
Technical Report SOCS-TR-2007.3, School of Computer Science, McGill University, June 2007

An Empirical Study of the Concept Assignment Problem

Martin P. Robillard

School of Computer Science
McGill University

Montreal, QC, Canada

{martin}@cs.mcgill.ca

David Shepherd, Emily Hill, K.
Vijay-Shanker, and Lori Pollock

Computer and Information Sciences
University of Delaware

Newark, DE, USA

{shepherd, hill, vijay,
pollock}@cis.udel.edu

ABSTRACT
Concept assignment involves identifying the parts of the source
code associated with the implementation of a high-level concept,
such as a functional requirement. Although concept assignment
is at the root of a number of software engineering activities (e.g.,
reverse engineering, requirement traceability), we know relatively
little about the characteristics of the code that different developers
map to a concept. For example, for a given concept, how much
do the mappings produced by different developers vary? We de-
signed and conducted an empirical study of concept assignment.
Our study resulted in the collection of three distinct mappings for
16 different concepts (for a total of 48 mappings), and produced by
23 distinct subjects. This report describes our experimental proce-
dure and the data we collected.

1. INTRODUCTION
Concept assignment involves recognizing high-level concepts in

the application domain of a software system and associating these
concepts with the artifacts that implement them [2]. Automated
concept assignment techniques form the foundation for a number
of software engineering techniques, including feature location [4]
and documentation or requirements traceability [1, 3].

At a high level of abstraction, the notion of an application-domain
concept can be well-defined. For example, developers discussing a
requirement to save data to persistent storage might refer to the
“Saving” concept without ambiguity. However, experience and
research have shown that there is seldom a precise, universally-
accepted association between high-level concepts and their imple-
mentation [5]. Instead, different developers, in different circum-
stances, are likely to have varying interpretations of the relevance
of a given artifact to the implementation of a concept. Are the dif-
ferences important? In other words, are concept assignments gen-
erally consistent across developers? Do they involve only small,
accidental differences or can different developers’ interpretations
of a concept vary drastically? How can we account for variations
in developers’ perspective of a concept assignment when advancing
the state of the art of software development environments?

To help answer these questions, we designed and conducted an
extensive empirical study of the concept assignment problem. As
part of this study, we identified 16 different concepts in four differ-
ent software systems, and, for each concept, we asked three differ-
ent subjects to produce a concept assignment. We were thus able to
analyze a total of 48 assignments, and perform a detailed analysis
of the nature of the assignments, their intrinsic characteristics, and
their variability.

In the remainder of this report, we refer to high-level concepts as
concerns because we believe that this term is now more common
in the literature. Given a concern cs defined on a software sys-
tem s consisting of n implementation elements {e1, ..., en}, and
a subject d performing the mapping, we formulate the concept as-
signment as the generation of a concern mapping m(cs, d) ⊆ s.

The contributions of this report include an experimental design
for the study of concern mapping (concept assignment), including
the description of 16 high-level concerns that can be used by others
for the development of concern location techniques, and detailed
data on the various mappings produced for each concern.

2. EXPERIMENTAL DESIGN
The main goal of our study was to gain a better understanding

of the nature of the source code that different developers associate
with a given concern. Given this general question, we designed
our study in a way that would allow us to investigate a maximum
number of concern mappings.

2.1 Methodology
Two of the authors identified 16 concerns in four different sys-

tems developed in Java. We describe the chosen systems in Sec-
tion 2.2 and the concerns in Section 2.3. For each concern, we
asked three different subjects to spend some time exploring the
code and to map the elements of the code relevant to the con-
cern. The subjects could complete their assigned mapping(s) on
their own time and using their own environment, or they could use
our laboratory facilities (for local subjects).

We prepared each of the target systems so that it could easily
be imported as a project in the Eclipse1 integrated development
environment (IDE), and asked the subjects to import the required
project and explore the source code of the system to identify the
code that implements the feature [...], using the features of Eclipse
that [they were] comfortable with.2 The subjects were not provided
any starting point or advice on the process or method to use except
for the following guideline: When deciding whether to include an
element or not, use the following criterion: “it would be useful to
know that the element is associated with the concern if I had to
modify the implementation of the concern in the future, or if an-
other developer had to modify the implementation of the concern”.
Finally, in an attempt to obtain comparable results, we asked sub-

1www.eclipse.org
2The text in italics in this section refers to excerpts from the in-
structions given to subjects (see Section 6)

1

jects not to include much more than 20 elements. If more elements
seemed relevant, they were asked to choose the most relevant ones.

