
9/20/2007

1

Computers in Engineering

COMP 208

Repetition and Storage

Michael A. Hawker

Repetition

�To fully take advantage of the speed of

a computer, we must be able to instruct

it to do a lot of work

�The program must be relatively short or

it would take us too long to write

�To get the computer to do a lot of work,

we must be able tell it to do some

computations many times, perhaps with

different data values each time
Sept. 20th, 2007 Repetition and Storage 2

A Table of Values

� Problem: Output a table of numbers from 1
to 100 with their squares and cubes

1 1 1

2 4 8

3 9 27

4 16 64

. . .

� We have to be able to repeat a computation
over and over for the different numbers
without writing 100 WRITE statements

Sept. 20th, 2007 Repetition and Storage 3

9/20/2007

2

A Table of Values

INTEGER :: Num

DO Num = 1, 100

WRITE(*,*) Num, Num*Num, Num*Num*Num

END DO

Sept. 20th, 2007 Repetition and Storage 4

Loops that Count

� The syntax of a definite iterator (often called a

counted DO loop) is:

DO var = initial, final, step-size

statement block, s

END DO

� var is an INTEGER variable called the control

variable

� initial and final are INTEGER expressions

� step-size is an optional INTEGER expression.

If omitted the default value is 1

Sept. 20th, 2007 Repetition and Storage 5

Semantics of Counted DO Initialisation

�Evaluate the initial, final and step-size

expressions.

�These can be any expressions that give an

integer value

�They are evaluated only once before the

loop is entered

�The step-size should not be 0.

�The value if the step size is omitted is 1

Sept. 20th, 2007 Repetition and Storage 6

9/20/2007

3

Semantics of Counted DO

(Counting Up)

� If the step-size is > 0, the loop counts

up

1. var = initial value

2. If (var <= final value) then

� Execute the statement block, s

� var = var + step-size

� Repeat step 2

3. When var > final value, the loop ends and

the statement after the END DO is

executed
Sept. 20th, 2007 Repetition and Storage 7

Semantics of Counted DO

(Counting Down)

� If the step-size is < 0, the loop counts

down

1. var = initial value

2. If (var >= final value) then

� Execute the statement block, s

� var = var + step-size (negative)

� Repeat step 2

3. When var < final value, the loop ends and

the statement after the END DO is

executed
Sept. 20th, 2007 Repetition and Storage 8

Table of Odd Numbers

�Output the odd numbers between 1 and

100, their squares and cubes.

INTEGER :: Num

DO Num = 1, 100, 2

WRITE(*,*) Num, Num*Num, Num*Num*Num

END DO

Sept. 20th, 2007 Repetition and Storage 9

9/20/2007

4

Temperature Conversions

� Print a table of Celsius to Fahrenheit
conversions:

INTEGER :: Celsius

REAL :: Fahrenheit

DO Celsius = -40, 40

Fahrenheit = 1.8 * Celsius + 32.0

WRITE(*,*) Celsius, “ degrees Celsius = “, &

Fahrenheit, “ degrees Fahrenheit”

END DO

Note the negative initial value. Step size is 1.

Sept. 20th, 2007 Repetition and Storage 10

Table in Descending Order

INTEGER :: Celsius

REAL :: Fahrenheit

DO Celsius = 40, -40, -1

Fahrenheit = 1.8 * Celsius + 32.0

WRITE(*,*) Celsius, “ degrees Celsius = “, &

Fahrenheit, “ degrees Fahrenheit”

END DO

Note the negative step size.

Sept. 20th, 2007 Repetition and Storage 11

Average Value

� Input 1000 real numbers and compute the average
value:
INTEGER :: Count, Number=1000

REAL :: Sum, Input

REAL :: Average

Sum = 0.0

DO Count = 1, Number

READ(*,*) Input

Sum = Sum + Input

END DO

Average = Sum / Number

Sept. 20th, 2007 Repetition and Storage 12

9/20/2007

5

Definite Iterator

� The DO loop we have looked at is called a
definite iterator

� The body of the loop is executed a fixed
number of times

� The control variable, i, takes on the values
x, x+s, x+2s, …, x+ks where
� x is the initial value,

