Sustainable Software Design

Martin P. Robillard
School of Computer Science
McGill University
Montréal, QC, Canada
martin@cs.mcgill.ca

ABSTRACT

Although design plays a central role in software development,
the information produced in this activity is often left to
progressively evaporate as the result of software evolution,
loss of artifacts, or the fading of related knowledge held by
the development team. This paper introduces the concept of
sustainability for software design, and calls for its integration
into the existing catalog of design quality attributes. Ap-
plied to software design, sustainability conveys the idea that
a particular set of design decisions and their rationale can be
succinctly reflected in the host technology and/or described
in documentation in a way that is checkable for conformance
with the code and generally resistant to evaporation. The pa-
per discusses the relation between sustainability and existing
research areas in software engineering, and highlights future
research challenges related to sustainable software design.

CCS Concepts

eSoftware and its engineering — Designing software;

Keywords

Software Design; Software Evolution

1. DESIGN EVAPORATES

The critical importance of design in software engineering
has been recognized for over four decades [14]. The output
of this multi-faceted activity [23, 38] is “a description of the
structure of the software to be implemented...” [33, p. 3§]
But what is this description, where does it live, and how
does it relate to the system?

When required, justified, and/or mandated, design will
result in an explicit design artifact, such as an SDD (Software
Design Description [16]). In other contexts, the design will be
realized into the final system, and auxiliary information will
remain in the form of traces in email discussions, entries in
notebooks, pictures of white boards, and human memories.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

FSE 2016 Visions and Reflections Paper — November 2016

(© 2016 ACM. ISBN .

DOI: 10.1145/2950290.2983983

In both cases, the practical discontinuity between the
creation of a design and its realization introduces a pro-
gressive evaporation of the design knowledge for a system
among its developers. When explicit design documents are
produced, loss of information comes from design drift and
erosion (as a general case of the concept of architectural
drift and erosion [36, 39]). When no explicit design docu-
ment exists, design information becomes lost or untraceable
as the fragments of digital traces are discarded or become
increasingly out of date and difficult to retrieve [2, 9, 40].
The pernicious consequences of design evaporation include
time wasted in avoidable program understanding effort, and
ignorant surgery [27].

The loss of design knowledge is a well-known problem
that has received copious attention from researchers, as is
evidenced by the decades-long research agenda on design
recovery [5, 10, 21], including its incarnations in the form
of design model reverse engineering [18] and design pattern
detection [25, 37]. Although design recovery techniques can
offer relief to software developers trying to make sense of
a large system, they cannot rediscover information, such
as design rationale, that is not reflected in the source code.
They also raise the question of what to do with the recovered
design. Will it, too, evaporate?

2. SUSTAINABLE SOFTWARE DESIGN

This vision paper is a call for developing the concept of
sustainability for software design, and integrating it into the
existing catalog of design quality attributes [3, 24]. Applied
to software design, sustainability conveys the idea that a
particular set of design decisions and their rationale can be
succinctly reflected in the host technology and/or described
in documentation in a way that is checkable for conformance
with the code and generally resistant to evaporation. The
concept of sustainable software design can be positioned
within the technical dimension of a general perspective on
software and sustainability [4].

As a design quality attribute, sustainability will naturally
be in a trade-off position with other quality attributes, such
as extensibility. For example, a software system can be made
more extensible through the use of additional parameteriza-
tion, but when this parameterization introduces new concepts
and terminology, requires documentation, and obscures the
original intent of a modular structure, the additional exten-
sibility will come at the cost of sustainability.

I provide an illustration of different points on the sustain-
ability spectrum by drawing two examples from the design
of JetUML, an open-source UML editor written in Java [19].



The application is not very large but the principles discussed
here apply to design abstractions that would be expected to
scale in proportion to the size of the overall system.

