 2r, all except the last
group in Jr have k · 2r items and the items in each group are of the same size. Also, each

item in Ir has size at least 2
−(r+1), and thus we have

size(Ir) ≥ 2−(r+1) · n(Ir) ≥ 2−(r+1)
(
(m(Jr)− 1) · k · 2r

)
.

Therefore m(Jr)− 1 ≤ 2
ksize(Ir) and thus

m(J) ≤ 2

k
size(I) + ⌈log2

1

α(I)
⌉.

13.5.3.3 Elimination of Small Items

In the geometric grouping process, the performance depends on the smallest item size.

In the following we show that we can eliminate items of small sizes without a�ecting the

approximation performance ratio much. Let I be an instance of the bin packing problem.

Let g be a real number between 0 and 1. We say an item is large if its size is larger than g
2
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and small otherwise. Consider a process which starts with a given packing of large items

into bins, and then inserts the small items, using a new bin only when necessary. If the

cost of the given packing of the large pieces is C, then the cost of the packing resulting

from the process is at most max{C, (1 + g)opt(I) + 1}; see the exercises.

13.5.4 Iterative Algorithm

With the grouping technique developed, we present the iterative algorithm in Figure 13.5.

The parameters k and g will be set as k = 4 and g = 1
size(I) .

Iterative Bin Packing Algorithm

(i) Eliminate all small items of size at most g.

(ii) While size(I) > 1 + 1
1− 2

k

⌈log2 1
g ⌉ do

(a) Perform geometric grouping with parameter k to create instance J and J ′.

Pack J ′ using at most k⌈log2 1
g ⌉ new bins.

(b) Compute an optimal extreme point solution x to the con�guration LP on

instance J with error at most 1.

(c) For each j with xj ≥ 1, create ⌊xj⌋ bins with con�guration j and remove

the items packed from the problem.

(iii) Pack the remaining items using at most 2 + 2
1− 2

k

⌈log2 1
g ⌉ bins.

(iv) Insert the small items eliminated in Step 1, using new bins only when necessary.

Fig. 13.5. Karmarkar-Karp Bin Packing Algorithm

13.5.5 Correctness and Performance Guarantee

To prove the correctness and the performance guarantee, we will bound the number of

iterations of the algorithm (in particular it will terminate) and the number of bins used

by the algorithm. Let t be the number of iterations of the algorithm. For 1 ≤ i ≤ t, let Ii
be the instance at the beginning of iteration i, and Ji, J

′
i be the instances resulting from

geometric grouping on Ii, and let Xi and Yi be the number of bins created in Step (ii)(c)

and Step (ii)(a) in iteration i of the algorithm.

Lemma 13.5.6 The iterative algorithm will terminate in at most O(lnn) iterations.

Proof Note that the total size of the residual problem decreases geometrically:

size(Ii+1) ≤ lin(Ii+1) ≤
∑
j

(xj − ⌊xj⌋) ≤ m(Ji) ≤
2

k
size(Ii) + ⌈log2

1

g
⌉,
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where the second last inequality follows from Lemma 13.5.2 and the last inequality follows

from Lemma 13.5.5. Therefore

size(Ii+1) ≤ (
2

k
)isize(J) + ⌈log2

1

g
⌉[1 + 2

k
+ · · ·+ (

2

k
)i−1] ≤ (

2

k
)isize(I) +

1

1− 2
k

⌈log2
1

g
⌉.

Since size(It) > 1 + 1
1− 2

k

⌈log2 1
g ⌉, this implies that ( 2k )

t
size(I) ≥ 1 and hence

t ≤ ln size(I)

ln k
2

+ 1 = O(lnn).

Therefore the running time of the algorithm is polynomial.

Lemma 13.5.7 The total number of bins used by the algorithm is at most opt(I) +

O(ln2 opt(I)).

Proof To bound the number of bins used by the algorithm, we note that lin(Ii+1) ≤
lin(Ji) + 1−Xi ≤ lin(Ii) + 1−Xi by Step (ii)(c) of the algorithm, which implies that

t∑
i=1

Xi ≤ lin(I) + t.

By Lemma 13.5.5 we have for each 1 ≤ i ≤ t

Yi ≤ k⌈log2
1

g
⌉.

