Glossy or reflective surfaces such as metallic, wet, or other highly polished surfaces in the world present substantial additional information to an observer about the geometry of the scene being observed. This specular reflection causes a disparity between how points normally move when the observer moves, and how the specular points move. A linear approximation for predicting the motion of specular points with a moving observer was presented and refined in the 1980's, primarily by Andrew Blake of Oxford. This model accounts for the curvature and slant of the surface, as well as the distance of the surface from the viewer and the light source. Software to generate images with corresponding known geometry was written in order to apply Blake's equation and investigate the relative importance of such specular cues in scenes with a variety of surface orientations and curvatures. Results tentatively suggest this information would be difficult to harness in a visual system. Among other things, this suggests some interesting ways to render scenes where specularities are occurring.