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Implicit Implied DO – LOOP

REAL :: A(1000)

INTEGER :: I, SIZE

READ(*,*) SIZE

READ (*,*) AREAD (*,*) A

�Reads values sequentially like a regular 

do loop

� It must fill the entire array, not just the 

first SIZE values
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Implied DO – LOOP

� In our ISBN example, we could input the 
digits as follows:

READ (*,*) (digits(I), I=1,10)

�We could input all of the digits on one or �We could input all of the digits on one or 

more lines separated by blanks

�The first 10 digits would be read and 

stored in the digits array
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Implied DO – LOOP

REAL :: A(1000)

INTEGER :: I, SIZE

READ (*,*) SIZE

READ (*,*) (A(I), I=1,SIZE)

�Reads values sequentially from a line�Reads values sequentially from a line

� If there are not enough values on the line it 
starts a new line

� This is called an inline or implied 
DO loop
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Why Use an Implied DO Loop

�Faster, Easier, and More Convenient

�Allows for easier Access to Change 

Number of Loops

REAL :: A(1000)

INTEGER :: I, SIZE

READ (*,*) SIZE

READ (*,*) (A(I), I=1,SIZE)
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Compute Sum of Array Elements

REAL :: Data(100) 

REAL :: Sum

. . .

Sum = 0.0

DO k = 1, 100

Sum = Sum + Data(k)

END DO 
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Inner Product of Vectors

� The inner product of two vectors is the sum of 
the products of corresponding elements. 

REAL :: V1(50), V2(50)

REAL :: InnerProductREAL :: InnerProduct

INTEGER :: dim, n

READ(*,*) dim         !actual dimension of vector

InnerProduct = 0.0

DO n = 1, dim

InnerProduct = InnerProduct + V1(n)*V2(n)

END DO
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Find Maximum Value

�How do we find the largest value in an 

array?

� Imagine a deck of cards that we look 

through one at a timethrough one at a time

�Keep track of the largest value

�Start with the one on the first card

�Keep looking and note whenever a 

larger value is found
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Find Maximum Value

PROGRAM FINDMAX

IMPLICIT NONE

INTEGER :: MARKS(210)

INTEGER :: MAX, I

READ(*,*) MARKSREAD(*,*) MARKS

MAX = MARKS(1)

DO I = 2, 210

IF (MARKS(I) > MAX) MAX = MARKS(I)

END DO

WRITE (*,*) “THE HIGHEST MARK IS: ”, MAX

END PROGRAM FINDMAX
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Indefinite Iterators

�For some applications, we do not know 

in advance how many times to repeat 

the computation

�The loop will need to continue until �The loop will need to continue until 

some condition is met and then 

terminate
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Indefinite Iterator

�The iterator we can use has the form

DO

statement block, s

END DOEND DO

�The block, s, is evaluated repeatedly an 

indeterminate number of times
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A Repetitive Joke

�Why did the Computer Scientist die in 

the Shower?

The instructions on the shampoo label �The instructions on the shampoo label 

said:

1. Rinse

2. Lather

3. Repeat
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Infinite Loops

� A danger in using this construct is that the 
loop might never terminate. 

� This loop computes the sum of a sequence of 
inputs

REAL :: x, SumREAL :: x, Sum

Sum = 0.0

DO 

READ(*,*) x 

Sum = Sum + x 

END DO 
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Terminating a Loop

�The general DO loop will go on forever 

without terminating

�How do we get out of it?

The EXIT statement causes execution �The EXIT statement causes execution 

to leave the loop and continue with the 
statement following the END DO
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Sum Positive Input Values

�Read real values and sum them. Stop 
when the input value becomes negative. 

REAL :: x, Sum 

Sum = 0.0

DO DO 

READ(*,*) x 

IF (x < 0) EXIT 

Sum = Sum + x 

END DO

WRITE (*,*) “Sum is: “, Sum 
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GCD

� The greatest common divisor of two integers 

is the largest number that divides both of 

them

� There are numerous applications that require � There are numerous applications that require 

computing GCD’s

� For example, reducing rational numbers to 

their simplest form in seminumeric 

computations

�We present a very simple (slow) algorithm
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A GCD Algorithm

�The GCD is obviously less than or equal 

to either of the given numbers, x and y

�We just have to work backwards and 

test every number less than x or y until test every number less than x or y until 

we find one that divides both

�We stop when we find a common 

divisor or when we get to 1
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A Simple GCD Computation
PROGRAM gcd

INTEGER :: x, y, g

READ (*,*) x, y

g = y

DODO

IF (mod(x,g)==0 .AND. mod(y,g)==0) EXIT

g = g - 1

END DO

WRITE (*,*) "GCD of ", x, " and ", y, " = ", g

END PROGRAM gcd
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Finding Square Roots

�Newton presented an algorithm for 

approximating the square root of a 

number in 1669

�The method starts with an initial guess �The method starts with an initial guess 

at the root and keeps refining the guess

� It stops refining when the guess is close 

to the root, that is when it’s square is 

close to the given number
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Finding the Square Root
! ---------------------------------------------------------

! Use Newton's method to find the square root of a positive number.

! ---------------------------------------------------------

PROGRAM SquareRoot 

IMPLICIT NONE

REAL :: A, R, NewR, Tolerance 

READ(*,*) A, Tolerance 

R = A                                  ! Initial approximation

DO

NewR = 0.5*(R + A/R)                 ! compute a new approximation 

IF (ABS(R*R - A) < Tolerance) EXIT ! If close to result, exit 

R = NewR                             ! Use the new approximation 

END DO 

WRITE(*,*) " The estimated square root is ", NewR 

WRITE(*,*) " The square root from SQRT() is ", SQRT(A) 

WRITE(*,*) " Absolute error = ", ABS(SQRT(A) - NewR) 

END PROGRAM SquareRoot 
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Exp(x)

� The exponential function can be expressed 

as an infinite sum:
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� A program to approximate the value can 

compute a finite portion of this sum

� We can sum terms until the final term is 

very small, say less then 0.00001 (or any 

other tolerance we might choose)
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Compute Exp(x)

(preamble)
! ----------------------------------------------

! Compute exp(x) for an input x using the infinite series of exp(x).

! ---------------------------------------------------------

PROGRAM  Exponential

IMPLICIT  NONE

INTEGER         :: Count                   ! # of terms usedINTEGER         :: Count                   ! # of terms used

REAL            :: Term             

REAL            :: Sum              

REAL            :: X                

REAL            :: Tolerance = 0.00001     ! Tolerance

READ(*,*)  X                       
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Compute Exp(x)

(main part of program)

Count = 1                           

Sum   = 1.0                         

Term  = x                            ! the second term is x

DO                                   

IF (ABS(Term) < Tolerance)  EXIT 

Sum   = Sum + Term               

Count = Count + 1                Count = Count + 1                

Term  = Term * (X / Count)       ! compute the value of next term

END DO

WRITE(*,*)  "After ", Count, " iterations:"

WRITE(*,*)  "  Exp(", X, ") = ", Sum

WRITE(*,*)  "  From EXP()   = ", EXP(X)

WRITE(*,*)  "  Abs(Error)   = ", ABS(Sum - EXP(X))

END PROGRAM  Exponential
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