Note that Step (iii) is always possible by any greedy algorithm. The number of bins

produced by the algorithm after Step (iii) is at most

t∑
i=1

Xi + t · Yi + 2 +
2

1− 2
k

⌈log2
1

g
⌉.

After inserting the small items, the total number of bins used by the algorithm is at most

the maximum of (1 + g)opt(I) + 1 and

opt(I) +
( ln size(I)

ln k
2

+ 1
)(

1 + k⌈log2
1

g
⌉
)
+ 2 +

2

1− 2
k

⌈log2
1

g
⌉,

because
∑t

i=1Xi ≤ lin(I) ≤ opt(I) and t ≤ ( lnsize(I)
ln k

2

+ 1) and Yi ≤ k⌈log2 1
g ⌉. By

setting k = 4 and g = 1
size(I) ≥

1
n , and noting that opt(T ) ≥ size(I), we see that the

total number of bins is at most opt(I) +O(ln2 opt(I)), proving theorem 13.5.1.

13.6 Iterative Randomized Rounding: Steiner Trees

In this section, we present a recent application of the iterative rounding method augmented

with randomized rounding for the classical undirected Steiner tree problem. The Steiner
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tree problem is de�ned on an undirected graph G = (V,E) with costs c on the edges and

the vertex set partitioned into terminals R and non-terminals or Steiner nodes V \ R. A

Steiner tree is an undirected spanning tree that must span the terminals and can span

any subset of the Steiner nodes. The Steiner tree problem is to �nd one of minimum cost,

and is known to be APX-hard. The methods from Chapter 10 give a 2-approximation

algorithm for this problem (using the original method of Jain that introduced the iterative

method) as well as its various generalizations.

The basic Steiner tree problem however had a simple 2-approximation algorithm

before the iterative rounding method of Jain. First, observe that we may work with the

metric completion of the costs on the edges in solving the problem: this completion replaces

the graph with a complete graph where the cost of any new edge is the cost of the shortest

path under the original costs between the endpoints of the edge. It is not hard to see that

edges of any optimal solution will be retained in the completion, and that any Steiner tree

in the completion can be converted to one in the original graph by replacing any new edges

chosen by the corresponding shortest path. Thus we can assume that the input to the

Steiner tree instance is a metric without loss of generality.

The classical 2-approximation for the Steiner tree problem starts with the metric

completion restricted only to the terminal nodes in R, and computes a minimum spanning

tree on it. To get a feasible solution, we replace the edges in the spanning tree by the

corresponding paths as above. To see that this solution is indeed a 2-approximation, it

su�ces to demonstrate a solution in the metric completion on R of cost at most twice

the optimal. To do this, consider an optimal Steiner tree, double every edge, and take

an Eulerian tour around the �perimeter� of a planar representation of this doubled tree.

This walk can start at any terminal and visit every other terminal once and return to the

starting terminal: short-cutting the segments between terminals will give a cycle in the

metric completion on R of cost no more than twice that of the optimal Steiner tree. Thus

we have demonstrated the existence of a solution of cost at most twice the optimal which

is a cycle on R made of |R| segments. Since we only require a tree, we can discard the

costliest segment and thus argue that there exists a path of cost at most 2(1− 1
|R|) times

the optimal, completing the proof.

We now present an improvement to the above algorithm based on building up the

optimal solution not using single edges denoting paths that join pairs of terminals but

instead using subtrees that connect more than two terminals optimally. Such subtrees are

called full components, and we start with the above minimum spanning tree solution and

identify subsets of more than two vertices that can be connected by optimal full components

on them. We then include these components and discard a few redundant edges in the

spanning tree and proceed until we have substantially reduced the cost of the spanning tree.

The initial application of this idea was due to Zelikovsky [165] and subsequently improved

in [17, 144]. We describe a recent improvement in this line of attack which chooses the full

components iteratively and randomly based on an LP relaxation.
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13.6.1 Linear Programming Relaxation

A full component on a subset K of the terminals is a tree whose leaf set is K and internal

nodes are Steiner vertices. Note that the edges of any Steiner tree can be partitioned in

a unique way into full components. The goal of the LP relaxation below is to describe

the Steiner tree problem as the choice of its optimal full components. Note that a set of

full components on sets K1,K2, . . . ,Kr forms a Steiner tree exactly when the hypergraph

formed by these subsets as hyperedges on R is a hyper-spanning tree: namely, no pair of

them has an intersection of more than one terminal, and there is a path between any pair

of terminals following hyperedges. This leads to the following hypergraphic LP relaxation:

let F (K) denote the minimum cost full component for terminal set K ⊂ R and let CK
be its cost. The hypergraphic relaxation for minimum-cost Steiner tree below is similar to

the subtour LP for spanning trees in its design.

