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Abstract

Code clones are generally considered harmful in soft-
ware development, and the predominant approach is to
try to eliminate them through refactoring. However, re-
cent research has provided evidence that it may not always
be practical, feasible, or cost-effective to eliminate certain
clone groups. We propose a technique for tracking clones
in evolving software. Our technique relies on the concept
of abstract clone region descriptors (CRD), which describe
clone regions within methods in a robust way that is inde-
pendent from the exact text of the clone region or its location
in a file. We present our definition of CRDs, and describe a
complete clone tracking system capable of producing CRDs
from the output of a clone detection tool, notify developers
of modifications to clone regions, and support the simul-
taneous editing of clone regions. We report on two experi-
ments and a case study conducted to assess the performance
and usefulness of our approach.

1. Introduction

Software systems often contain numerous code clones,
or groups of source code regions that match each other with
varying degrees of exactness. Code clones surface in soft-
ware systems for a number of reasons, including the diffi-
culty of factoring out functionality using programming lan-
guage constructs, the requirement to avoid dependencies
between modules, the practice of writing code by exam-
ple [15, 19], and the use of idioms for framework exten-
sions.

Whatever the cause, the presence of code clones in a sys-
tem means that code that realizes identical or similar logic
is not co-located. This duplication of implementation logic
often leads to a necessity to modify multiple sections of
code consistently [5]. Oversights in that respect often lead
to regression faults. For these reasons, much effort has been
spent on the detection and removal of code clones from soft-
ware systems [22]. Technology to scan the source code of

a system and identify clones of varying similarity is now
readily available. Once identified, clones can be removed
through source code refactoring [1, 4, 9].

In recent years, the traditional notion that code clones
should be eliminated as a general rule has met with resis-
tance. In particular, Kim et al. challenged the belief that
code clones necessarily represent a clear and immediate
negative quality factor for a software system. In a study
of programming practices in an industry setting [11], Kim
et al. found that “skilled programmers often created and
managed code clones with clear intent” [13, p. 187]. A later
study of code clone genealogies also provided evidence of
code clones that are difficult or impossible to refactor using
standard techniques, and of code clones that evolve into dis-
tinct code [13]. These observations indicate that, in certain
situations, it might be beneficial to maintain clone groups as
such. Unfortunately, merely accepting the presence of code
clones does not by itself mitigate the problems they cause;
consequently, strategies must be sought to deal effectively
with code clones during software development.

We propose a technique for documenting and monitor-
ing clones in evolving software. Our technique relies on
a heuristic representation for clone regions that identifies
source code locations within methods using a combination
of syntactic, structural, and lexical information. Our ab-
stract representation, called clone region descriptor (CRD),
goes beyond simple line of code-based clone descriptions,
and supports the tracking of clone regions in different ver-
sions of a software system.

We developed a complete clone tracking system called
CloneTracker. Our system takes as input the output of a
clone detection tool and automatically produces CRDs to
represent the clone regions for different clone groups. Using
CRDs, CloneTracker can automatically track clones as the
code evolves, notify developers of modifications to clone
regions, and support simultaneous editing of clone regions.
This way, software developers can specify clone groups
they wish to track once and carry on with all their future
modification tasks with the knowledge that modifications to



clone regions will be detected and supported. Alternatively,
clone regions can be inspected at any time to reason about
their properties (e.g., to plan a refactoring). In brief, CRDs
provide a lightweight way to monitor clones without hav-
ing to run a clone detection tool every time the code of the
system changes.

The contributions of this paper include the description of
the first realization of a complete clone tracking technique,
an empirical evaluation of its accuracy, and a number of
case studies of clone evolution that provide evidence of the
usefulness of this approach.

The rest of the paper is organized as follows. In Sec-
tion 2, we present a real example of clone evolution and
explain the difficulties associated with tracking clones. In
Sections 3–5, we describe our complete clone tracking sys-
tem, the details of our clone region representation, and our
simultaneous editing algorithm. We report on the quantita-
tive evaluation of our approach in Section 6 and on our case
studies in Section 7. We discuss related work in Section 8
and conclude in Section 9.