� s is the step size and

� x+ks ≤ final value < x+(k+1)s

Sept. 20th, 2007 Repetition and Storage 13

Processing Lists

�Counted do loops are used extensively

in processing lists of data

� In the next application, we will see how

to represent a list of data in a way that

allows us to go through each value in

the list using a do loop

Sept. 20th, 2007 Repetition and Storage 14

ISBN Numbers

� ISBN numbers assign a unique

identification number to every book

published

�As with many such identification

numbers, such as UPC codes, Postal

Money Order serial numbers, Credit

card numbers, there is a self checking

code that allows us to reduce scanning

and transmission errors

Sept. 20th, 2007 Repetition and Storage 15

9/20/2007

6

10 Digit ISBN Codes

An ISBN consists of 10 digits (newer standards

will have 13 digits)

For example: 0-7872-9390-3

1. The first digit is a country or language code

2. The next group of digits is the publisher

3. The next group is the item number

4. The final digit is a check digit

(The lengths of groups 2 and 3 may vary)

Sept. 20th, 2007 Repetition and Storage 16

The Check Digit

To calculate the check digit the International

ISBN Agency specifies that

1. For each of the first nine digits, we multiply the

digit by a weight depending on the position of

the digit that goes from 10 down to 1

2. We then sum these products

3. The check digit is the number that, if added, will

make this sum a multiple of 11

Sept. 20th, 2007 Repetition and Storage 17

Verifying ISBN Numbers
PROGRAM isbn

IMPLICIT NONE

INTEGER :: digits(10)

INTEGER :: pos, sum

INTEGER :: check

READ (*,*) digits

sum = 0

DO pos = 1,10

sum = sum + (11-pos)*digits(pos)

END DO

check = mod(sum,11)

IF (check == 0) THEN

write(*,*) "ISBN is valid"

ELSE

write(*,*) "ISBN is invalid"

END IF

END PROGRAM isbn

Sept. 20th, 2007 Repetition and Storage 18

9/20/2007

7

Verifying ISBN Numbers

(with Logical Variables)
PROGRAM isbn

IMPLICIT NONE

INTEGER :: digits(10)

INTEGER :: pos, sum

LOGICAL :: valid

READ (*,*) digits

sum = 0

DO pos = 1,10

sum = sum + (11-pos)*digits(pos)

END DO

valid = mod(sum,11) == 0

IF (valid) THEN

write(*,*) "ISBN is valid"

ELSE

write(*,*) "ISBN is invalid"

END IF

END PROGRAM isbn

Sept. 20th, 2007 Repetition and Storage 19

Compound Data Structures

� We often want to process groups of data values in a

uniform way

� Digits in an ISBN

� Grades in a class

� Vector of real numbers

� Using individual variables is cumbersome
� INTEGER :: digit1, digit2, digit2, … ,digit11

� There is no way to uniformly examine or process the

values stored in these variables

Sept. 20th, 2007 Repetition and Storage 20

Arrays

� FORTRAN provides an array data type to

support grouping related data together

� This allows them to be processed in a

uniform way

� An array is a collection of data of the same

type.

� The entire collection has a single name

� Individual values in the array are accessed by

an index

Sept. 20th, 2007 Repetition and Storage 21

9/20/2007

8

Declaring an Array

Example:
INTEGER :: DIGITS(10)

Visualizing an array:

Sept. 20th, 2007 Repetition and Storage 22

0 7 8 7 2 9

1 2 43 65

3 9 0

7 8 9

3

10

DIGITS

contents

indices

name

Declaring an Array

Syntax for an array declaration:

type :: a(bound), b, c(bound)

Semantics
type is the type of the values that can be stored in
each element of the array

bound specifies the range of indices for the
subscript

There is an array element of the specified type
corresponding to each integer index between 1
and bound

Sept. 20th, 2007 Repetition and Storage 23

What happens when we declare an array?

� When an array is declared, the computer

allocates storage for a contiguous block of

memory cells

� This block has the name we specify

� Each cell in the block has the “shape” for

holding values of the type that was specified

� The individual cells in the block can be

referenced by an index

� The index starts at 1

� The index ranges up to the size we specify
Sept. 20th, 2007 Repetition and Storage 24

9/20/2007

9

How Do We Access The Cells?