minimize
∑
K

CK xK

subject to
∑

K:K∩S ̸=∅

xK(|K ∩ S| − 1) ≤ |S| − 1 ∀ ∅ ≠ S ⊆ R

∑
K

xK(|K| − 1) = |R| − 1

xK ≥ 0 ∀ K

An integral feasible solution of the above LP gives the full components of a Steiner tree.

Our goal is to bound the integrality gap of the above relaxation.

Theorem 13.6.1 The integrality gap of the hypergraphic relaxation for undirected Steiner

tree is at most 1 + ln 3
2 .

To convert the proof of the theorem into a rounding algorithm, one needs to use the

methodology of arguing that by restricting oneself to su�ciently large full components in

the above description, one can get su�ciently close to the LP value: formally, to get a

(1+ ϵ)-approximation to the above LP relaxation, it su�ces to use full components of size

bounded by a (large) constant for every �xed constant ϵ > 0. The details of this claim

form the basis of the r-restricted full component method which are non trivial, and can be

found in [80].

Finally, we need to show that the above formulation even with bounded-size full

components is polynomially solvable. For this, we can devise a separation oracle for a

given fractional solution. We build an auxiliary multigraph on the terminal set R as

follows: for every full component set K with positive value of xK in the support that is

supplied to the separation oracle, we add the edges of an arbitrary spanning tree on the

nodes of K to this auxiliary graph and give each of these edges a fractional value of xK .

We now claim that the resulting fractional multigraph solution is feasible for the subtour
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relaxation for a spanning tree on the nodes of R if and only if the supplied solution x is

feasible for the hypergraphic relaxation. The proof of this claim is very similar to that of

the proof of the Bridge Lemma 13.6.2 below and is deferred to the Exercises.

13.6.2 Iterative Randomized Rounding

To describe the algorithm, we need some notation �rst. De�ne the loss of full component

F (K) on K ⊂ R, denoted by LOSS(K) to be the minimum-cost subset of F (K)'s edges

that connect the Steiner nodes in it to the terminals. We use loss(K) to denote the cost of

the edges in LOSS(K). The loss-contracted full component of K, denoted by TLC(K), is

obtained from F (K) by contracting the edges in LOSS(K), or using the contract notation,

we have TLC(K) = F (K)/LOSS(K). Note that TLC(K) is a spanning tree on the

terminal set K and its edges do not correspond to edges in the original graph. For clarity

we denote the edge set E(F (K)) \ LOSS(K) by LC(K). Since the edges in TLC(K) are

precisely the edges remaining in LC(K), there is a natural bijection between these two

edge sets. We emphasize that we use two di�erent notations for them only to distinguish

that TLC(K) is an auxiliary spanning tree on the set K while LC(K) is a subset of edges

with endpoints in the full component of K including some Steiner nodes.
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{a, x}b d{c, y}

(a) (b)

Fig. 13.6. In �gure (a), the graph F (K) is a full component with terminals K = {a, b, c, d} and
Steiner vertices {x, y}. The bold edges {a, x} and {y, c} form LOSS(K). In �gure (b), the graph
TLC(K) is shown obtained after contracting LOSS(K)

Since contraction is involved in several stages of the algorithm below, we may have

di�erent auxiliary edges between a pair of terminals (due to loss contraction of di�erent

full components) but we retain all such edges as parallel edges in the analysis.

The idea of the iterative randomized algorithm below is to start with a MST on

the terminals and iteratively choose a full component on K with probability proportional

to the value of its choice variable, and add all of its LOSS(K) edges and some of the

remaining loss-contracted edges LC(K) to the �nal solution. An auxiliary spanning tree
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on the whole terminal set R is used to track which portion of the loss-contracted edges

from each iteration are retained in the �nal solution. The candidates for inclusion in this

auxiliary tree are precisely the auxiliary edges induced in TLC(K). Furthermore, as we

start retaining some of these intermediate loss-contracted edges, we can drop some original

spanning tree edges which reduce the cost of the MST that is retained. This auxiliary

spanning tree that records the drop in the value of the initial solution is denoted Ti at

iteration i in the algorithm below. This charging device allows us to formulate a clean

recurrence for the reducing value of Ti in expectation, and hence bound the total cost of

the solution in the end. The algorithm is shown in Figure 13.7.