The design of JetUML involves two class hierarchies that
implement, respectively, a Node interface and an Edge inter-
face. In the Node hierarchy, subclasses contribute additional
state and functionality through standard mechanisms (over-
riding) and the use of a well-known design pattern (Template
Method [15]). In the Edge hierarchy, in order to leverage some
of the features of the JavaBeans framework, the behavior
extensions provided by some edge subclasses must take into
account an unusual naming convention, whose violation will
result in major faults. Also, as opposed to the Node hierarchy,
in the Edge hierarchy the presence of intermediate subclasses
has repercussions that are visible to the user. Neither of
these aspects can be properly captured by the programming
language, and must therefore be documented externally [20].
In this case, one could argue that, without the external doc-
umentation, the design of the Edge hierarchy would be less
sustainable than that of the Node hierarchy. The documenta-
tion helps to bridge the gap, but introduces the need to be
validated for conformance, and in some cases updated, when
the code changes.

Following this short discussion, one may wonder if sustain-
ability may not be another name for simplicity. Could it be
that in this example, the Node hierarchy is simply “simpler”,
and the Edge hierarchy “more complex”? The problem with
the notion of complexity in software is that it lacks a credible
definition. In contrast, sustainability puts the emphasis on
more concrete sub-attributes that include self-descriptiveness
and checkability. Although the Node hierarchy comprises 18
types and about 250 members, if I were to walk away from
the project for a year and come back to it, I would be able
to grasp its design without documentation or external help
because the design elements and rules are embedded in lan-
guage constructs, they are related by well-known patterns,
and they map to recognizable concepts in the solution do-
main. In contrast, without explanatory artifacts, it would
be very difficult to rediscover some of the design ideas un-
derlying the Edge hierarchy, and that despite the fact that
this hierarchy is actually smaller in terms of total number of
classes and members (about 150).

3. PREVENTING DESIGN EVAPORATION

Different areas of software engineering research and prac-
tice explore problems related to design evaporation and con-
tribute solutions that help prevent it. How are they related
to the concept of sustainable design?

Modularity. Modularity and its tandem concept of depen-
dency are prevalent themes in software design [31]. Modular-
ity, in its simplest expression, concerns the decomposition of
a system into parts, which immediately begs the question of
how. Parnas’ foundational proposal is to hide information
with the goal of designing for change [26]. This dogma has
however been challenged, in particular in favor of broadening
the goal of design to that of adding value to a system [34].
Modularity can contribute to the sustainability of a design
when it makes the overall structures and intent of the design
apparent and easy to respect. However, that is yet another
goal whose value must be assessed in relation to all other
competing goals for a design. The extensive work on multi-
dimensional separation of concerns [30, 35| and empirical

evidence that design rules are routinely violated [8, 41] illus-
trate the natural tensions between conflicting design goals
and the effect of development pressure. In this context the
question is not whether sustainability aligns with modularity
but, rather, how modularity can support sustainability, and
what we should do when it cannot. Future research will help
us determine what makes a design sustainable. Although
modularity is bound to play a role, it will likely not be an
exclusive role.

Documentation. The relation between documentation and
sustainable design is paradoxical. On the one hand, good
documentation helps sustain a design over time [28]. On the
other, the mere prospect of having to create documentation
can be seen as a challenge to sustainability [42], and reliance
on documentation past a given threshold can be an indication
of an unsustainable design. In the JetUML example presented
above, the documentation supports design in the same way a
crutch supports a frail leg: as an unfortunate necessity with
an added cost. Is the idea of sustainable design, then, to
have fully self-documenting systems in a way that parallels
the idea of literate programming [22]? Parnas and Clements
compare this ideal with that of the philosopher’s stone (i.e.,
an impossibility) [28]. Although self-documenting design
may be partially possible in certain contexts (such as that
of an Application Programming Interface [7]), the relation
between documentation and sustainable design is one of
essence and accident of software engineering: Sustainable
design is supported by essential documentation, whereas
unsustainable design is supported by excess documentation
addressing accidental limitations of the design. But how can
we tell the difference?