2. Motivation

We illustrate the present state of the practice for clone de-
tection and the need for advanced clone tracking techniques
with a small case study of the jEdit system.1

A developer working on a modification to release 4.0-
final (63 kLOC) informally observes a number of code
clones and decides to run a clone detection tool on the
system. Using SimScan,2 the developer sets a number
of search options (Volume=“medium”, Similarity=“fairly
similar”, Quality/speed=“fast”) and runs the tool. After
approximately 32 minutes (WindowsXP, Pentium4-3GHz,
512MB), the detection completes and returns a list of 251
clone groups comprising between 2 and 137 clone regions
(or individual clones). Each clone region is represented in
terms of a file name and a line range. Browsing the re-
sults, the developer notices a clone group of potential in-
terest: in class bsh.Reflect, a large for block in method
findExtendedConstructor is a clone of a similar region
in method findExtendMethod.

A detailed study of this clone group provides evidence in
direct support of all three main results of the study of Kim
et al.

...clones impose obstacles during software de-
velopment because they often change similarly
with their counterparts in the same group... [13,
p. 187].

Both regions changed consistently for version 4.2-pre2
(change of an exception type), and for version 4.2-pre4 (ma-
jor cleanup of the code that preserved the clone relation).

1www.jedit.org
2blue-edge.bg/simscan

...popular refactoring techniques [...] cannot eas-
ily remove many long-lived clones... [13, p. 188].

Both regions are in methods that have a different re-
turn type, which makes them non-locally-refactorable using
standard refactorings [4].

...we found that many clones were volatile...
[13, p. 188]

Our clone group disappeared in release 4.2-pre10. As
claimed by Kim et al., and further illustrated by this ex-
ample, there are many situations in which it may not prove
cost-effective or even possible to refactor clones. In such
cases, developers must manage clone groups as they evolve.
This is no small task in a code base that is in constant evo-
lution. Specifically, without dedicated support, developers
who wish to maintain and evolve code clones are faced with
the following challenges:

• Current clone detection technology produces descrip-
tions of clone regions in terms of ranges of lines of
code. Such descriptions are invalidated as soon as any
of the code changes (whether or not the changes are in
a clone region).

• Clone regions must be modified individually. Existing
clone relations might be overlooked.

• Inconsistent changes to clone groups cannot be de-
tected without re-running the clone detection tool, an
alternative that is too computationally costly to be used
interactively during software development. As illus-
trated earlier in this section, a 63kLOC project took 32
minutes to analyze using a popular tool.

• Information about clone groups of interest cannot be
reused in future tasks unless code detection techniques
are re-applied.

3. Clone Tacking Approach

In this section, we present an overview of CloneTracker
from the perspective of a user of the system. We postpone
the presentation of the heuristics and algorithms enabling
this technology until Sections 4 and 5.

Our clone tracking approach complements existing clone
detection technology. Our current version of CloneTracker
relies on the SimScan clone detection tool, but can easily
be adapted to use other tools. CloneTracker is fully inte-
grated with the Eclipse Platform [18]. Eclipse is an inte-
grated development environment with an architecture that
supports the addition of components, called plug-ins, that
add to the environment’s functionality. The standard dis-
tribution of Eclipse includes a set of plug-ins that provide
extensive support for development in Java. CloneTracker is
implemented as an Eclipse plug-in.



Figure 1. Clone Documentation View

With CloneTracker, a developer concerned about the
presence of code clones in a system first triggers the execu-
tion of SimScan. SimScan produces a tree view describing,
as roots, all of the clone groups detected in the target sys-
tem and, for each group, a list of clone regions containing
the similar code. At this point, clone regions are represented
in terms of file name and line range. The developer can in-
spect the code clones by selecting them in a view. With
CloneTracker activated, a clone documentation view also
becomes available in Eclipse (Figure 1).

Once the developer identifies clone groups of interest,
the groups can be transfered from the SimScan results view
to the clone documentation view through a drag-and-drop
operation. To produce a long-term description of a clone
group, the developer clicks the Document Clones button
(see Figure 1). CloneTracker then automatically translates
the location of all clone regions into clone region descrip-
tors (see Section 4), which form an active clone model. The
clone model now describes clones in a way that is resilient
to changes to file names, changes in code blocks preceding
the documented clone regions, or changes within the clone
regions themselves.

The developer can then start working on the system. If,
at any point, the developer edits code in a clone region rep-
resented in the clone model, CloneTracker produces a no-
tification that clone regions are being edited. CloneTracker
also opens and highlights a sibling of the clone region that is
about to be modified (Figure 2). In Figure 2, the blue mar-
gin makers show the range of the two clone regions within
their respective files.

