
Computers in Engineering

COMP 208COMP 208

Linear Algebra

Michael A. Hawker

Representing Vectors

�A vector is a sequence of numbers (the

components of the vector)

� If there are n numbers, the vector is

said to be of dimension nsaid to be of dimension n

�To represent a vector in C, we use an

array of size n, indexed from 0 to n-1

� In Fortran we use an array indexed from

1 to n

Nov. 29th, 2007 Linear Algebra 2

Vector Operations

�Scaling

�Multiply each element by a given

scalar factor

�Adding and Subtracting

�Given two vectors of the same

dimension add the components to get

a new vector of the same dimension

Nov. 29th, 2007 Linear Algebra 3

Vector Operations (cont)

�Dot Product

�Sum the Products of Vector Components

�Vector Norm

Length of the Vector, Square-root of the � Length of the Vector, Square-root of the

sum of squares of Components

Nov. 29th, 2007 Linear Algebra 4

Dot Product
#include <math.h>

double vector_dot(double v1[], double v2[],

int size){

int i;

double dot = 0.0;double dot = 0.0;

for(i = 0; i < size; i++)

dot += v1[i] * v2[i];

return dot;

}

double vector_norm(double v[], int size)(

return sqrt(vector_dot(v, v, size)

}

Nov. 29th, 2007 Linear Algebra 5

Read a Vector

void fscan_vector(FILE * in, double v[], int size){

int i;

for(i = 0; i < size; i++) {

fscanf(in, "%lf", &v[i]);

}}

}

void scan_vector(double v[], int size){

fscan_vector(stdin, v, size);

}

Nov. 29th, 2007 Linear Algebra 6

Output a Vector
void fprint_vector(FILE * out, double v[], int size){

int i;

fprintf(out, "{");

for(i = 0; i < size - 1; i++)

fprintf(out, "%g, ", v[i]);

fprintf(out, "%g}\n", v[i]);fprintf(out, "%g}\n", v[i]);

return;

}

void print_vector(double v[], int size)

{

fprint_vector(stdout, v, size);

return;

}

Nov. 29th, 2007 Linear Algebra 7

Possible Confusion
for(i = 0; i < size - 1; i++)

fprintf(out, "%g, ", v[i]);

fprintf(out, "%g}\n", v[i]);

� Does Indentation Always Dictates Meaning?

for(i = 0; i < size - 1; i++)

fprintf(out, "%g, ", v[i]);

fprintf(out, "%g}\n", v[i]);

for(i = 0; i < size - 1; i++)

fprintf(out, "%g, ", v[i]);

fprintf(out, "%g}\n", v[i]);

� Same Results

Nov. 29th, 2007 Linear Algebra 8

Output a Vector
void fprint_vector(FILE * out, double v[], int size){

int i;

fprintf(out, "{");

for(i = 0; i < size - 1; i++) {

fprintf(out, "%g, ", v[i]);

}}

fprintf(out, "%g}\n", v[i]);

return;

}

void print_vector(double v[], int size)

{

fprint_vector(stdout, v, size);

return;

}

Nov. 29th, 2007 Linear Algebra 9

Representing Matrices

A matrix with m rows and n columns can be
represented as a two dimensional array in C
(or Fortran).

In C the declaration could be
double voltage[m][n];double voltage[m][n];

The first dimension is the number of rows and
the second the number of columns

A specific value in row i, column j is referenced
as voltage[i][j]

Nov. 29th, 2007 Linear Algebra 10

Initialization

We can initialize a matrix (or any array) when it

is declared:

int val[3][4] = {{8,16,9,24},int val[3][4] = {{8,16,9,24},

{3,7,19,25},

{42,2,4,12}};

Nov. 29th, 2007 Linear Algebra 11

Row Major Ordering

What happens if we write

int val[3][4] =

{{8,16,9,24,3,7,19,25,42,2,4,12}};

We begin filling in values starting with v[0][0]We begin filling in values starting with v[0][0]

and continue.