Programming Languages. Design decisions are naturally
self-documenting when the structures and rules they define
align with features of the programming language. In the
JetUML example, the design requires ClassNode and Inter-
faceNode instances to be interchangeable, and this design
decision is directly reflected in the fact that both classes
share a common supertype. Expressing design decisions in
terms of language constructs is a promising way to achieve
sustainability. The problem is that the set of language fea-
tures is bounded, whereas the set of design decisions is not.
Moreover, general-purpose programming languages support
the realization of implementation-level concerns, and con-
sequently support the expression of ideas at a low level of
abstraction. Programming languages can be extended to
better support important concepts tied to design rules and
constraints, such as immutability [6, 12]. At the other end of
the abstraction spectrum, language constructs can be created
to support high-level reasoning about system structure, such
as components and connectors [1]. The challenge with pro-
gramming language constructs that express design ideas is to
move beyond simple descriptiveness (“this is a component”)
towards checkability for conformance (“this component is not
connected to this other one”). Despite steady advances in
program analysis, conformance checking of design models is
by no means a solved problem [17]. In this context, the con-
cept of design sustainability may provide additional insights
into the value of linguistic or library elements that support
the expression of general design rules. As a middle ground
between basic module definitions and comprehensive archi-
tectural models, the annotations used by many infrastructure



frameworks capture useful, if partial, design information. For
example, object-relational mapping frameworks include oper-
ators that describe data models. In a similar way, dependency
injection frameworks require developers to use annotations
such as @Inject and @Component, thereby providing limited
but checkable information about component boundaries and
integration points.

Design Patterns. Design patterns [15] are another notable
means by which important design decisions can be reflected
in a system and carried forward. The nomenclature intro-
duced by design pattern catalogs effectively creates a map
between parts of a system identified by recognized names
(e.g., “Observer”) and both a system of design rules and their
corresponding rationale. The integration patterns mandated
by application frameworks also qualify as design patterns in
the context of sustainability, because they achieve the similar
effect of capturing design decisions by relating application-
specific extensions to the overall system in structured ways.
Although an important building block of sustainability, pat-
terns are not a panacea. First, patterns are, by definition,
solutions to common design problems, which means the more
idiosyncratic parts of a software system’s design may not
map to any design pattern. Second, patterns are not yet fully
checkable for conformance. Although tool support can be
created to detect [25, 37] or instantiate [13] patterns in a sys-
tem, in the general case the conformance checking of design
patterns is only a special case of the difficult conformance
checking problem for design models in general. Finally, most
design patterns address a rich design space with many points
of variability. To solve a concrete design problem with the
help of a pattern, a software developer will need to make
some design decisions to complete the pattern. How these
decisions can be captured will determine the sustainability
of the design pattern’s instantiation.

Model-Driven Engineering. One of the stated goals of
model-driven engineering (MDE) is to address the “semantic
gap between the design intent [...] and the expression of this
intent...” [32, p.26]. To further this aim, MDE technologies
involve the use of domain-specific modeling languages that
describe systems at a level of abstraction that is better
suited for capturing design intent than the implementation
constructs of general-purpose programming languages. At
the same time, models are themselves the product of design
activities, so the question of sustainability really becomes
transferred to the model artifacts: How can they capture the
important decisions that led to their inception?

Software Process and Development Culture. Although
this paper focused on issues of design representation, it is
worth mentioning that the software development process and
the development culture surrounding the use of programming
languages are also bound to influence design sustainability.
A software process determines how much design informa-
tion is produced and the form it takes, two factors that
are inevitably tied to design sustainability. In the case of
programming languages, different user communities have dif-
ferent cultural practices, such as naming conventions, use of
meta-programming, and typical module size, that are likely
to impact sustainability.

4. RESEARCH CHALLENGES

Many challenges lay ahead on the path to realize a vision
of sustainable software design. To be useful, the concept will
need to be defined precisely enough to support the unam-
biguous qualification of degrees of sustainability in different
technical and organizational contexts. This determination is
bound to be influenced by divergent opinions and experiences
about the longevity of software design, and the challenge will
be to find a definition that transcends individual projects.
Given the multi-faceted nature of design sustainability, sup-
porting this quality attribute will require experimentation
with a wide range of ideas including new programming lan-
guage constructs, emergent documentation [29], and advances
in traceability [11]. Fostering sustainable software design will
also require understanding how the creation and use of de-
sign information needs to be coordinated across development
activities. The ultimate challenge will be to find reliable
ways to evaluate the cost and benefits of design sustainabil-
ity, so as to build a body of evidence that can be used to
demonstrate the up-to-now intangible benefits of sustainable
design, and hopefully empower organizations to incentivize
software designers to invest in the future.

S. ACKNOWLEDGMENTS

I am grateful to B. Dagenais, G. Mussbacher, C. Treude,
the members of the McGill SE Seminar, and the reviewers
for insightful comments. This work is funded by NSERC.

6. REFERENCES

[1] J. Aldrich, C. Chambers, and D. Notkin. ArchJava:
connecting software architecture to implementation. In
Proc. 24th ACM/IEEE International Conference on
Software Engineering, pages 187-197, 2002.

[2] S. Baltes and S. Diehl. Sketches and diagrams in
practice. In Proc. 22nd ACM SIGSOFT International
Symposium on the Foundations of Software
Engineering, pages 530-541, 2014.

[3] J. Bansiya and C. G. Davis. A hierarchical model for
object-oriented design quality assessment. IEEE
Transactions on Software Engineering, 28(1):4-17, 2002.

[4] C. Becker, S. Betz, R. Chitchyan, L. Duboc, S. M.
Easterbrook, B. Penzenstadler, N. Seyff, and C. C.
Venters. Requirements: The key to sustainability. IEEE
Software, 33(1):56-65, 2016.

[5] T. J. Biggerstaff. Design recovery for maintenance and
reuse. Computer, 22(7):36-49, 1989.

[6] A. Birka and M. D. Ernst. A practical type system and
language for reference immutability. In Proc. 19th
ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
pages 35—49, 2004.

[7] J. Bloch. How to design a good API and why it
matters. In Companion to the 21st ACM SIGPLAN
Symposium on Object-oriented Programming Systems,
Languages, and Applications, pages 506-507, 2006.

[8] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim,

P. Kruchten, E. Lim, A. MacCormack, R. Nord,

I. Ozkaya, et al. Managing technical debt in
software-reliant systems. In Proc. FSE/SDP Workshop
on the Future of Software Engineering Research, pages
47-52, 2010.



[9]

[22]

[23]

[24]

[25]

M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko.
Let’s go to the whiteboard: How and why software
developers use drawings. In Proc. SIGCHI Conference
on Human Factors in Computing Systems, pages
557-566, 2007.

E. J. Chikofsky, J. H. Cross, et al. Reverse engineering
and design recovery: A taxonomy. Software, IEEE,
7(1):13-17, 1990.

J. Cleland-Huang, O. C. Gotel, J. Huffman Hayes,

P. Méder, and A. Zisman. Software traceability: trends
and future directions. In Proc. Future of Software
FEngineering, pages 5569, 2014.

M. Coblenz, J. Sunshine, J. Aldrich, B. Myers,

S. Weber, and F. Shull. Exploring language support for
immutability. In Proc. 38th ACM/IEEE International
Conference on Software Engineering, 2016.

G. Fairbanks, D. Garlan, and W. Scherlis. Design
fragments make using frameworks easier. In Proc. 21st
ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications,
pages 75-88, 2006.

P. Freeman. The central role of design in software
engineering. In A. I. Wasserman and P. Freeman,

editors, Software Engineering Education, pages 116-199.

Springer, 1976.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Desing Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, 1994.

IEEE Computer Society. IEEE Standard for
Information Technology—Systems Design—Software
Design Descriptions, 2009. IEEE Std 1016-2009.

D. Jackson and M. Rinard. Software analysis: A
roadmap. In Proc. 22nd ACM/IEEE International
Conference on Software Engineering, pages 133-145,
2000.

D. Jackson and A. Waingold. Lightweight extraction of
object models from bytecode. IEEE Transactions on
Software Engineering, 27(2):156-169, 2001.

JetUML: A Free simple UML diagramming tool.
http://cs.mcgill.ca/ “martin/jetuml/, 2016.

JetUML design documentation-Edge hierarchy.
https://github.com/prmr/JetUML/blob/v0.12/doc/
functional/EdgeHierarchy.md, 2016.

R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé.

Pattern-based reverse-engineering of design components.

In Proc. 21st ACM/IEEE International Conference on
Software Engineering, pages 226—235, 1999.

D. E. Knuth. Literate programming. The Computer
Journal, 27(2):97-111, 1984.

N. Mangano, T. D. LaToza, M. Petre, and A. van der
Hoek. How software designers interact with sketches at
the whiteboard. IEEE Transactions on Software
Engineering, 41(2):135-156, 2015.

R. Marinescu. Measurement and quality in
object-oriented design. In 21st IEEE International
Conference on Software Maintenance, pages 701-704,
2005.

J. Niere, W. Schifer, J. P. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In
Proc. 24th ACM/IEEE International Conference on
Software Engineering, pages 338-348, 2002.

[26]

27]

(28]

29]

(30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

[41]

(42]

D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications of
the ACM, 15(12):1053-1058, 1972.

D. L. Parnas. Software aging. In Proc. 16th
ACM/IEEE International Conference on Software
Engineering, pages 279-287, 1994.

D. L. Parnas and P. C. Clements. A rational design
process: How and why to fake it. IEEE Transactions
on Software Engineering, SE-12(2):251-257, 1986.

M. P. Robillard and N. Medvidovié¢. Disseminating
architectural knowledge on open-source projects. In
Proc. 38th ACM/IEEE International Conference on
Software Engineering, pages 392-403, 2016.

M. P. Robillard and G. C. Murphy. Representing
concerns in source code. ACM Transactions on
Software Engineering and Methodology, 16(1):3, 2007.
N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
dependency models to manage complex software
architecture. In Proc. 20th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages,
and Applications, pages 167-176, 2005.

D. C. Schmidt. Guest editor’s introduction:
Model-Driven engineering. Computer, 39(2):25-31,
2006.

I. Sommerville. Software Engineering. Addison-Wesley,
9th edition, 2011.

K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen.
The structure and value of modularity in software
design. In Proc. Joint Meeting of the Furopean
Software Engineering Conference and ACM SIGSOFT
International Symposium on the Foundations of
Software Engineering, pages 99-108, 2001.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr.
N degrees of separation: multi-dimensional separation
of concerns. In Proc. 21st International Conference on
Software Engineering, pages 107-119, 1999.

R. N. Taylor, N. Medvidoci¢, and E. M. Dashofy.
Software Architecture: Foundations, Theory, and
Practice. Wiley, 2010.

N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. T. Halkidis. Design pattern detection using
similarity scoring. IEEE Transactions on Software
Engineering, 32(11):896-909, 2006.

A. van der Hoek and M. Petre, editors. Software
Designers in Action: A Human-Centric Look at Design
Work. CRC Press, 2014.

J. van Gurp and J. Bosch. Design erosion: problems
and causes. Journal of Systems and Software,
61(2):105-119, 2002.

J. Walny, J. Haber, M. Dork, J. Sillito, and

S. Carpendale. Follow that sketch: Lifecycles of
diagrams and sketches in software development. In 6th
IEEE International Workshop on Visualizing Software
for Understanding and Analysis, pages 1-8, 2011.

S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting
software modularity violations. In Proc. 33rd
ACM/IEEE International Conference on Software
Engineering, pages 411-420, 2011.

U. Zdun, R. Capilla, H. Tran, and O. Zimmermann.
Sustainable architectural design decisions. IEEE
Software, 60(6):46 — 53, 2013.