At that point the developer can decide to link the two ed-
itors (by clicking on the Link Editors button, see Figure 1)
and proceed with the modification of the current clone re-
gion. Modifications made within common sub-regions of
both clone regions are echoed from the active clone region
to the sibling clone region. Section 5 describes the map-
ping algorithms used for the simultaneous editing feature of

CloneTracker. After this task is completed, other develop-
ers (with or without access to CloneTracker) can check out,
modify, and commit the files containing the clone regions.
The next time the initial developer accesses the code, the
clone regions are again automatically detected.

4. Clone Modeling Technique
One of the main requirements for our clone tracking ap-

proach is to be able to track clone regions independently of
their location in a source file. Although this can be achieved
easily for clone regions that align with method boundaries,
it is much more difficult to do so for regions within meth-
ods since such regions are typically not labeled or uniquely
identified. One possibility is to store the text of code clones
and to track their location in different versions of the code
using code matching techniques [12]. However, for our
purpose (rapid, interactive tracking of clone regions), we
needed to investigate more lightweight alternatives.

To gather insights about potential ways to describe clone
regions, we manually inspected about 600 clone regions
from four different projects involving tens of different
developers (ConcernMapper [21], jEdit, JBossAOP,3 and
FreeMind4). While looking at these clone regions, we tried
to determine what unique characteristics of the clones re-
gions could help us define and locate them in a way that
would resist a certain degree of change (textual modifica-
tions before, after, and within the clone region, changes to
the name of the file in which the region is located, etc.). To
this effect, we made a number of observations.

1. Clone regions are generally constrained within the
boundaries of major code blocks (e.g., method bound-
aries, conditional branches, looping blocks).

2. Some structural elements (e.g., loop-termination pred-
icates, branching predicates, exception lists) tend to be
unique at a given level of nesting.

Based on these insights and on our general experience
inspecting clone regions, we designed a technique for lo-
cating clone regions that uses a combination of the struc-
tural properties, lexical layout, and similarities of the clone
regions. In the rest of this section, we describe our clone re-
gion description model and our algorithm for locating clone
regions based on the model. Section 6.1 reports on how
we evaluated that the abovementioned observations and the
heuristics we derived from them held, and to which extent.

4.1. Clone Region Descriptors (CRDs)

A Clone Region Descriptor (CRD) is a lightweight and
abstract description of the location of a clone region in a
code base. The idea is to provide an approximate location

3labs.jboss.com/portal/jbossaop/
4freemind.sourceforge.net



Figure 2. Editing Clone Regions

<CRD> ::= <file> <class> <CM> [<method>]
<method> ::= <signature> <CM> <block>*
<block> ::= <btype> <anchor> <CM>
<btype> ::= ’for’ | ’while’ | ’do’ | ’if’ |

’switch’ | ’try’ | ’catch’

Figure 3. Definition of CRDs in Extended BNF

that is independent from specifications based on lines of
source code, annotations, or other similarly fragile markers.
Figure 3 shows our current definition of a CRD in extended
Backus-Naur form (terminal symbols are in italics).

Essentially, a CRD represents the characteristics of each
block in which a clone region is nested. With CRDs, clone
regions always align with blocks. At the top level, a CRD
consists of the name of the enclosing file (<file>), the
name of the enclosing class (<class>), a corroboration
metric (<CM>, explained below), and an optional method
descriptor (<method>). When entire classes are clones of
each other, the method descriptor is not used. The method
descriptor consists of a canonical representation of the
method’s signature (<signature>), the corroboration met-
ric (<CM>), and zero or more block descriptors (<block>).
When the clone region aligns with method boundaries, there
is no block descriptor. In other cases, block descriptors de-
scribe blocks in which the region is nested (in the nesting or-
der). Finally, a block descriptor consists of a description of
the block type (<btype>), a string describing a distinguish-
ing identifier for the block (<anchor>), and the corrobo-
ration metric (<CM>). The different block types currently
supported are listed as part of the <btype> non-terminal
symbol in Figure 3. For the anchor, different schemes are
possible. As an initial investigation, we are currently using
the textual representation of a distinctive statement associ-
ated with the block. For loops, we use the termination state-
ment. For if statements, we use the branching predicate.5

For switch statements, we use the switch expression. For
try blocks, we use the list of exception types caught in

5Else branches are currently associated with the last if branch.

Figure 4. Block Represented by a CRD

catch clauses associated with the block. For catch blocks,
we use the type of the exception caught.

For example, the CRD for code block A in Figure 4 is:

...actions/DeleteAction.java,DeleteAction,5
run(int),5
for,delete.size(),4
if,delete.get(i) instanceof ElementNode,2

In other words, this CRD points to the block correspond-
ing to the if statement with the “...instance of...” predicate,
nested within the for statement with the “...delete.size...”
termination predicate, within the scope of the run method,
etc. The numbers represent the corroboration metric for
each block.