To access individual variables in the collection, we use
a subscript

SUM = SUM + (11-POS)*DIGITS(POS)

Syntax:

array-name (integer-expression)

Semantics:

array-name is the name of the array, and

integer-expression is an expression that

evaluates to an integer. The value of this integer
must be between 1 and the declared array size

Sept. 20th, 2007 Repetition and Storage 25

Out of Bounds?

� What happens if the index expression

evaluates to 0? A negative number? A value

greater than the array size?

� Who knows?

� What might happen:

� Processor generates a run time error and stops

(expensive to check)

� Processor might just reference a memory cell near

the array (dangerous)

Sept. 20th, 2007 Repetition and Storage 26

Out of Bounds?

�What do I do?

�Most compilers have a bounds checking

option

�Turn it on during testing

�Turn it off when program fully developed to

make execution more efficient

Sept. 20th, 2007 Repetition and Storage 27

9/20/2007

10

Using Arrays

�A natural mechanism for processing

arrays is the DO-loop

� It allows us to go through and process

each element in the array

� It also allows us to put values into the

array to begin with

Sept. 20th, 2007 Repetition and Storage 28

Initialize an Array to Zero

INTEGER :: UPPER = 100

INTEGER :: a(UPPER)

INTEGER :: i

DO i = 1, UPPER

a(i) = 0

END DO

Sept. 20th, 2007 Repetition and Storage 29

Sept. 20th, 2007 Repetition and Storage 30

Back to Counted Do Loops

� There are a few

things we have to be

careful about when

using counted do

loops

9/20/2007

11

Don’ts of DOs

� Changing the values of the control variable or

any variables involved in the controlling

expressions of an iterator is risky.

� Some compilers will not allow this and will

halt and signal an error. Others may allow it

with unpredictable results.

� Programs should be portable. That is they

should run on many different systems. Using

features that are handled differently in

different environments is not good.

Sept. 20th, 2007 Repetition and Storage 31

Changing Changes…

Do not change the value of the control-var.
DO a = b, c

a = b + c

END DO

Does the loop ever terminate?
DO a = b, c

READ(*,*) a

END DO

What does this do?

Sept. 20th, 2007 Repetition and Storage 32

Warned…

� Do not change the value of any variable
involved in initial-value, final-value and step-
size.

DO a = b, d, e

READ(*,*) b ! initial-value changed

d = 5 ! final-value changed

e = -3 ! step-size changed

END DO

� The results are unpredictable!

Sept. 20th, 2007 Repetition and Storage 33

9/20/2007

12

Watch Your Step

�What happens if the step size is zero?

DO count = -3, 4, 0

...

END DO

� It seems to be an infinite loop.

�Some compilers might consider it an
error and abort the program.

Sept. 20th, 2007 Repetition and Storage 34

Input Values into an Array

REAL :: A(1000)

INTEGER :: I, SIZE

READ(*,*) SIZE

DO I = 1, SIZE

READ (*,*) A(I)

END DO

� Reads one value per line

� (Each READ starts a new line)

� What happens if size is greater than 1000?

Sept. 20th, 2007 Repetition and Storage 35

Sept. 20th, 2007 Repetition and Storage 36

Input Values into an Array

In our ISBN example, we could input the
digits as follows:

DO I = 1, 10

READ (*,*) digits(i)

END DO

We would have to input 10 lines.

The first value on each line would be read

9/20/2007

13

Sept. 20th, 2007 Repetition and Storage 37

Implicit Implied DO – LOOP

REAL :: A(1000)

INTEGER :: I, SIZE

READ(*,*) SIZE

READ (*,*) A

�Reads values sequentially like a regular

do loop

� It must fill the entire array, not just the

first SIZE values

Sept. 20th, 2007 Repetition and Storage 38

Implied DO – LOOP

� In our ISBN example, we could input the
digits as follows:

READ (*,*) (digits(I), I=1,10)

