
Computers in Engineering

COMP 208COMP 208

Indefinite Loops

Michael A. Hawker

Sept. 25th, 2007 1Indefinite Loops

Implicit Implied DO – LOOP

REAL :: A(1000)

INTEGER :: I, SIZE

READ(*,*) SIZE

READ (*,*) AREAD (*,*) A

�Reads values sequentially like a regular

do loop

� It must fill the entire array, not just the

first SIZE values

Sept. 25th, 2007 Indefinite Loops 2

Implied DO – LOOP

� In our ISBN example, we could input the
digits as follows:

READ (*,*) (digits(I), I=1,10)

�We could input all of the digits on one or �We could input all of the digits on one or

more lines separated by blanks

�The first 10 digits would be read and

stored in the digits array

Sept. 25th, 2007 Indefinite Loops 3

Implied DO – LOOP

REAL :: A(1000)

INTEGER :: I, SIZE

READ (*,*) SIZE

READ (*,*) (A(I), I=1,SIZE)

�Reads values sequentially from a line�Reads values sequentially from a line

� If there are not enough values on the line it
starts a new line

� This is called an inline or implied
DO loop

Sept. 25th, 2007 Indefinite Loops 4

Why Use an Implied DO Loop

�Faster, Easier, and More Convenient

�Allows for easier Access to Change

Number of Loops

REAL :: A(1000)

INTEGER :: I, SIZE

READ (*,*) SIZE

READ (*,*) (A(I), I=1,SIZE)

Sept. 25th, 2007 Indefinite Loops 5

Compute Sum of Array Elements

REAL :: Data(100)

REAL :: Sum

. . .

Sum = 0.0

DO k = 1, 100

Sum = Sum + Data(k)

END DO

Sept. 25th, 2007 Indefinite Loops 6

Inner Product of Vectors

� The inner product of two vectors is the sum of
the products of corresponding elements.

REAL :: V1(50), V2(50)

REAL :: InnerProductREAL :: InnerProduct

INTEGER :: dim, n

READ(*,*) dim !actual dimension of vector

InnerProduct = 0.0

DO n = 1, dim

InnerProduct = InnerProduct + V1(n)*V2(n)

END DO

Sept. 25th, 2007 Indefinite Loops 7

Find Maximum Value

�How do we find the largest value in an

array?

� Imagine a deck of cards that we look

through one at a timethrough one at a time

�Keep track of the largest value

�Start with the one on the first card

�Keep looking and note whenever a

larger value is found

Sept. 25th, 2007 Indefinite Loops 8

Find Maximum Value

PROGRAM FINDMAX

IMPLICIT NONE

INTEGER :: MARKS(210)

INTEGER :: MAX, I

READ(*,*) MARKSREAD(*,*) MARKS

MAX = MARKS(1)

DO I = 2, 210

IF (MARKS(I) > MAX) MAX = MARKS(I)

END DO

WRITE (*,*) “THE HIGHEST MARK IS: ”, MAX

END PROGRAM FINDMAX

Sept. 25th, 2007 Indefinite Loops 9

Indefinite Iterators

�For some applications, we do not know

in advance how many times to repeat

the computation

�The loop will need to continue until �The loop will need to continue until

some condition is met and then

terminate

Sept. 25th, 2007 Indefinite Loops 10

Indefinite Iterator

�The iterator we can use has the form

DO

statement block, s

END DOEND DO

�The block, s, is evaluated repeatedly an

indeterminate number of times

Sept. 25th, 2007 Indefinite Loops 11

A Repetitive Joke

�Why did the Computer Scientist die in

the Shower?

The instructions on the shampoo label �The instructions on the shampoo label

said:

1. Rinse

2. Lather

3. Repeat

Sept. 25th, 2007 Indefinite Loops 12

Infinite Loops

� A danger in using this construct is that the
loop might never terminate.

� This loop computes the sum of a sequence of
inputs

REAL :: x, SumREAL :: x, Sum

Sum = 0.0

DO

READ(*,*) x

Sum = Sum + x

END DO

Sept. 25th, 2007 Indefinite Loops 13

Terminating a Loop

�The general DO loop will go on forever

without terminating

�How do we get out of it?