The corroboration metrics are an important element of
CRDs because, although CRDs effectively describe code
blocks, the blocks thus described are not always unique.
Figure 5 shows an example of such a conflict.

Let us assume that we are interested in representing
block B using a CRD. If our CRD only includes the fact that
we refer to the for block with condition “i<delete.size()”
in method run(), etc., the reference is ambiguous since
there exists two such blocks (A and B). We thus need to
further distinguish each block within a nesting level.



Figure 5. Example of conflict in block

To do so, we use a simple heuristic derived from our ini-
tial inspection of code clones. Our observation was that
when two or more code blocks at the same nesting level
have identical CRDs, there are usually non-trivial differ-
ences in the logic implemented by each block. This is not
surprising if we assume that trivial differences can easily be
parameterized and properly factored. We thus leverage off
this observation and, for each block, generate a number that
reflects the overall structure of the block. This number is
our corroboration metric.

For our initial investigation of CRDs, we simply add
the cyclomatic complexity of a block (number of linearly-
independent paths) with the fan-out of the block (number
of method invocations). In the event of a conflict (ambigu-
ity) between two blocks at the same nesting level, we use
the corroboration metric to select the block with the metric
value that is the closest to the one recorded in the CRD. Sec-
tion 6.1 reports on the effectiveness of our current corrob-
oration metric for identifying the correct block when there
exists multiple potential targets.

When automatically generating CRDs from clone re-
gions produced with clone detection tools, our system finds
the most deeply nested code block that fully encloses the
code region, and produces a CRD for the block with the
information obtained by parsing the source code.

4.2. Clone Region Lookup Algorithm

Given a CRD and a code base (that is not necessarily
the one on which the CRD was defined), we identify the
corresponding clone region through a series of automatic
searches. The searches rely on an abstract syntax tree (AST)
representation of the code.6

6The functionality to parse Java files and produce ASTs is provided
with the standard Eclipse distribution.

Type and method identification. The first step is to iden-
tify the AST node for the type declaration enclosing the
clone region. First we assume that the <class> is in
the <file>. When this is not the case (e.g., renamed
file), we search the entire code base for type declarations
with a name matching <class>. If none are found and
a <method> is specified in the CRD, then we retrieve all
method declarations in the system with a signature match-
ing <signature>. The result of this search is a list of
potential targets (type declarations for CRDs without a
<method> specification, method declarations otherwise).

When more than one potential target is identified, a con-
flict resolution algorithm is applied. This algorithm com-
putes the difference in the corroboration metric between
each of the potential targets and the value stored in the CRD,
and returns the target with the minimum absolute differ-
ence.

Block identification. Once an AST node corresponding
to <method> is obtained, we recursively traverse its sub-
trees to look for the leaf block. Blocks are selected through
a string comparison of their <anchor> condition as speci-
fied in the CRD (e.g., termination condition for for blocks).
Conflicts at this level are also resolved using the conflict res-
olution algorithm.

Limitations. In our definition of CRDs, we made a num-
ber of design decisions to simplify the approach at the cost
of decreased robustness. First, our reliance on nesting lev-
els implies that changes that simply remove a nesting level
while otherwise preserving a clone relation will invalidate
a CRD. Second, associating else branches with the closest
if prevents us from discriminating between the two types
of blocks. Finally, storing anchors as strings implies that
even small changes to the code in an anchor will invalidate
the CRD. Our initial assumptions were that the cases im-
pacted by such decisions would be rare enough to have a
minimal impact on the overall usability of the technique.
Section 6.1 details the current accuracy of the clone lookup
algorithm with the above simplifications. In our future
work, we plan to study the cost/benefit tradeoffs associated
with more sophisticated CRDs.

5. Simultaneous Editing

Our clone tracking system provides support for simul-
taneously modifying groups of two clone regions. The si-
multaneous editing feature of our system relies on the clone
region lookup algorithm described in the previous section,
but requires additional computation to map an individual
line within a clone region to the corresponding line in an-
other clone region.



Our line mapping technique is based on the Levenshtein
distance (LD) [14]—a measure of the similarity between
two strings based on the number of deletions, insertions, or
substitutions required to transform one string into the other.
The LD has been used in identifying similar patterns be-
tween strings for applications such as spell checking [2]
and web page similarity analysis [3]. We felt the LD might
be adequate for identifying regions for simultaneous editing
because the copy, paste, and modification process through
which code clones are formed is analogous to transform-
ing one string into another through deletions, insertions, and
substitutions.