If the array is stored in row major order, this has

the same effect as the previous example

Nov. 29th, 2007 Linear Algebra 12

Implementing Row Major Order

�We can simulate a matrix using a one

dimensional array by taking the two indices

and finding the position in row major order.

�We have to know how many columns there �We have to know how many columns there

are, that is the number of elements in each

row.

int in2d(int row, int col, int n){

return col + row * n;

}

Nov. 29th, 2007 Linear Algebra 13

Simulating Matrices in One Dimension

� In the previous example we showed how to simulate

a matrix by a one dimensional vector.

� This may be done in some applications to make

highly computational intensive programs more

efficientefficient

� We could also simulate a matrix with a one

dimensional array that stores the values in column

major order

� Imagine adding one to every element?

� Used with other Data Structures as well

Nov. 29th, 2007 Linear Algebra 14

Input of Matrix
void fscan_matrix(FILE * in, double **m,

int h, int w){

int i, j;

for(i = 0; i < h; ++i)

for(j = 0; j < w; ++j)for(j = 0; j < w; ++j)

fscanf(in, "%lf", &m[i][j]);

return;

}

void scan_matrix(double **m, int h, int w){

fscan_matrix(stdin, m, h, w);

return;

}

Nov. 29th, 2007 Linear Algebra 15

**, What about [][]?

�Why can't we use [][] in our function

arguments:
void fscan_matrix(FILE * in, double m[][],

int h, int w)

�C needs to know the length of the �C needs to know the length of the
second dimension!

�Need to use a double pointer if we want
to allow for completely dynamic
matrices

Nov. 29th, 2007 Linear Algebra 16

How do we allocate a dynamic

matrix?
double ** make_matrix(int h, int w) {

int i;

double **array2 = (double **)malloc(h * sizeof(double *));

if (array2) {

array2[0] = (double *)malloc(h * w * sizeof(double));

if(array2[0]) {

for(i = 1; i < h; i++)for(i = 1; i < h; i++)

array2[i] = array2[0] + i * w;

return array2;

} else {

free(array2);

}

}

return NULL;

}

Nov. 29th, 2007 Linear Algebra 17

Matrix Output
void fprint_matrix(FILE * out, double **m, int h, int w){

int i, j;

fprintf(out, "{\n");

for(i = 0; i < h - 1; ++i) {

fprintf(out, " {");

for(j = 0; j < w - 1; ++j)

fprintf(out, "%g, ", m[i][j]);

fprintf(out, "%g},\n", m[i][j]]);fprintf(out, "%g},\n", m[i][j]]);

}

fprintf(out, " {");

for(j = 0; j < w - 1; ++j)

fprintf(out, "%g, ", m[i][j]);

fprintf(out, "%g}\n}\n", m[i][j]);

return;

}

void print_matrix(double **m, int h, int w){

fprint_matrix(stdout, m, h, w);

return;

}
Nov. 29th, 2007 Linear Algebra 18

Matrix Transposition

�A common operation is to compute the

transpose of a matrix

�We could do this in place and overwrite

the contents of the matrixthe contents of the matrix

� In the following algorithm, we compute a

new matrix containing the transposed

matrix

Nov. 29th, 2007 Linear Algebra 19

Matrix Transposition
double ** matrix_transpose(double ** m1, int h, int w){

int i, j;

double ** mr = make_matrix(w, h);

if (mr) {if (mr) {

for(i = 0; i < h; ++i)

for(j = 0; j < w; ++j)

mr[j][i] = m1[i][j];

return mr;

} else {

return NULL;

}

}

Nov. 29th, 2007 Linear Algebra 20

Example
int main() {

//double m[4][3] = { {0, 1, 2}, {2, 3, 4}, {5, 6, 7}, {9, 1, 0}};

int h = 2, w = 3;

double ** m = make_matrix(h, w);

scan_matrix(m, h, w);

print_matrix(m, h, w);print_matrix(m, h, w);

double ** mt = matrix_transpose(m, h, w);

if (mt) {

print_matrix(mt, w, h);

free_matrix(mt);