Iterative Randomized Loss Contraction Algorithm

(i) Initialization T1 ←MST (R).

(ii) Let x be an optimal solution to the hypergraphic LP relaxation. Let M be the

smallest value that is at least
∑

K xK such that t =M ln 3 is an integer.

(iii) For 1 ≤ i ≤ t do
(a) Sample Ki with probability xK

M for each full component K (and choose no

tree with probability (1−
∑

K xK/M)).

(b) Ti+1 ←MST (Ti ∪ TLC(Ki)).

(iv) Return any Steiner tree in ALG = Tt+1 ∪
∪t
i=1 LOSS(Ki).

Fig. 13.7. Iterative Randomized Rounding Algorithm for Steiner Tree

In the last step, when we refer to edges in Tt+1, notice that this may include some

auxiliary edges from TLC(Ki) for some iteration in Step (iii)(b). However, due to the

bijection between these edges and the corresponding real edges in LC(Ki), we actually

include the real edges in LC(Ki) in this step.

We argue that Tt+1 ∪
∪t
i=1 LOSS(Ki) contains a Steiner tree on R. In particular we

argue that for every pair of terminals joined by an edge in Tt+1, there is a path between

them in the union of the real edges corresponding to the auxiliary edges in this tree plus the

edges in
∪t
i=1 LOSS(Ki). Note that if an edge in Ts+1 is an original edge from T1, there

is nothing to prove. Else, it is a new auxiliary edge introduced as part of some TLC(Ki).

However the corresponding real edge in LC(Ki) along with the edges in LOSS(Ki) contain

a path between these two endpoints by construction, proving our claim.

13.6.3 Correctness and Performance Guarantee

The main idea of the analysis is to bound the cost of the set of edges ALG in expectation

over the random component choices of the algorithm, by its constituent parts of the �nal

spanning tree Tt+1 plus the loss values of the components contracted on the way. We do

this in two steps. The cost of the spanning tree is tracked using a recursion relating the

cost of the tree Ti+1 to that of the tree in the previous iteration Ti, and then telescoping
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the result using a key lemma termed the Bridge Lemma. The expected loss is bounded by

a simple argument relating it to the cost of the full components from which it is contracted.

Together, these two bounds give the �nal bound on the expected cost of the edges in ALG.

13.6.3.1 Preparations

We start by de�ning the drop of a full component K with respect to a terminal spanning

tree T (i.e., a tree spanning exactly the terminals). Recall from the de�nition of node con-

traction that T/K denotes the (multi)graph obtained by identifying the terminals spanned

by K into a single node. De�ne

DROPT (K) = E(T ) \ E(MST (T/K))

and let dropT (K) be the cost of the edges in DROPT (K). Note that these are precisely the

edges in T that can now be dropped given an alternate means of connecting the terminals

in K via a full component on them, hence the name. See Figure 13.8 for an illustration.
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Fig. 13.8. In �gure (a), we show a terminal spanning tree T on the terminals {a, b, c, d, e, f}
with edges {ea, eb, ef, fc, fd} along with a full component on K = {a, b, c, d} with edges
{xa, xb, xy, yc, yd}. In �gure (b), the dashed edges form DROPT (K). In �gure (c), we show
the graph TDROPT (K) ∪ E(T ) where the TDROPT (K) edges are dashed. Observe that each
edge f ∈ TDROPT (K) is the heaviest edge in the unique cycle in T ∪ {f}.

The Bridge Lemma lower bounds the expected drop.

Lemma 13.6.2 Given a terminal spanning tree T and a feasible solution x to the hyper-

graphic LP formulation, ∑
K

xKdropT (K) ≥ c(T ).