Our line mapping algorithm identifies the line Ls in a
clone region CR1 that corresponds to a line Lt in a clone
region CR2. This way, when Lt is about to be modified, the
changes can be echoed to Ls if they are applied to an exact
match. We defined the similarity α between Ls and Lt as:

α = 1 − LD(Lt, Ls)
max(|Lt|, |Ls|)

LD(Lt, Ls) is the Levenshtein distance between Ls and
Lt, and max(|Lt|, |Ls|) is the length of the longest of the
two strings. The value of α is in the interval (0, 1].

The line mapping algorithm looks for all the lines of code
in CR1 with a similarity α of at least a threshold simth

when compared to Lt. When more than one target line is
possible, the algorithm uses lines Lt−1 and Lt+1 to resolve
the conflict. It returns the line in the list of targets whose
Ls−1 and Ls+1 have the minimum LD when compared to
Lt−1 and Lt+1, respectively.

The modifications in CR2 are not echoed to CR1 if a
corresponding line is not found. Our simultaneous editing
algorithm determines the appropriate character column and
applies the modifications if the corresponding line is found.
These modifications are made under the supervision of the
developer, with the option to link/unlink editors and undo
the modifications if need be.

Currently, our simultaneous editing feature is only sup-
ported for clone groups of two regions, where the regions
are located in different files. Because clones are rarely ex-
act, developer supervision is always required. For this rea-
son, in the context of the Eclipse platform, it is a difficult
challenge to support simultaneous editing of large clone
groups or of clone regions in the same file. The develop-
ment of a custom code editor might help address this limi-
tation. In addition, one inherent weakness of LD for match-
ing lines of code within clone regions is that it does not take
semantic information into account. For example, reordered
method parameters in one region will result in a low sim-
ilarity despite the maintained semantic association. In the
future we plan to explore other pattern matching techniques,
including the name-Similarity technique proposed by Xing
and Stroulia [24].

6. Quantitative Evaluation

The techniques we use to represent clone regions and
support simultaneous editing rely on a number of heuristics.
We report on our empirical assessment of the precision of
CRDs in representing clone regions and on the precision of
our line mapping algorithm.

6.1. Precision of CRDs

The basic tradeoff realized by CRDs is one of increased
abstraction and robustness in the description of clone re-
gions at the cost of decreased flexibility and precision in
the representation of the boundaries of the region. Specif-
ically, although clones regions can be technically arbitrary,
in our system they must align with certain types of code
blocks. This difference in representation can introduce dis-
crepancies between the actual clone regions (as identified
by clone detection tools) and the documented clone regions
(as represented through CRDs).

We evaluated the accuracy of CRDs by conducting an
empirical study using the clone regions identified by Sim-
Scan. In this study, we identified a number of clone re-
gions, generated CRDs from them automatically, mapped
the CRDs back to the source code, and analyzed the over-
lap between the initial regions and the regions documented
with the CRDs.

To find clones for this study, we selected five Java-based
open-source subject systems (JBossAOP, jEdit, FreeMind,
Ant,7 and JCommander.8 See Table 1). These systems all
have a recorded change history, exhibit a non-trivial number
of clone groups, and were developed by different develop-
ers. For these reasons, we consider that, taken as a whole,
these systems represent a reasonable diversity of Java pro-
gramming styles.

Table 1. Subject Systems
System Version kLOC # Dev. # Groups

JBossAOP 4.0 35 9 279
jEdit 4.0-final 63 <130 251
FreeMind 0.8.0 14 9 84
Ant 1.6.5 86 20 403
JCommander 0.6.4 35 9 167

We ran the SimScan clone detection tool on each of our
subject system (with the settings: Volume=“medium”, Sim-
ilarity= “fairly similar”, Speed/Quality = “fast”). This phase
of the study resulted in a total of 1184 clone groups consist-
ing of between 2 and 9 clone regions (inclusively), for a
total of 3275 clone regions. For each clone region, we:

7ant.apache.org
8jcommander.sourceforge.net



1. Recorded the line range of the region;

2. Used CloneTracker to generate a CRD for the region;

3. Used CloneTracker to find the code represented by the
CRD, recording whether this required resolving a con-
flict (at any nesting level);

4. Recorded the line range for the block represented by
the CRD.

Table 2 summarizes our results for each system analyzed
(the last column aggregates the results over all systems).
The second row (# of CR) presents the number of clone re-
gions identified for the system. The third row (# of Overlap)
presents the number of clone regions for which the region
mapped from the CRD overlapped with the original region
(i.e., shared at least one line). Non-overlapping regions re-
sults from unresolved conflicts or from the limitations of
CRDs as described in Section 4.2. Nevertheless, even with
our initial heuristics, a large majority of clone regions (96%)
were correctly tracked by our CRDs. This result is also con-
sistent between systems, with a difference span of 5%.

