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Representing Vectors

�A vector is a sequence of numbers (the 

components of the vector)

� If there are n numbers, the vector is 

said to be of dimension nsaid to be of dimension n

�To represent a vector in C, we use an 

array of size n, indexed from 0 to n-1

� In Fortran we use an array indexed from 

1 to n
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Vector Operations

�Scaling

�Multiply each element by a given 

scalar factor

�Adding and Subtracting

�Given two vectors of the same 

dimension add the components to get 

a new vector of the same dimension
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Vector Operations (cont)

�Dot Product

�Sum the Products of Vector Components

�Vector Norm

Length of the Vector, Square-root of the � Length of the Vector, Square-root of the 

sum of squares of Components
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Dot Product
#include <math.h>

double vector_dot(double v1[], double v2[],

int size){

int i;

double dot = 0.0;double dot = 0.0;

for(i = 0; i < size; i++)

dot += v1[i] * v2[i];

return dot;

}

double vector_norm(double v[], int size)(

return sqrt(vector_dot(v, v, size)

}
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Read a Vector

void fscan_vector(FILE * in, double v[], int size){

int i;

for(i = 0; i < size; i++) {

fscanf(in, "%lf", &v[i]);

}}

}

void scan_vector(double v[], int size){

fscan_vector(stdin, v, size);

}
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Output a Vector
void fprint_vector(FILE * out, double v[], int size){

int i;

fprintf(out, "{");

for(i = 0; i < size - 1; i++)

fprintf(out, "%g, ", v[i]);

fprintf(out, "%g}\n", v[i]);fprintf(out, "%g}\n", v[i]);

return;

}

void print_vector(double v[], int size)

{

fprint_vector(stdout, v, size);

return;

}
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Possible Confusion
for(i = 0; i < size - 1; i++)

fprintf(out, "%g, ", v[i]);

fprintf(out, "%g}\n", v[i]);

� Does Indentation Always Dictates Meaning?

for(i = 0; i < size - 1; i++)

fprintf(out, "%g, ", v[i]);

fprintf(out, "%g}\n", v[i]);

for(i = 0; i < size - 1; i++)

fprintf(out, "%g, ", v[i]);

fprintf(out, "%g}\n", v[i]);

� Same Results
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Output a Vector
void fprint_vector(FILE * out, double v[], int size){

int i;

fprintf(out, "{");

for(i = 0; i < size - 1; i++) {

fprintf(out, "%g, ", v[i]);

}}

fprintf(out, "%g}\n", v[i]);

return;

}

void print_vector(double v[], int size)

{

fprint_vector(stdout, v, size);

return;

}

Nov. 29th, 2007 Linear Algebra 9



Representing Matrices

A matrix with m rows and n columns can be 
represented as a two dimensional array in C 
(or Fortran).

In C the declaration could be
double voltage[m][n];double voltage[m][n];

The first dimension is the number of rows and 
the second the number of columns

A specific value in row i, column j is referenced 
as voltage[i][j]
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Initialization

We can initialize a matrix (or any array) when it 

is declared:

int val[3][4] = {{8,16,9,24},int val[3][4] = {{8,16,9,24},

{3,7,19,25},

{42,2,4,12}};
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Row Major Ordering

What happens if we write

int val[3][4] = 

{{8,16,9,24,3,7,19,25,42,2,4,12}};

We begin filling in values starting with v[0][0]We begin filling in values starting with v[0][0]

and continue. 

If the array is stored in row major order, this has 

the same effect as the previous example
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Implementing Row Major Order

�We can simulate a matrix using a one 

dimensional array by taking the two indices 

and finding the position in row major order.

�We have to know how many columns there �We have to know how many columns there 

are, that is the number of elements in each 

row.

int in2d(int row, int col, int n){

return col + row * n;

}

Nov. 29th, 2007 Linear Algebra 13



Simulating Matrices in One Dimension

� In the previous example we showed how to simulate 

a matrix by a one dimensional vector.

� This may be done in some applications to make 

highly computational intensive programs more 

efficientefficient

� We could also simulate a matrix with a one 

dimensional array that stores the values in column 

major order

� Imagine adding one to every element?

� Used with other Data Structures as well
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Input of Matrix
void fscan_matrix(FILE * in, double **m, 

int h, int w){

int i, j;

for(i = 0; i < h; ++i)

for(j = 0; j < w; ++j)for(j = 0; j < w; ++j)

fscanf(in, "%lf", &m[i][j]);

return;

}

void scan_matrix(double **m, int h, int w){

fscan_matrix(stdin, m, h, w);

return;

}
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**, What about [][]?

�Why can't we use [][] in our function 

arguments:
void fscan_matrix(FILE * in, double m[][], 

int h, int w)

�C needs to know the length of the �C needs to know the length of the 
second dimension!