Proof The proof of this lemma uses the close relation between the hypergraphic relaxation

and the subtour elimination LP we encountered in Chapter 4 for spanning trees, presented
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again below.

minimize
∑
e∈E

ce ze

subject to z(E(S)) ≤ |S| − 1 ∀ ∅ ̸= S ⊂ V
z(E(V )) = |V | − 1

ze ≥ 0 ∀ e ∈ E

The proof idea is to convert the solution x for the hypergraphic relaxation into a

solution z for the subtour LP on the vertex set of terminals R. For this we introduce

some auxiliary edges on the vertex set R. In particular, for each full component K such

that xK > 0, contracting the edges in E(T ) \DROPT (K) and retaining the labels of the

terminals in K in the contracted graph, we get a spanning tree TDROPT (K) on the node

set K. Moreover, there is a bijection between the edges of this spanning tree and the edges

in DROPT (K) (just as was the case between TLC(K) and LC(K)). Give each of these

edges in TDROPT (K) (now running between nodes of K) a z-value of xK , making parallel

edges between pairs of terminals as needed. Let this set of auxiliary multiedges that are

given z-values be F . We see that∑
e∈F

ceze =
∑
K

xKdropT (K).

Note that we introduced exactly |K| − 1 edges for each full component K, and for any

S ⊆ R, at most |S ∩K| − 1 of these edges in F have both ends in S since these edges form

a tree on K. Therefore, x being feasible for the hypergraphic relaxation implies that z is

feasible for the subtour relaxation. Thus the left-hand quantity in the lemma has cost that

of a feasible solution to the subtour relaxation on the graph of the auxiliary edges. Note

that the auxiliary edges corresponding to full components of size two generate the original

edges of T in this auxiliary graph as well.

By Theorem 4.1.1, since the subtour relaxation is the convex hull of integral spanning

trees in the graph made of the edges in E(T ) ∪ F , the cost of any tree is at least that of

the minimum-cost spanning tree in this auxiliary graph. But consider any edge f ∈ F ,

which corresponds to some auxiliary edge in TDROPT (K) for some full component K,

and hence corresponds to an edge in DROP (K). By the de�nition of DROP (K), the

edge f was dropped from the original tree T in choosing MST (T/K), and hence was the

costliest edge in some cycle in T/K. Thus, when we add this auxiliary edge f between its

endpoints in TDROPT (K) in the tree T , it still continues to be a maximum cost edge in

the unique cycle formed in T ∪ f . Since this is true for every f ∈ F , the minimum cost

tree in E(T )∪F is T itself. See �gure 13.8(c) for an illustration. This completes the proof.

We need two more observations before we commence the proof.

Lemma 13.6.3 The value of T1 =MST (R) the initial terminal spanning tree, is at most

twice the optimal value of the hypergraphic LP relaxation for Steiner tree.
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The proof of this lemma follows the short-cutting argument in the beginning of this sec-

tion, but on the full components in the optimal fractional solution for the hypergraphic

relaxation, and showing that this doubled short-cut solution is feasible for the subtour LP

relaxation for spanning trees in the metric completion of R. The details are left as an

exercise.

Lemma 13.6.4 For any full component K, we have loss(K) ≤ CK/2.

Proof First we assume without loss of generality that every internal Steiner node has degree

three in K (else we can make it so by splitting higher degree nodes into degree-three nodes

and connecting them in a tree-like fashion with zero-cost edges). Now root the tree at an

arbitrary leaf and let every internal node choose the cheapest of its two children. These

chosen edges give paths from every Steiner node to a terminal leaf, and have cost at most

twice that of the full component, proving the lemma.

13.6.3.2 Inductive Analysis

We now give the proof of Theorem 13.6.1.

Proof We bound the cost of the terminal spanning tree Ti+1 based on that of Ti. One

way to derive this spanning tree is to add in edges of LC(Ki) and drop the edges in

DROPTi(Ki). Thus we have

c(Ti+1) ≤ c(Ti)− dropTi(Ki) + c(LC(Ki)).

By linearity of expectation, we can derive the expected value based on the distribution

from which Ki is drawn as follows.

E[c(Ti+1)] ≤ E[c(Ti)]−
1

M

∑
K

xKdropTi(K) +
1

M

∑
K

xKc(LC(K)).

Let lp∗ =
∑

K xKCK and loss∗ =
∑

K xK loss(K), and since LC(K) = CK − loss(K), we

have

E[c(Ti+1)] ≤ E[c(Ti)]−
1

M

∑
K

xKdropTi(K) + (lp∗ − loss∗)/M.

Applying the bridge lemma 13.6.2 to bound the second term, we get the following:

E[c(Ti+1)] ≤ (1− 1

M
)E[c(Ti)] + (lp∗ − loss∗)/M.

By induction, we can unravel this recurrence as follows:

E[c(Ti+1)] ≤ (1− 1

M
)tE[c(T1)] + (lp∗ − loss∗)(1− (1− 1

M
)t).

Now we use the bound from Lemma 13.6.3 to get the following bound.

E[c(Ti+1)] ≤ lp∗(1 + (1− 1

M
)t)− loss∗(1− (1− 1

M
)t).
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This takes care of the �rst component of the edges in ALG. For the second component,

namely the edges in ∪ti=1LOSS(Ki), we have the following bound:

t∑
i=1

E[loss(Ki)] =

t∑
i=1

∑
K

xK loss(K)/M =

t∑
i=1

loss∗/M = t · loss∗/M.

Adding the two components, we get

E[c(ALG)] = E[c(Tt+1)] + t · loss∗/M

≤ lp∗(1 + (1− 1

M
)t) + loss∗(

t

M
+ (1− 1

M
)t − 1)

≤ lp∗(1 + (1− 1

M
)t) +

lp∗

2
(
t

M
+ (1− 1

M
)t − 1)

≤ lp∗(
1

2
+

3

2
(1− 1

M
)t +

t

2M
)

≤ lp∗(
1

2
+

3

2
e−t/M +

t

2M
)

≤ lp∗(1 +
ln 3

2
).

Here the second inequality uses Lemma 13.6.4, and the last inequality follows from the

fact that 1
2 + 3

2e
−x + x

2 is minimized at x = ln 3 taking on value 1 + ln 3
2 . This is also why

we chose t =M ln 3.

Notes

The discrepancy theorem is due to Beck and Fiala [14]. Our presentation of the Steinitz's

result follows that of Bárány [12], who attributes this proof to Grinberg and Sevastyanov [79].

Steinitz's original proof [156] also used linear dependencies, and gave constant 2d instead

of d. Steinitz's result has many applications in mathematics (see e.g. [12]), as well as in

designing approximation algorithms for scheduling problems (see e.g. [13] and the refer-

ences in [12]). Some other problems about sums of ±1 signs can also be solved by a similar

iterative method, see [12].

The single source unsplittable �ow problem was �rst introduced by Kleinberg [99],

who gave a constant factor approximation algorithm for the unweighted problem. This was

improved by Dinitz, Garg and Goemans [42], who gave an algorithm for the unweighted

problem which �nds an unsplitting �ow that violates the arc capacities by at most dmax.

Kolliopoulos and Stein [100] used the iterative relaxation idea to obtain a bicriteria ap-

proximation algorithm for the weighted problem, which returns a solution with cost at

most twice the optimum and the arc capacities at most thrice that of the splittable �ow.

This is improved by Skutella [152] to get an approximation algorithm with optimal cost

and the same guarantee on the arc capacities.

The bin packing result is from the work of Karmarkar and Karp [93], which builds on
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the asymptotic PTAS by Fernandez de la Vega and Lueker [53] and develops the iterative

relaxation technique for the con�guration linear program of the problem.

Our description of the Steiner tree approximation algorithm is based on the work

of Bryka, Grandoni, Rothvoÿ and Sanitá [23]; we closely followed the treatment due to

Chakrabarty, Könemann and Pritchard [28].

Exercises

13.1 (Bednarchak, Helm [15]) The bound on the Beck-Fiala theorem can be improved

to 2d− 3. Can you prove this improved bound by re�ning the iterative method?

13.2 (Skutella [152]) Given any instance of the unsplittable �ow problem, let f be a min-

imum cost splittable �ow. Give an e�cient algorithm that returns an unsplittable

�ow with cost at most that of f such that the total �ow on each arc a is at most

2fa+dmax. (Hint: Reduce the general problem to the problem in Theorem 13.4.1.)

13.3 Show that the natural LP relaxation for the bin packing problem has a multiplica-

tive integrality gap approaching two. On the other hand, show how a greedy bin

packing algorithm achieves a packing of instance I into at most 2size(I) + 1 bins.

13.4 Show that the greedy procedure to pack small items de�ned in Section 13.5.3.3 uses

at most max{C, (1 + g)opt(I) + 1} bins.

13.5 Show that the bin packing problem is a special case of the single source unsplittable

�ow problem.

13.6 Show that the generalized assignment problem is a special case of the single source

min-cost unsplittable �ow problem.