The following three rows report on how closely overlap-
ping clone regions matched. The fourth row (Avg. length of
CR) presents the average length of a clone region (in lines
of source code). The overall value of 24.6 shows that most
clones regions are non-trivial sections of code. The fifth row
(Avg. ML per CR) presents the average number of missed
lines (lines in the original clone region but not mapped by
the CRD). These lines are typically caused by artifacts of
the clone detection technique. For example, SimScan does
not systematically include or skip method signatures and/or
Javadoc comments from the clone region, whereas CRDs
systematically skip the method header, and start the clone
region at the first curly brace. When the method signature
is on a separate line, it will become a missed line in our
experiment. The sixth row (Avg. EL per CR) presents the
average number of extra lines (lines not in the original clone
region but mapped by our CRD). These lines result from the
fact that clone regions have to be expanded to the closest en-
closing block to be described by a CRD. Overall, we see that
not only do clone regions generally overlap with the regions
represented by CRDs, but they also align acceptably well,
as the average number of missing or extra lines is below 4.

The last two rows report on the extent with which con-
flicts must be resolved within a nesting level in order to find
the correct block, and the extent with which our corrobo-
ration metric helps in this process. The seventh line (# of
conflicts) presents the number of conflicts detected between
CRD blocks at the same nesting level, and the last row (#
of Resolved Conflicts) presents the number of conflicts that
were correctly resolved. We see that these numbers ex-
hibit non-negligible variations between systems, which may
be caused by variations in programming style. We expect

that experimentation with alternative corroboration metrics
should help us lower the number of unresolved conflicts.
Overall, however, these initial results show that even a sim-
ple metric can help disambiguate a majority (on average
81%) of blocks with an otherwise equivalent representation.

6.2. Simultaneous Editing

The simultaneous editing algorithm we presented in Sec-
tion 5 is parameterized with a threshold simth that deter-
mines how closely two lines must match to be considered
equivalent lines. We determined an appropriate level for
this threshold by empirically assessing the success of simul-
taneous edits for different threshold values.

We selected benchmarks for our evaluation of simultane-
ous editing by randomly choosing 15 different clone groups
of size two from each subject system (see Table 1). For
each of the 15 × 5 = 75 clone groups, we linked the editors
and made three modifications within common sub-regions
of clone groups. The three modifications consisted of an
insertion, a deletion, and a replacement (selecting a region
and pasting something into it). For each region, the modifi-
cation were chosen to reflect a likely software modification
(e.g., removing an argument from a method call). For each
modification, we recorded whether the result of the simul-
taneous modification was correct (based on a simple man-
ual inspection of the corresponding regions). We repeated
this experiment for seven different values of simth between
0.35 and 0.95 (values below 0.35 had no further effect). For
a given region, we used identical sets of modifications for
all threshold values.

Figure 6 illustrates the impact of the threshold on the re-
sults. With a high similarity threshold (0.95), simultaneous
editing was not very successful (30%). This phenomenon
is not surprising since the very stringent similarity require-
ment, combined with the fact that very few clones are exact,
means that equivalent lines will not be found. Lowering the
threshold increases the success level since a greater number
of lines are matched. This trends flattens with a threshold
of 0.55 (and a success level of 80%). This flattening is a
strength of our algorithm and is the consequence of our de-
cision to look at lines above and below target lines in cases
where multiple targets lines meet the threshold. In other
words, our algorithm is robust to a decrease in performance
caused by collisions in potential target lines. We did not
evaluate the success level for lower threshold values since
the results would not be useful, and since the experiment
was very labor-intensive. However, we expect that the suc-
cess level will eventually degrade as the number of colli-
sions reaches extreme levels.

Overall, for our subject systems, we could parameterize
the algorithm to be successful up to 4 out of 5 times in sup-
porting simultaneous editing. Based on this experiment, we
chose 0.55 as a working threshold.