The subjects were asked to record their mapping using Concern-
Mapper [6]. ConcernMapper is a simple Eclipse plug-in that al-
lows users to associate fields or methods of classes by dragging and
dropping them into a view, and to store the mapping in an XML file.
The subjects were asked to provide the resulting XML file at the
end of the code exploration session. The subjects were informed
that they were not required to spend more than 60 minutes per map-
ping. The actual amount of time required to complete the mapping
was ultimately left to the subjects’ discretion, was not recorded,
and does not constitute a variable of our study.

The participants were chosen through personal contacts of the
authors. To qualify for the study, participants had to have Java pro-
gramming experience and experience using the Eclipse platform.
Two investigators prototyped the study by completing a mapping
for the first concern. This mapping was then discarded. Any map-
ping produced as part of the study containing less than three, or
more than forty, elements was judged invalid and rejected. Only
three mappings were rejected in this way, and re-done with differ-
ent subjects. Our final set of results consisted of 48 valid mappings
completed by 23 distinct subjects who were not authors of this re-
port.

Because the characteristics of the subjects did not constitute an
independent variable in this study (see Section 2.4), we did not
record such characteristics. We provide the distribution of subjects
across concerns as part of Table 2. In this table, in each row, a con-
cern identifier is followed by three subject identifiers starting with
the letter “S”. In this report, we preserved our actual subject iden-
tifiers, which do not form a complete sequence because different
ranges were used by different investigators when recruiting sub-
jects, and because of the subjects rejected as described above. The
concern codes refer to the concerns described in Section 2.3. Given
the coordination challenges of this large-scale study, subjects were
assigned to tasks simply by assigning subjects to available tasks as
they volunteered.

2.2 Target Systems
In looking for target systems for our study, we applied a number

of criteria intended to facilitate the interpretation of the results and
increase their validity. First, to avoid small systems that would not
be representative of the software systems most developers tackle,
we chose systems with a minimum size of 20,000 lines of code
(LOC) and a minimum of 150 type declarations. We also looked
for systems that met minimum requirements in reported bugs (150),
downloads (70,000), and range of development time (2 years), so
that our study would involve evolving systems with an active user
community. Finally, we restricted our selection to systems that
were registered with an open-source repository within the past six
years to avoid antiquated code.

There exist several web sites that warehouse open-source code.
We primarily searched Sourceforge3 because it provides web in-
terfaces to browse and search by statistics for each system. We
used Sourceforge’s search facility to identify all projects registered
within the last six years and then used the interface’s filtering ca-
pability to eliminate programs that did not meet our minimum re-
quirements. After filtering by statistics we selected four GUI-driven
applications that were reasonably easy to download and install.
Based on these criteria, we selected the following four systems for
our study.

3sourceforge.net

Table 1: Characteristics of Target Systems
Program Version NCLOC Types Methods

Gantt 2.0.2 43,246 555 3,991
Jajuk 1.2 30,676 227 1,867

JBidWatcher 1.0pre6 22,997 183 1,812
Freemind 0.8.0 70,341 617 5,388

GanttProject. An Eclipse Rich Client Platform-based application
that allows users to plan projects using Gantt Charts.

Jajuk. A full-featured music player and organizer that supports a
variety of audio formats such as MP3 or WAV.

jBidWatcher. A tool for bidding, sniping, and tracking bids on
auction sites (for example eBay, Yahoo). Sniping refers to the ac-
tion of entering a bid a very short time before the end of an auction
in an attempt to prevent other bidders from re-bidding.

Freemind. An application allowing users to create mind maps (di-
agrams used to represent words, ideas, tasks or other items linked
to and arranged radially around a central key word or idea).

The source code for the version of the four systems we used for
this study is available on our research web site (see Section 6). Ta-
ble 1 provides the main characteristics of our target systems, which
we gathered using the Metrics plug-in for Eclipse 4 and Source-
forge.

2.3 Target Concerns
Two of the authors created a set of concerns by manually search-

ing for high-level concepts in the bug database, user manual, and
graphical user interface of the systems. We looked specifically for
concerns in the application domain that subjects would have a good
chance of being familiar with, that had a reasonably clear high-level
definition, and that had a non-trivial mapping. Once identified by
an investigator, every concern was then validated for appropriate-
ness to the study by the other investigator. We briefly present a sum-
mary of the 16 concerns that we identified for our study. Concerns
C1–C4 were defined on GanttProject, C5–C8 on Jajuk, C9–C12 on
jBidWatcher, and C13–C16 on Freemind.

C1: Relationships. The feature allowing users to add a relation-
ship between two tasks.

C2: Non-working days. The feature allowing users to specify
the non-working days of the calendar (holidays and weekends) and
taking these days into account when scheduling tasks.

C3: Completion. The task completion feature allowing users to
specify how much of a task is completed.

C4: Undo. The mechanism allowing users to undo their actions.

C5: Play Song. The feature allowing users to play a song (or any
file).