�Need to use a double pointer if we want 
to allow for completely dynamic 
matrices
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How do we allocate a dynamic 

matrix?
double ** make_matrix(int h, int w) {

int i;

double **array2 = (double **)malloc(h * sizeof(double *));

if (array2) {

array2[0] = (double *)malloc(h * w * sizeof(double));

if(array2[0]) {

for(i = 1; i < h; i++)for(i = 1; i < h; i++)

array2[i] = array2[0] + i * w;

return array2;

} else {

free(array2);

}

}

return NULL;

}
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Matrix Output
void fprint_matrix(FILE * out, double **m, int h, int w){

int i, j;

fprintf(out, "{\n");

for(i = 0; i < h - 1; ++i) {

fprintf(out, "  {");

for(j = 0; j < w - 1; ++j)

fprintf(out, "%g, ", m[i][j]);

fprintf(out, "%g},\n", m[i][j]]);fprintf(out, "%g},\n", m[i][j]]);

}

fprintf(out, "  {");

for(j = 0; j < w - 1; ++j)

fprintf(out, "%g, ", m[i][j]);

fprintf(out, "%g}\n}\n", m[i][j]);

return;

}

void print_matrix(double **m, int h, int w){

fprint_matrix(stdout, m, h, w);

return;

}
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Matrix Transposition

�A common operation is to compute the 

transpose of a matrix

�We could do this in place and overwrite 

the contents of the matrixthe contents of the matrix

� In the following algorithm, we compute a 

new matrix containing the transposed 

matrix
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Matrix Transposition
double ** matrix_transpose(double ** m1, int h, int w){

int i, j;

double ** mr = make_matrix(w, h);

if (mr) {if (mr) {

for(i = 0; i < h; ++i)

for(j = 0; j < w; ++j)

mr[j][i] = m1[i][j];

return mr;

} else {

return NULL;

}

}
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Example
int main() {

//double m[4][3] = { {0, 1, 2}, {2, 3, 4}, {5, 6, 7}, {9, 1, 0}};

int h = 2, w = 3;

double ** m = make_matrix(h, w);

scan_matrix(m, h, w);

print_matrix(m, h, w);print_matrix(m, h, w);

double ** mt = matrix_transpose(m, h, w);

if (mt) {

print_matrix(mt, w, h);

free_matrix(mt);

}

free_matrix(m);

return 0;

}
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Matrix Multiplication

�Matrix multiplication is a fundamental 

operation that occurs in many 

applications

�Given two matrices A, a matrix with h1 �Given two matrices A, a matrix with h1 

rows and w1 columns and B a matrix 

with w1 rows and h2 columns, we can 

compute their product matrix C

�Note that the number of columns of A 

must equal the number of rows of B
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Matrix Multiplication

�The element c[i][j] is computed as the 

dot product of the ith row of A and the 

jth column of B

�The overall algorithm computes has two �The overall algorithm computes has two 

nested loops that vary i and j, 

computing each dot product

�The computation of the dot product is 

done in another loop nested inside 

those two
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Matrix Multiplication
double ** matrix_mult(double **m1, double **m2,

int hm1, int wm1, int wm2){

int i, j, k;

double sum;

double ** mr = make_matrix(hm1, wm2);

if (mr) {

for(i = 0; i < hm1; ++i) {for(i = 0; i < hm1; ++i) {

for(j = 0; j < wm2; ++j) {

sum = 0;

for(k = 0; k < wm1; ++k) {

sum += m1[i][k] * m2[k][j];

}

mr[i][j] = sum;

}

}

}

return mr;

}
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Solving Linear Systems

�One of the most widespread 

applications of computers is the solving 

of systems of linear equations

�These systems arise in numerous �These systems arise in numerous 

application areas

�There is a large body of literature and 

research on how to solve these systems 

efficiently and accurately

�We examine two simple approaches
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An Easy Example

If the system of equations is triangular, we 

can solve it by a process called back 

substitution:

w – 1.5x +  y + 2.5z = 1.5w – 1.5x +  y + 2.5z = 1.5

x + 0y - z = -1

y +   0z = -2

z = 7
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Matrix Representation

�We can represent this system of 

equations using an upper triangular 

matrix, A and a vector b. The equations 

can be written Ax=b, where x is a vector can be written Ax=b, where x is a vector 

of length 4 representing the values of 

(w,x,y,z)
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Matrix Representation

A = 1 -1.5   1 2.5  b = (1.5

0    1   0  -1        -1

0    0   1   0        -2  0    0   1   0        -2  

0    0   0   1         7)
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Back Substitution

First solve for z and then substitute in the 

previous equation to solve for y. 