Table 2. Precision and Accuracy of CRD for Describing Clone Regions
jEdit JBossAOP FreeMind Ant JCommander ALL

# of CR 536 1142 195 966 436 3275
# of Overlap 505 (94%) 1066 (93%) 188 (96%) 951 (98%) 426 (98%) 3136 (96%)

Avg. length of CR 27.1 23.3 18.0 25.0 27.0 24.6
Avg. ML per CR 2.1 2.0 1.3 1.4 1.8 1.8
Avg. EL per CR 1.5 4.0 2.9 3.5 5.0 3.5

# of Conflicts 29 34 4 53 11 131
# of Resolved Conflicts 28 (97%) 28 (82%) 4 (100%) 39 (74%) 7 (64%) 106 (81%)

Figure 6. Impact of Threshold on Success

7. Case Study

To provide initial evidence that CRDs succeed in de-
scribing clones in evolving software, we used CloneTracker
to document clones in base versions of both jEdit and Ant,
and attempted to track these clones across subsequent ver-
sions of the subject systems using the documented clone
models. We selected these systems because of their long
version history, in which we could find clones that were
not aligned with method boundaries, and which survived
through multiple versions of the systems.

We selected five clone groups for this study. We describe
these groups in Table 3 so that others can independently as-
sess our observations. The table identifies both clone re-
gions of the five clone groups using a summary of the in-
formation in their CRD. The clone groups were initially de-
tected in release 1.5.4 for Ant and in version 4.0-final for
jEdit.

All clone groups studied evolved as part of changes per-
formed to different versions of the system. The evolution
of Group 1 is described in detail in Section 2. For Group
2, we found changes made to non-identical sub-regions of
the clones at releases 4-2-pre1 and 4-2-final. We found that
Group 3 was changed inconsistently in Ant1.6.0 (where a
variable access was changed to method call to make the
clone regions more similar). Group 4 was changed incon-
sistently in Ant1.6.0. Finally, Group 5 was also changed
inconsistently in Ant1.6.3 (lines were added in the body of
one sub-region). For all the clone regions studied, the cor-
responding line ranges changed across every version of the
system.

After having studied the evolution of each group, we
used CloneTracker on the base versions to automatically
generate CRDs for all the clone regions. Then, using the
generated clone models, we attempted to locate these clone
regions for the remaining subsequent versions of the sys-
tem (releases 1.6.0 to 1.6.5 for Ant, 6 in total, and releases
1.4-pre1 to 4.3-pre6 for jEdit, 27 in total).

We successfully located Group 1 in all versions of jEdit
until version 4-2-pre10, where the group disappeared from
the system (the class still exists but the clone regions were
removed).

Group 2 was successfully tracked across the first 26 ver-
sions of jEdit. We successfully located only region A in the
final version (4.3-pre6). The class of clone region B and the
corresponding block could not be found in the system.

Clone groups 3, 4 and 5 were successfully tracked across
all six versions of Ant.

In brief, using the CRDs and our clone tracking system
allowed us to track the clones throughout different versions
of the system. In each case where a clone was modified,
our system automatically would have warned the developer
about the clone, supporting developers in their efforts to
find, understand, and modify the cloned regions.

8. Related Work

The ideas and techniques investigated in our work on
clone tracking intersect with a broad spectrum of research
projects on clone detection and analysis, linked editing, and
source code representations.

Clone Detection. A vast body of work exists on tech-
niques to efficiently detect and analyze clones in source
code. In the classic form, a clone detection tool takes as in-
put the source code text of a software system, pre-processes
the text (e.g., to break lines into tokens and to remove non-
essential differences), and then performs a similarity analy-
sis on the transformed input. In their presentation of the
CCFinder tool, Kamiya et al. provide a clear and thorough
description of this type of clone detection technology [10].
Other clone detection approaches have also been proposed
that use inputs such as the abstract syntax tree of a program,



Table 3. Clone Groups Studied
Group Class Method Block

1 (jEdit)
A) bsh.Reflect findExtendedConstructor(...) for(i<constructors.length)
B) bsh.Reflect findExtendedMethod(...) for(i<methods.length)

2 (jEdit)
A) org.gjt.sp.jedit.jEdit initUserProperties() if(settingsDir!=null)
B) org.gjt.sp.jedit.Abbrevs load() if(settings!=null)

3 (Ant)
A) ...ant.taskdefs.Expand execute(...) if(fileset.size()>0)
B) ...ant.taskdefs.optional.XMLValidateTask execute(...) for(i<fileset.size())

4 (Ant)
A) ...ant.taskdefs.ManifestTask execute(...) try(ManifestException,IOException)
B) ...ant.taskdefs.Jar getManifest(..) try(UnsupportedEncodingException,IOException)

5 (Ant)
A) ...ant.taskdefs.optional.net.FTP checkIncludePatterns() for(icounter<includes.length)
B) ...ant.DirectoryScanner checkIncludePatterns() for(icounter<includes.length)

the topology of a program dependency graph, or code met-
rics. We refer the interested reader to one of a number of
annotated bibliographies of the code clone literature [22].

Clone Genealogy Anaysis. Kim et al.’s empirical study
of code clone genealogies [13] provided an important part
of the motivation for this research. For their study, Kim
et al. built a clone genealogy extraction tool. This tool
integrates the CCFinder clone detector and reports, for a
sequence of program versions, how each clone region has
evolved (changed, disappeared, etc.) with respect to the
other clone regions in the group. The mapping of clone
regions between versions is computed from an analysis of
textual similarity using a module that extends the diff util-
ity program. Using their clone genealogy extraction tool,
Kim et al. tracked the evolution of code clones in two Java
programs. Their study led to the conclusions quoted and
discussed in Section 2.

Linked Editing. A number of previous projects focused
on the investigation of linked editing techniques from the
perspective of the user interface. Miller and Myers [17] pro-
posed to use simultaneous editing to simplify repetitive text
editing tasks. Their technique is implemented in LAPIS,
a text editor with a knowledge of Java, C++, and HTML
syntax. With LAPIS, a developer has to manually enter the
regions to link, either through selection or by specifying a
text pattern. Regions in LAPIS are expressed in terms of
character regions. A similar technique, called linked edit-
ing, has been proposed by Toomin et al. [23]. The tech-
nique is implemented in a tool called Codelink. Codelink
allows a user to manually select clone regions and to link
them. Codelink’s algorithm for tracking exact sub-regions
within a clone region is different than ours, and uses a tok-
enized version of the input text. Codelink also allows users
to save a description of clone regions as meta-data. The ex-
act description of the meta-data is not provided, but it is not
resilient to file modifications as the authors express the wish
to “make [their] link meta-data resilient to file modifications
made by third-party tools” [23].

Some of the user interface aspects of CloneTracker’s si-
multaneous editing feature were inspired by this previous
work on linked editing. However, in contrast to LAPIS
and Codelink, CloneTracker’s main purpose is to support
the long-term tracking of clones. For this reason, it uses an
abstract model to represent clones, whereas the two systems
described above manage clone regions in terms of regions of
text. Our linked editing feature also benefits from the high
level of automation provided by our system, which saves
users the task of manually specifying clone regions.

Source Code Representation. A number of approaches
have been proposed that allow developers to specify a sub-
set of the source code of a program using abstract models
that are resilient to a certain amount of changes in the source
code (e.g., Concern Graphs [20], Aspect Browser [6], Inten-
tional Views [16], CME [8]). Typically, such frameworks
allow developers to specify code of interest in terms of
properties of the program (e.g., all the callers of method m).
Although they could be used to track clones that align with
the boundaries of coarse-grained elements (e.g., methods),
they do not provide the flexibility to tag specific blocks in
the source code. In the context of aspect-oriented program-
ming (AOP), attempts have been made to identify low-level
constructs in programs, such as for loops [7]. Because the
underlying goal of AOP is to impact crosscutting code, such
techniques focus on constructs that can describe classes of
constructs (e.g., all loops with a specific predicate), as op-
posed to individual regions.

9. Conclusion

The presence of code clones in software systems creates
additional work for developers and can increase the risk of
introducing regression faults during software maintenance.
Unfortunately, it is not always possible or practical to elim-
inate certain clone groups from a software system.

We propose to mitigate the negative effects of code
clones by tracking clone regions of interest as a system
evolves. We implemented a system, called CloneTracker,



that can automatically generate abstract representations for
clone regions from the output of a clone detection tool, de-
tect any modification to tracked clone regions, and support
the simultaneous editing of clone regions. Our system relies
on the concept of clone region descriptors (CRDs), which
identify clone regions at the granularity of code blocks us-
ing heuristics based on the structural properties, lexical lay-
out, and similarities of the clone region. Our initial inves-
tigation of this idea showed that, even using relatively sim-
ple heuristics, we could track the vast majority of the 3275
clone regions we investigated. Our experience also pointed
to a number of technical aspects that could be improved
upon to further increase the accuracy of the approach. How-
ever, we expect that further adjustments are bound to pro-
vide mostly incremental improvements, as the evidence we
have collected so far indicates that CRDs are a lightweight,
practical, and robust representation for tracking code clones
in evolving software.
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