C6: Shuffle Mode. The feature allowing users to toggle between
listening to tracks in sequential order or in random order.

C7: Add Song. The feature allowing users to add a song to the
playlist by dragging and dropping.

C8: Sort Collection. The mechanism allowing users to sort their
entire music collection according to different parameters (e.g., genre,
artist, etc.).

C9: Updating Auctions. The mechanism that constantly updates
the information about auctions of interest (e.g., time left).

4metrics.sourceforge.net

2

C10: Acquire Thumbnail Image. The mechanism to download
and cache the thumbnail image for each auction of interest for quick
display when a user mouses over that auction.

C11: Execute Bid. The feature allowing users to bid on items of
interest via a dialog box.

C12: Delete Auction. The feature allowing users to delete an auc-
tion from the list of auctions of interest.

C13: Fold Node. The feature allowing users to fold nodes in a
mind map so that their children are/are not displayed.

C14: Zoom Functionality. The feature allowing users to zoom in
or out when viewing a mind map.

C15: Undo Create Child. The feature allowing users to undo the
creation of a child node, thus deleting the new node.

C16: Autosave. The mechanism that automatically saves the mind
map the user is currently modifying.

2.4 Variables and Measures

Independent Variables
Given the exploratory nature of our questions, we strove for sim-
plicity in our experimental design to facilitate the interpretation of
the results. For this reason, we chose to manipulate only two in-
dependent variables: concerns and subjects. The concern variable
takes as value one of the 16 different concerns identified by the in-
vestigators (Section 2.3). The subject variable identifies which one
of 23 different subjects recruited for the study completed a given
mapping (see Section 2.1).

Dependent Variable and Measures
Given a concern c and a subject d, our only dependent variable is
the mapping m(c, d), which consists of a number of implemen-
tation elements (fields and methods). However, to facilitate our
analysis of the data, we designed a number of measures that ab-
stract specific characteristics of a mapping or of a set of mappings.
The measures pertain to inter-subject agreement.

Mapping Cardinality. The number of elements in m(c, d).

Union Cardinality. Given three mappings mi defined on a given
concern, the union cardinality is the cardinality of the union of all
of the mappings (|�3

i=1 mi|). This measure represents the total
number of distinct elements identified as associated with a concern
by any subject.

Intersection2 Cardinality. Given three mappings m1, m2, and
m3 defined on a given concern, the intersection2 cardinality is the
cardinality of the set containing every element that is in at least
two of the three mappings. This measure represents the number of
distinct elements identified as associated with a concern by at least
two of three subjects.

Intersection3 Cardinality. Given three mappings m1, m2, and
m3 defined on a given concern, the intersection3 cardinality is the
cardinality of the set containing every element that is in all three
of the mappings (|m1 ∩ m2 ∩ m3|). This measure represents the
number of distinct elements identified as associated with a concern
by all three subjects.

Agreement. Given two mappings m1, and m2 defined on the same
concern, the agreement is the ratio of common elements over the
average of the number of elements in a mapping (2|m1∩m2|/(|m1|+
|m2|). This ratio, expressed as a percentage, represents the degree
with which two different subjects agree on a mapping.

3. RESULTS
In this section, terms in italics refer to measures defined in Sec-

tion 2.4. Table 2 presents the main characteristics of each of the
48 mappings we have collected. For each concern, we first list the
identifier for each of the three subjects who produced a mapping
for the concern (the three columns under the Subjects/Size header).
Below each subject identifier, we present the mapping cardinality
for the subject’s mapping. For example, for concern C1 subject S3
produced a mapping containing 21 elements.

For each concern, we also provide the average mapping car-
dinality for all three subjects (Avg.), the union cardinality (∪),
the intersection3 cardinality (∩3), and the intersection2 cardinality
(∩2). For example, for C2, the average cardinality of a mapping is
(24+17+30)/3 = 23.7) and the union cardinality is 63. Only one
element was mapped by all three subjects and seven elements were
mapped by at least two subjects. The last column (A.A.) presents
the average agreement for the concern. This value is obtained as
the average of the agreement measure for all three possible pairs of
subjects. For example, the subjects who produced mappings for C3
agreed on average on about 31% of their elements.

Finally, the bottom row of the table lists the average mapping
cardinality across all 48 mappings, the average union cardinality
across all concerns, the average intersection2 cardinality and inter-
section3 cardinality across all concerns, and the average agreement
across all pairs of developers for a same concern, respectively.

4. THREATS TO VALIDITY
Several factors must be considered when analyzing the data re-

ported. We discuss the most important of these factors in terms of
four common dimensions of empirical validity [7].