�We could input all of the digits on one or

more lines separated by blanks

�The first 10 digits would be read and

stored in the digits array

Sept. 20th, 2007 Repetition and Storage 39

Implied DO – LOOP

REAL :: A(1000)

INTEGER :: I, SIZE

READ (*,*) SIZE

READ (*,*) (A(I), I=1,SIZE)

�Reads values sequentially from a line

� If there are not enough values on the

line it starts a new line

�This is called an inline or implied

DO loop

9/20/2007

14

Why Use an Implied DO Loop

�Faster, Easier, and More Convenient

�Allows for easier Access to Change

Number of Loops

REAL :: A(1000)

INTEGER :: I, SIZE

READ (*,*) SIZE

READ (*,*) (A(I), I=1,SIZE)

Sept. 20th, 2007 Repetition and Storage 40

Sept. 20th, 2007 Repetition and Storage 41

Compute Sum of Array Elements

REAL :: Data(100)

REAL :: Sum

. . .

Sum = 0.0

DO k = 1, 100

Sum = Sum + Data(k)

END DO

Sept. 20th, 2007 Repetition and Storage 42

Inner Product of Vectors

� The inner product of two vectors is the sum of
the products of corresponding elements.

REAL :: V1(50), V2(50)

REAL :: InnerProduct

INTEGER :: dim, n

READ(*,*) dim !actual dimension of vector

InnerProduct = 0.0

DO n = 1, dim

InnerProduct = InnerProduct + V1(n)*V2(n)

END DO

9/20/2007

15

Find Maximum Value

�How do we find the largest value in an

array?

� Imagine a deck of cards that we look

through one at a time

�Keep track of the largest value

�Start with the one on the first card

�Keep looking and note whenever a

larger value is found

Sept. 20th, 2007 Repetition and Storage 43

Sept. 20th, 2007 Repetition and Storage 44

Find Maximum Value

PROGRAM FINDMAX

IMPLICIT NONE

INTEGER :: MARKS(210)

INTEGER :: MAX, I

READ(*,*) MARKS

MAX = MARKS(1)

DO I = 2, 210

IF (MARKS(I) > MAX) MAX = MARKS(I)

END DO

WRITE (*,*) “THE HIGHEST MARK IS: ”, MAX

END PROGRAM FINDMAX

Indefinite Iterators

�For some applications, we do not know

in advance how many times to repeat

the computation

�The loop will need to continue until

some condition is met and then

terminate

Sept. 20th, 2007 Repetition and Storage 45

9/20/2007

16

Sept. 20th, 2007 Repetition and Storage 46

Indefinite Iterator

�The iterator we can use has the form

DO

statement block, s

END DO

�The block, s, is evaluated repeatedly an

indeterminate number of times

A Repetitive Joke

�Why did the Computer Scientist die in

the Shower?

�The instructions on the shampoo label

said:

1. Rinse

2. Lather

3. Repeat

Sept. 20th, 2007 Repetition and Storage 47

Infinite Loops

� A danger in using this construct is that the
loop might never terminate.

� This loop computes the sum of a sequence of
inputs

REAL :: x, Sum

Sum = 0.0

DO

READ(*,*) x

Sum = Sum + x

END DO

Sept. 20th, 2007 Repetition and Storage 48

9/20/2007

17

Terminating a Loop

�The general DO loop will go on forever

without terminating

�How do we get out of it?