}

free_matrix(m);

return 0;

}
Nov. 29th, 2007 Linear Algebra 21

Matrix Multiplication

�Matrix multiplication is a fundamental

operation that occurs in many

applications

�Given two matrices A, a matrix with h1 �Given two matrices A, a matrix with h1

rows and w1 columns and B a matrix

with w1 rows and h2 columns, we can

compute their product matrix C

�Note that the number of columns of A

must equal the number of rows of B

Nov. 29th, 2007 Linear Algebra 22

Matrix Multiplication

�The element c[i][j] is computed as the

dot product of the ith row of A and the

jth column of B

�The overall algorithm computes has two �The overall algorithm computes has two

nested loops that vary i and j,

computing each dot product

�The computation of the dot product is

done in another loop nested inside

those two

Nov. 29th, 2007 Linear Algebra 23

Matrix Multiplication
double ** matrix_mult(double **m1, double **m2,

int hm1, int wm1, int wm2){

int i, j, k;

double sum;

double ** mr = make_matrix(hm1, wm2);

if (mr) {

for(i = 0; i < hm1; ++i) {for(i = 0; i < hm1; ++i) {

for(j = 0; j < wm2; ++j) {

sum = 0;

for(k = 0; k < wm1; ++k) {

sum += m1[i][k] * m2[k][j];

}

mr[i][j] = sum;

}

}

}

return mr;

}

Nov. 29th, 2007 Linear Algebra 24

Solving Linear Systems

�One of the most widespread

applications of computers is the solving

of systems of linear equations

�These systems arise in numerous �These systems arise in numerous

application areas

�There is a large body of literature and

research on how to solve these systems

efficiently and accurately

�We examine two simple approaches
Nov. 29th, 2007 Linear Algebra 25

An Easy Example

If the system of equations is triangular, we

can solve it by a process called back

substitution:

w – 1.5x + y + 2.5z = 1.5w – 1.5x + y + 2.5z = 1.5

x + 0y - z = -1

y + 0z = -2

z = 7

Nov. 29th, 2007 Linear Algebra 26

Matrix Representation

�We can represent this system of

equations using an upper triangular

matrix, A and a vector b. The equations

can be written Ax=b, where x is a vector can be written Ax=b, where x is a vector

of length 4 representing the values of

(w,x,y,z)

Nov. 29th, 2007 Linear Algebra 27

Matrix Representation

A = 1 -1.5 1 2.5 b = (1.5

0 1 0 -1 -1

0 0 1 0 -2 0 0 1 0 -2

0 0 0 1 7)

Nov. 29th, 2007 Linear Algebra 28

Back Substitution

First solve for z and then substitute in the

previous equation to solve for y.

Continue until all of the variables have been

solved. solved.

z = 7

y = -2 – 0*7 = -2

x = -1 - 0*-2 + 7 = 6

w = 1.5 + 1.5*6 – (-2) - 2.5*7 = -5

Nov. 29th, 2007 Linear Algebra 29

Gaussian Elimination

�The Gaussian elimination algorithm

attempts to transform a system of linear

equations into a triangular system

�As we have seen by example, a �As we have seen by example, a

triangular system is easy to solve by

back substitution

�We transform the system by eliminating

one variable at each step

Nov. 29th, 2007 Linear Algebra 30

A Linear System Example

Consider the system of equations:

2w – 3x + 2y + 5z = 3

w - x + y + 2z = 1w - x + y + 2z = 1

3w + 2x + 2y + z = 0

w + x – 3y - z = 0

Nov. 29th, 2007 Linear Algebra 31

A Linear System Example

Again we can write this in the form Ax=b

where A is a 4x4 matrix, x is a 1x4

vector and b is a 1x4 vector:

A: b:A: b:

2 –3 2 5 3

1 -1 1 2 1

3 2 2 1 0

1 1 3 -1 0

Nov. 29th, 2007 Linear Algebra 32

Gaussian Elimination Example

We first eliminate the first entry in the second
row, by multiplying the first row by 1.0/2.0 and
subtracting the rows.