The EXIT statement causes execution �The EXIT statement causes execution

to leave the loop and continue with the
statement following the END DO

Sept. 25th, 2007 Indefinite Loops 14

Sum Positive Input Values

�Read real values and sum them. Stop
when the input value becomes negative.

REAL :: x, Sum

Sum = 0.0

DO DO

READ(*,*) x

IF (x < 0) EXIT

Sum = Sum + x

END DO

WRITE (*,*) “Sum is: “, Sum

Sept. 25th, 2007 Indefinite Loops 15

GCD

� The greatest common divisor of two integers

is the largest number that divides both of

them

� There are numerous applications that require � There are numerous applications that require

computing GCD’s

� For example, reducing rational numbers to

their simplest form in seminumeric

computations

�We present a very simple (slow) algorithm

Sept. 25th, 2007 Indefinite Loops 16

A GCD Algorithm

�The GCD is obviously less than or equal

to either of the given numbers, x and y

�We just have to work backwards and

test every number less than x or y until test every number less than x or y until

we find one that divides both

�We stop when we find a common

divisor or when we get to 1

Sept. 25th, 2007 Indefinite Loops 17

A Simple GCD Computation
PROGRAM gcd

INTEGER :: x, y, g

READ (*,*) x, y

g = y

DODO

IF (mod(x,g)==0 .AND. mod(y,g)==0) EXIT

g = g - 1

END DO

WRITE (*,*) "GCD of ", x, " and ", y, " = ", g

END PROGRAM gcd

Sept. 25th, 2007 Indefinite Loops 18

Finding Square Roots

�Newton presented an algorithm for

approximating the square root of a

number in 1669

�The method starts with an initial guess �The method starts with an initial guess

at the root and keeps refining the guess

� It stops refining when the guess is close

to the root, that is when it’s square is

close to the given number

Sept. 25th, 2007 Indefinite Loops 19

Finding the Square Root
! ---

! Use Newton's method to find the square root of a positive number.

! ---

PROGRAM SquareRoot

IMPLICIT NONE

REAL :: A, R, NewR, Tolerance

READ(*,*) A, Tolerance

R = A ! Initial approximation

DO

NewR = 0.5*(R + A/R) ! compute a new approximation

IF (ABS(R*R - A) < Tolerance) EXIT ! If close to result, exit

R = NewR ! Use the new approximation

END DO

WRITE(*,*) " The estimated square root is ", NewR

WRITE(*,*) " The square root from SQRT() is ", SQRT(A)

WRITE(*,*) " Absolute error = ", ABS(SQRT(A) - NewR)

END PROGRAM SquareRoot

Sept. 25th, 2007 Indefinite Loops 20

Exp(x)

� The exponential function can be expressed

as an infinite sum:

...
!

...
!3!2

1

32

++++++

i

xxx
x

i

� A program to approximate the value can

compute a finite portion of this sum

� We can sum terms until the final term is

very small, say less then 0.00001 (or any

other tolerance we might choose)

Sept. 25th, 2007 Indefinite Loops 21

!!3!2 i

Compute Exp(x)

(preamble)
! --

! Compute exp(x) for an input x using the infinite series of exp(x).

! ---

PROGRAM Exponential

IMPLICIT NONE

INTEGER :: Count ! # of terms usedINTEGER :: Count ! # of terms used

REAL :: Term

REAL :: Sum

REAL :: X

REAL :: Tolerance = 0.00001 ! Tolerance

READ(*,*) X

Sept. 25th, 2007 Indefinite Loops 22

Compute Exp(x)

(main part of program)

Count = 1

Sum = 1.0

Term = x ! the second term is x

DO

IF (ABS(Term) < Tolerance) EXIT

Sum = Sum + Term

Count = Count + 1 Count = Count + 1

Term = Term * (X / Count) ! compute the value of next term

END DO

WRITE(*,*) "After ", Count, " iterations:"

WRITE(*,*) " Exp(", X, ") = ", Sum

WRITE(*,*) " From EXP() = ", EXP(X)

WRITE(*,*) " Abs(Error) = ", ABS(Sum - EXP(X))

END PROGRAM Exponential

Sept. 25th, 2007 Indefinite Loops 23