�The EXIT statement causes execution

to leave the loop and continue with the
statement following the END DO

Sept. 20th, 2007 Repetition and Storage 49

Sum Positive Input Values

�Read real values and sum them. Stop

when the input value becomes negative.
REAL :: x, Sum

Sum = 0.0

DO

READ(*,*) x

IF (x < 0) EXIT

Sum = Sum + x

END DO

WRITE (*,*) “Sum is: “, Sum

Sept. 20th, 2007 Repetition and Storage 50

GCD

� The greatest common divisor of two integers

is the largest number that divides both of

them

� There are numerous applications that require

computing GCD’s

� For example, reducing rational numbers to

their simplest form in seminumeric

computations

� We present a very simple (slow) algorithm

Sept. 20th, 2007 Repetition and Storage 51

9/20/2007

18

Sept. 20th, 2007 Repetition and Storage 52

A GCD Algorithm

�The GCD is obviously less than or equal

to either of the given numbers, x and y

�We just have to work backwards and

test every number less than x or y until

we find one that divides both

�We stop when we find a common

divisor or when we get to 1

A Simple GCD Computation
PROGRAM gcd

INTEGER :: x, y, g

READ (*,*) x, y

g = y

DO

IF (mod(x,g)==0 .AND. mod(y,g)==0) EXIT

g = g - 1

END DO

WRITE (*,*) "GCD of ", x, " and ", y, " = ", g

END PROGRAM gcd

Sept. 20th, 2007 Repetition and Storage 53

Finding Square Roots

�Newton presented an algorithm for

approximating the square root of a

number in 1669

�The method starts with an initial guess

at the root and keeps refining the guess

� It stops refining when the guess is close

to the root, that is when it’s square is

close to the given number

Sept. 20th, 2007 Repetition and Storage 54

9/20/2007

19

Finding the Square Root
! ---

! Use Newton's method to find the square root of a positive number.

! ---

PROGRAM SquareRoot

IMPLICIT NONE

REAL :: A, R, NewR, Tolerance

READ(*,*) A, Tolerance

R = A ! Initial approximation

DO

NewR = 0.5*(R + A/R) ! compute a new approximation

IF (ABS(R*R - A) < Tolerance) EXIT ! If close to result, exit

R = NewR ! Use the new approximation

END DO

WRITE(*,*) " The estimated square root is ", NewR

WRITE(*,*) " The square root from SQRT() is ", SQRT(A)

WRITE(*,*) " Absolute error = ", ABS(SQRT(A) - NewR)

END PROGRAM SquareRoot

Sept. 20th, 2007 Repetition and Storage 55

Exp(x)

� The exponential function can be expressed

as an infinite sum:

� A program to approximate the value can

compute a finite portion of this sum

� We can sum terms until the final term is

very small, say less then 0.00001 (or any

other tolerance we might choose)

Sept. 20th, 2007 Repetition and Storage 56

...
!

...
!3!2

1

32

++++++

i

xxx
x

i

Compute Exp(x)

(preamble)
! --

! Compute exp(x) for an input x using the infinite series of exp(x).

! ---

PROGRAM Exponential

IMPLICIT NONE

INTEGER :: Count ! # of terms used

REAL :: Term

REAL :: Sum

REAL :: X

REAL :: Tolerance = 0.00001 ! Tolerance

READ(*,*) X

Sept. 20th, 2007 Repetition and Storage 57

9/20/2007

20

Compute Exp(x)

(main part of program)

Count = 1

Sum = 1.0

Term = x ! the second term is x

DO

IF (ABS(Term) < Tolerance) EXIT

Sum = Sum + Term

Count = Count + 1

Term = Term * (X / Count) ! compute the value of next term

END DO

WRITE(*,*) "After ", Count, " iterations:"

WRITE(*,*) " Exp(", X, ") = ", Sum

WRITE(*,*) " From EXP() = ", EXP(X)

WRITE(*,*) " Abs(Error) = ", ABS(Sum - EXP(X))

END PROGRAM Exponential

Sept. 20th, 2007 Repetition and Storage 58

DO-WHILE

� DO ... WHILE loops are a special case used
when a condition is to be tested at the top of
a loop

� This is a looping structure provided in many
different programming languages

� Syntax:
DO WHILE (logical expression)

statement block, s

END DO

Sept. 20th, 2007 Repetition and Storage 59

DO-WHILE

�Semantics:

�Test the logical expression

� If it evaluates to .TRUE., execute the

statement block and go back to step 1.

� If it evaluates to .FALSE., go to the

statement after the END DO

Sept. 20th, 2007 Repetition and Storage 60

9/20/2007

21

DO-WHILE

DO-WHILE loops are equivalent to

DO

IF .NOT.(logical expression) EXIT

statement block s

END DO

Sept. 20th, 2007 Repetition and Storage 61

Example

The DO loop of the program to compute exp(x)
can be rewritten using a DO-WHILE
DO

IF (ABS(Term) < Tolerance) EXIT

Sum = Sum + Term

Count = Count + 1

Term = Term * (X / Count)

END DO

DO WHILE (ABS(Term) >= Tolerance)

Sum = Sum + Term

Count = Count + 1

Term = Term * (X / Count)

END DO

Sept. 20th, 2007 Repetition and Storage 62

Warning!