We do the same to the second entry in b.

A: b:A: b:

2 –3 2 5 3

0 .5 0 -.5 -.5

3 2 2 1 0

1 1 3 -1 0

Nov. 29th, 2007 Linear Algebra 33

Gaussian Elimination Example

Repeat this process for each row

A: b:

2 –3 2 5 3

0 .5 0 - .5 -.50 .5 0 - .5 -.5

0 6.5 -1 -6.5 -4.5

0 2.5 -4 -3.5 -1.5

Nov. 29th, 2007 Linear Algebra 34

Gaussian Elimination Example

Now eliminate the second non-zero entries in

the second column below the diagonal in the

same way

A: b:A: b:

2 –3 2 5 3

0 .5 0 -.5 -.5

0 0 -1 0 2

0 0 -4 -1 1

Nov. 29th, 2007 Linear Algebra 35

Gaussian Elimination Example

Do the same for the third column. Notice that it

is not necessary to continue with the last

column

A: b:A: b:

2 –3 2 5 3

0 .5 0 -.5 -.5

0 0 -1 0 2

0 0 0 -1 -7

Nov. 29th, 2007 Linear Algebra 36

Gaussian Elimination
void genp(double **m, double v[], int h, int w){

int row, next_row, col;

double factor;

for(row = 0; row < (h - 1); ++row) {

for(next_row = row + 1; next_row < h; ++next_row) {

factor = m[next_row][row] / m[row][row];factor = m[next_row][row] / m[row][row];

for(col = 0; col < w; ++col)

m[next_row][col] -= factor * m[row][col];

v[next_row] -= factor * v[row];

}

}

}

Nov. 29th, 2007 Linear Algebra 37

Problems with Gaussian Elimination

� If there is a zero on the diagonal that of the

row we are processing, there will be an

attempt to divide by zero, causing an error

� Even if there isn’t a zero, dividing by a small � Even if there isn’t a zero, dividing by a small

number causes large roundoff errors and

inaccurate results.

� These problems can be reduced by pivoting

�We rearrange the rows at each step so that

the largest possible value is the next one we

chose to eliminate

Nov. 29th, 2007 Linear Algebra 38

Gaussian Elimination with

Partial Privoting

void gepp(double **m, double v[], int h, int w){

int row, next_row, col, max_row;

double tmp, factor;

for(row = 0; row < (h - 1); ++row) {

// Find row with largest pivot.// Find row with largest pivot.

// Swap rows.

// Rest like Gaussian Elimination without Pivoting.

}

}

Nov. 29th, 2007 Linear Algebra 39

Finding a Pivot

max_row = row;

for(next_row = row + 1; next_row < h; ++next_row)

if(m[next_row][row] > m[max_row][row])if(m[next_row][row] > m[max_row][row])

max_row = next_row;

Nov. 29th, 2007 Linear Algebra 40

Swapping Two Rows

if(max_row != row) {

for(col = 0; col < w; ++col) {

tmp = m[row][col];

m[row][col] = m[max_row][col];

m[max_row][col] = tmp;m[max_row][col] = tmp;

}

tmp = v[row];

v[row] = v[max_row];

v[max_row] = tmp;

}

Nov. 29th, 2007 Linear Algebra 41

Back Substitution

�Once we have an upper triangular

matrix, we can solve the system of

equations by back substitution

�We first solve for the last variable and �We first solve for the last variable and

use the solution to solve for the second

last and so on.

Nov. 29th, 2007 Linear Algebra 42

Back Substitution
void back_substitute(double **m, double v[],

int h, int w){

int row, next_row;

for(row = h - 1; row >= 0; --row) {

v[row] /= m[row][row];

m[row][row] = 1;m[row][row] = 1;

for(next_row = row - 1; next_row >= 0; --next_row)
{

v[next_row] -= v[row] * m[next_row][row];

m[next_row][row] = 0;

}

}

}

Nov. 29th, 2007 Linear Algebra 43