Construct Validity. Our analysis assumes that the mappings pro-
duced by our subjects correctly reflect their true interpretation of
the mapping between a concern and source code. In practice, for
various reasons, subjects may have included elements they did not
really think were relevant, or omitted elements that they thought
were relevant.

Internal Validity. The internal validity reflects whether the results
truly represent a causal relationship, as distinguished from spurious
relationships. The most important factor potentially impacting the
internal validity of our study is our decision not to consider differ-
ent classes of subjects, but instead to consider all subjects as equally
able to perform the task. This decision was instrumental for us to
obtain a large number of mappings, but raises the possibility that
characteristics of the subjects (e.g., programming experience) pro-
duce spurious effects. This possibility is mitigated by the fact that
we obtained three different mappings per concern, and that many
developers performed multiple tasks

External Validity. The nature of mappings between concerns and
source code can potentially be impacted by a number of character-
istics of the system, including the application domain (are the high-
level concepts easy to understand?), the system architecture (is it
well-designed?), the programming language used (object-oriented
or procedural?), or the programming culture (is the code com-
mented?). In our study, we limited our target systems to medium-
size, GUI-based Java systems. Although this decision allowed us
to obtain more consistent results that could be interpreted in a ho-
mogeneous context, additional investigation will be necessary to
determine if our findings generalize to other classes of systems.

3

Table 2: Mapping Size and Agreement Measures

Crn. Subjects/Size Avg. ∪ ∩3 ∩2 A.A.

S3 S7 S14C1
21 14 22

19.0 51 0 5 9%

S3 S4 S6C2
24 17 30

23.7 63 1 7 12%

S4 S7 S8C3
11 18 26

18.3 39 2 14 31%

S9 S11 S40C4
7 12 13

10.7 25 1 6 25%

S4 S5 S11C5
14 9 11

11.3 27 0 7 19%

S4 S5 S8C6
10 7 18

11.7 25 1 9 32%

S5 S8 S10C7
17 11 7

11.7 27 2 6 30%

S10 S12 S13C8
8 10 11

9.7 20 2 5 35%

S10 S12 S13C9
14 20 9

14.3 29 3 11 35%

S14 S21 S23C10
20 11 9

13.3 23 6 11 61%

S23 S24 S25C11
10 8 8

8.7 15 3 8 53%

S7 S23 S26C12
17 19 9

15.0 27 6 12 53%

S21 S27 S28C13
15 13 18

15.3 25 6 15 58%

S21 S27 S28C14
18 9 28

18.3 32 3 20 45%

S29 S31 S32C15
16 3 9

8.3 28 0 0 0%

S26 S31 S32C16
10 3 14

9.0 15 2 10 47%

Aggregation 13.5 29.4 2.4 9.1 34%

5. CONCLUSIONS
Concept assignment, which we refer to as concern mapping, in-

volves identifying the parts of the source code associated with the
implementation of high-level concerns. This process is a central ac-
tivity in many maintenance tasks, and numerous research projects
have focused on the development of tools and techniques intended
to facilitate it.

The contributions of this report include an experimental design
for the study of concept assignment, the description of benchmark
concerns, and their corresponding, empirically-determined map-
pings. Although the mappings we collected should not be con-
sidered as the “official” version of a mapping for a concern, our
experimental setup nevertheless allowed us to triangulate the map-
pings of multiple subjects: The intersection of mappings produced
by different subjects for a given concern thus provides a very good
insight into what three independent developers considered relevant
to a concern.

6. ON-LINE APPENDIX
Our source code, experimental instructions, and raw data can be

downloaded from http://www.cs.mcgill.ca/˜martin/concerns

7. REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and

E. Merlo. Recovering traceability links between code and
documentation. IEEE Transactions on Software Engineering,
28(10):970–983, 2002.

[2] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster. Program
understanding and the concept assignment problem.
Communications of the ACM, 37(5):72–82, 1994.

[3] A. Egyed and P. Grünbacher. Automating requirements
traceability: Beyond the record & replay paradigm. In
Proceedings of the 17th IEEE International Conference on
Automated Software Engineering, pages 163–171, 2002.

[4] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in
source code. IEEE Transactions on Software Engineering,
29(3):210–224, 2003.

[5] G. C. Murphy, W. G. Griswold, M. P. Robillard,
J. Hannemann, and W. Leong. Design recommendations for
concern elaboration tools. In Aspect-oriented Software
Development. Addison-Wesley, 2004.

[6] M. P. Robillard and F. Weigand-Warr. ConcernMapper: simple
view-based separation of scattered concerns. In Proceedings
of the 2005 OOPSLA Workshop on Eclipse technology
eXchange, pages 65–69, 2005.

[7] R. K. Yin. Case Study Research: Design and Methods,
volume 5 of Applied Social Research Methods Series. Sage
Publications Ltd., 2nd edition, 1989.

4

