
NaCIN – An Eclipse Plug-In for  
Program Navigation-based Concern Inference 

Imran Majid and Martin P. