All questions carry equal points. You are allowed to use the course notes but no external resource (web or research papers). No discussion is allowed.

Read all questions carefully.

- 1. Partition Max Coverage Recall the max-coverage problem where we given a set U and a collection of subsets S_1, \ldots, S_m where $S_i \subset U$, integer k and the task is to find a subcollection $I \subset \{1, \ldots, m\}$ with |I| = k which maximizes $|\bigcup_{i \in I} S_i|$. In the partition max-coverage problem, we are also given a partition P_1, \ldots, P_k of $\{1, \ldots, m\}$ and the task is to find I such that $|I \cap P_j| = 1$ for each $1 \leq j \leq k$ which maximizes $|\bigcup_{i \in I} S_i|$. Give an approximation algorithm for the partition max-coverage problem.
- 2. Steiner Tree In the Steiner tree problem where given a edge-weighted graph G = (V, E) and set of terminals R, the task is to find a tree spanning R of minimum weight. Consider the natural greedy algorithm where we order the terminal set in an arbitrary order. When the i^{th} terminal arrives it joins itself to the nearest terminal which has arrived before it. We will show that this algorithm is a $O(\log n)$ -approximation.
 - (a) Prove the following tree-path lemma. Given any tree T and any subset S of the vertices spanned by T where S is even, there is a pairing of the vertices in S such that the paths in T between the paired vertices are all edge disjoint.
 - (b) Use the Tree-Path Lemma recursively to show that the greedy algorithm is a $O(\log n)$ -approximation.
- 3. **3DM** In an instance of the 3-dimensional matching, we are given disjoint sets A, B, C and a collectin of 3-dimensional edges $E \subseteq A \times B \times C$. The task is to pick a subcollection $F \subseteq E$ of maximum cardinality such that each element in $A \cup B \cup C$ appears in no more than one triple in F.
 - (a) Write a linear program for the problem.
 - (b) Show that there is always a triple e such that $x_e \geq \frac{1}{2}$.
 - (c) Show that one can pick this triple and recurse to obtain a 2-approximation ¹/₂-approximation. (Caution: Be very careful about recursing since no element can appear in more than one triple).
- 4. **SDP and** L_2 **embedding**. Given a metric d on vertices V, an l_2 embedding of metric d is a mapping $\pi : V \to \mathbb{R}^n$ for some integer n and $d_{\pi}(u, v) = ||\pi(u) - \pi(v)||_2$ is the Euclidean distance between the mapped points. The embedding has distortion α if for all $u, v \in V$

$$d(u,v) \le d_{\pi}(u,v) \le \alpha d(u,v)$$

Write a SDP for finding the minimum distortion l_2 -embedding. What approximation factor can you achieve for such an embedding?

- 5. Exactly One Set Cover In the exactly-one set cover problem we are given a universe U and collection of sets S_1, \ldots, S_m and goal is to find a subcollection $I \subset \{1, \ldots, m\}$ which maximizes the number of elements which are covered exactly once, i.e. the objective function is $|\{e : |\{i \in I : e \in S_i\}| = 1\}|$.
 - (a) Give a constant factor randomized algorithm when each element appears in exactly f sets.
 - (b) Give a constant factor randomized algorithm when each elements appears in at least f sets and at most 2f sets.
 - (c) Give a $O(\log m)$ -approximation $\Omega(\frac{1}{\log m})$ -approximation for the general instance. (Hint: Use the previous part).
 - (d) Give a $O(\log n)$ -approximation $\Omega(\frac{1}{\log m})$ -approximation for the general instance. (Hint: Use the previous part).