13.7 Prove Lemma 13.6.3 by showing that an optimal solution to the hypergraphic LP

relaxation for Steiner trees can be doubled and converted to a feasible solution to

the subtour relaxation for the minimum spanning tree problem on the terminals of

the Steiner tree problem.

13.8 Prove that the hypergraphic LP relaxation for Steiner trees with full components

of up to a �xed constant size can be solved in polynomial time. Use the method

outlined in the Chapter of converting this to testing separation of a corresponding

point in the subtour elimination formulation for spanning trees on an auxiliary

multigraph on the terminal set, as in Lemma 13.6.2.
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14

Summary

†

We have described an iterative method that is versatile in its applicability to show-

ing several results in exact optimization and approximation algorithms. The key step in

applying this method uses the elementary Rank Lemma to show sparsity of the support

of extreme point solutions for a wide variety of problems. The method follows a natural

sequence of formulating a tractable LP relaxation of the problem, examining the structure

of tight constraints to demonstrate an upper bound on the rank of the tight subsystem

de�ning the extreme point, using the Rank Lemma to imply an upper bound on the sup-

port and �nally using this sparsity of the support to �nd an element in the support with

high (possible fractional) value.

The two key steps in the method are upper bounding the rank of the tight constraints,

and using the sparsity of the support to imply a high-valued element. Various uncrossing

techniques in Combinatorial Optimization are very useful in the �rst step. However, new

ideas are typically required in the second step which can be usually carried out with a �token

charging" argument to prove by contradiction the presence of a high value element in the

support: Assign a set number, k, of tokens to each support variable (now assumed to be low

valued for contradiction) and redistribute these tokens so as to collect k tokens per tight

constraints and show some leftover tokens for the contradiction. While there is no uni�ed

way to arrive at the speci�c token redistribution argument, some insight can be gained

by looking at the structure of tight independent constraints and their di�erences as was

done in the case of spanning trees, network matrices, submodular �ows and the survivable

network design and STSP problems. Furthermore, these token charging arguments can

involve integral redistributions or a fractional redistribution based on the values in the

extreme point; several examples of both types of token redistributions were presented, e.g.,

in the chapters on spanning trees.

We believe the iterative method can be used to prove integrality of even more gen-

† © Copyright 2011 by Lap Chi Lau, R. Ravi and Mohit Singh. Published 2011 by Cambridge
University Press.
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eral classes of problems. Indeed recent research [8] continues to push the envelope of such

proofs to such general classes as lattice polyhedra. Other recent results [101, 134] have been

obtained also using the iterative method and its variants. Some promising areas for future

investigation include an alternate proof of integrality of totally unimodular matrices start-

ing from their de�nition based on the bicoloring characterization due to Ghila-Houri [149],

as well as exploring the relation of the techniques used in the iterative method to the

characterization of totally dual integral systems.

While the iterative method is versatile, it is much less so than the other classical

methods to prove integrality of polyhedral relaxations such as Total Unimodularity and

Total Dual Integrality. All the results on exact optimization in this book are re-derivations

of the results achieved by these two methods. An intriguing open question is to more

formally derive a relation between the iterative method and these other more powerful

methods for proving integrality. Nevertheless, a key advantage of the iterative method is

its adaptability to designing approximation algorithms for the base problems augmented

with complicating constraints.

On the approximation algorithms front, the iterative method belongs in the class of

techniques for designing approximation algorithms based on a linear programming relax-

ation of the problem, such as deterministic rounding, randomized rounding, the primal-dual

method, and methods based on Lagrangean relaxations. Like the primal-dual method, this

method shares a rich intersection with the set of polynomial-time solvable exact character-

izations that can be proven using the method, as we demonstrated in many of the earlier

chapters. Looking ahead, the iterative method might o�er new insights into the design

of improved approximation algorithms for the traveling salesperson problems (TSP) and

its many variants, given their close connection to degree-bounded spanning tree problems.

Some initial connections in this direction have already been explored [131] but much more

remains to be done in this direction.

We close with the hope that our monograph will add the iterative method to the set of

general techniques in the toolkit for the design of exact and approximation algorithms based

on linear programming characterizations. We also hope that it will encourage a uni�ed

presentation of many of these beautiful results at an elementary level for the setting of

undergraduate classrooms as well as for self-study by inspired enthusiasts of combinatorial

optimization.
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