�The loop only executes if the logical

expression evaluates to .TRUE.

� If the value of this expression doesn't

change, we will get an infinite loop

�The values of variables that the logical

expression depends on must be

modified within the loop

� (It still might not terminate, but at least

we have a chance)
Sept. 20th, 2007 Repetition and Storage 63

9/20/2007

22

Nested DO-Loops

�A DO-loop can contain other DO-loops

in its body.

�This nested DO-loop, must be

completely inside the containing DO-

loop.

�Note that an EXIT statement transfers

control out of the inner-most DO-loop

that contains the EXIT statement.

Sept. 20th, 2007 Repetition and Storage 64

Nested DO-Loop Example

The outer loop has i going from 1 to 7 with step size 1.

For each of the seven values of i, the inner loop iterates
9 times with j going from 1 to 9.

INTEGER :: i, j

DO i = 1, 7

DO j = 1, 9

WRITE(*,*) i*j

END DO

END DO

There are 63 values printed in total

Sept. 20th, 2007 Repetition and Storage 65

Table of Exp(x)

(preamble)
! --

! This program computes exp(x) for a range of values of x using the

! Infinite Series expansion of exp(x)

! The range has a beginning value, final value and step size.

! --

PROGRAM Exponential

IMPLICIT NONE

INTEGER :: Count

REAL :: Term

REAL :: Sum

REAL :: X

REAL :: ExpX

REAL :: Begin, End, Step

REAL :: Tolerance = 0.00001

WRITE(*,*) "Initial, Final and Step please --> "

READ(*,*) Begin, End, Step

Sept. 20th, 2007 Repetition and Storage 66

9/20/2007

23

Table of Exp(x)

(body)

X = Begin ! X starts with the beginning value

DO

IF (X > End) EXIT ! if X is > the final value, EXIT

Count = 1

Sum = 1.0

Term = X

ExpX = EXP(X) ! the exp(x) from Fortran's EXP()

DO

IF (ABS(Term) < Tolerance) EXIT

Sum = Sum + Term

Count = Count + 1

Term = Term * (X / Count)

END DO

WRITE(*,*) X, Sum, ExpX, ABS(Sum-ExpX), ABS((Sum-ExpX)/ExpX)

X = X + Step

END DO

END PROGRAM Exponential

Sept. 20th, 2007 Repetition and Storage 67

GCD Revisited

�A more efficient way of computing the

GCD of two integers is possible

� It doesn’t even use division!!

Sept. 20th, 2007 Repetition and Storage 68

Sept. 20th, 2007 Repetition and Storage 69

Some GCD Facts

� The trivial cases:
gcd(k,k) = k , for nonzero k

gcd(0,k) = gcd(k,0) = k, for nonzero k

� The general case:
For i >= j, gcd(i,j) = gcd(i-j,j)

� Using this, we can work backwards from the

general case by reducing the larger of the two

arguments until we reach one of the trivial

cases

9/20/2007

24

Sept. 20th, 2007 Repetition and Storage 70

A GCD Program
INTEGER :: I, J, G

DO WHILE (I /= 0 .and. J /= 0 .and. I /= J)

IF (I>J) THEN

I = I - J

ELSE

J = J - I

END IF

END DO

IF (I == 0) THEN

G = J

ELSE

G = I

END IF

Sept. 20th, 2007 Repetition and Storage 71

Verifying ISBN Numbers
program isbn

implicit none

integer :: digits(10)

integer :: pos, sum

logical :: valid

READ (*,”(10I1)”) (digits(pos), pos = 1,10)

sum = 0

do pos = 1,10

sum = sum + (11-pos)*digits(pos)

end do

valid = mod(sum,11) == 0

if (valid) then

write(*,*) "ISBN is valid"

else

write(*,*) "ISBN is invalid"

end if

end program isbn