Continue until all of the variables have been 

solved. solved. 

z = 7

y = -2 – 0*7 = -2

x = -1 - 0*-2 + 7 = 6

w = 1.5 + 1.5*6 – (-2) - 2.5*7 = -5  
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Gaussian Elimination

�The Gaussian elimination algorithm 

attempts to transform a system of linear 

equations into a triangular system

�As we have seen by example, a �As we have seen by example, a 

triangular system is easy to solve by 

back substitution

�We transform the system by eliminating 

one variable at each step
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A Linear System Example

Consider the system of equations:

2w – 3x + 2y + 5z = 3

w - x +  y + 2z = 1w - x +  y + 2z = 1

3w + 2x + 2y +  z = 0

w +  x – 3y - z = 0
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A Linear System Example

Again we can write this in the form Ax=b 

where A is a 4x4 matrix, x is a 1x4 

vector and b is a 1x4 vector:

A:                   b:A:                   b:

2 –3  2  5            3

1 -1  1  2            1

3  2  2  1            0

1  1  3 -1            0
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Gaussian Elimination Example

We first eliminate the first entry in the second 
row, by multiplying the first row by 1.0/2.0 and 
subtracting the rows.

We do the same to the second entry in b.

A:                   b:A:                   b:

2 –3  2  5             3

0 .5  0 -.5           -.5

3  2  2  1             0

1  1  3 -1             0
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Gaussian Elimination Example

Repeat this process for each row

A:                   b:

2 –3   2  5              3

0 .5   0 - .5          -.50 .5   0 - .5          -.5

0 6.5 -1 -6.5          -4.5

0 2.5 -4 -3.5          -1.5
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Gaussian Elimination Example

Now eliminate the second non-zero entries in 

the second column below the diagonal in the 

same way

A:                   b:A:                   b:

2 –3   2  5             3

0 .5   0 -.5           -.5

0  0  -1  0             2

0  0  -4 -1             1
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Gaussian Elimination Example

Do the same for the third column. Notice that it 

is not necessary to continue with the last 

column

A:                   b:A:                   b:

2 –3   2  5             3

0 .5   0 -.5           -.5

0  0  -1  0             2

0  0   0 -1            -7
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Gaussian Elimination
void genp(double **m, double v[], int h, int w){

int row, next_row, col;

double factor;

for(row = 0; row < (h - 1); ++row) {

for(next_row = row + 1; next_row < h; ++next_row) {

factor = m[next_row][row] / m[row][row];factor = m[next_row][row] / m[row][row];

for(col = 0; col < w; ++col)

m[next_row][col] -= factor * m[row][col];

v[next_row] -= factor * v[row];

}

}

}
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Problems with Gaussian Elimination

� If there is a zero on the diagonal that of the 

row we are processing, there will be an 

attempt to divide by zero, causing an error

� Even if there isn’t a zero, dividing by a small � Even if there isn’t a zero, dividing by a small 

number causes large roundoff errors and 

inaccurate results.

� These problems can be reduced by pivoting

�We rearrange the rows at each step so that 

the largest possible value is the next one we 

chose to eliminate
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Gaussian Elimination with 

Partial Privoting

void gepp(double **m, double v[], int h, int w){

int row, next_row, col, max_row;

double tmp, factor;

for(row = 0; row < (h - 1); ++row) {

// Find row with largest pivot.// Find row with largest pivot.

// Swap rows.

// Rest like Gaussian Elimination without Pivoting.

}

}
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Finding a Pivot

max_row = row;

for(next_row = row + 1; next_row < h; ++next_row)

if(m[next_row][row] > m[max_row][row])if(m[next_row][row] > m[max_row][row])

max_row = next_row;

Nov. 29th, 2007 Linear Algebra 40



Swapping Two Rows

if(max_row != row) {

for(col = 0; col < w; ++col) {

tmp = m[row][col];

m[row][col] = m[max_row][col];

m[max_row][col] = tmp;m[max_row][col] = tmp;

}

tmp = v[row];

v[row] = v[max_row];

v[max_row] = tmp;

}
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Back Substitution

�Once we have an upper triangular 

matrix, we can solve the system of 

equations by back substitution

�We first solve for the last variable and �We first solve for the last variable and 

use the solution to solve for the second 

last and so on.
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Back Substitution
void back_substitute(double **m, double v[],

int h, int w){

int row, next_row;

for(row = h - 1; row >= 0; --row) {

v[row] /= m[row][row];

m[row][row] = 1;m[row][row] = 1;

for(next_row = row - 1; next_row >= 0; --next_row) 
{

v[next_row] -= v[row] * m[next_row][row];

m[next_row][row] = 0;

}

}

}
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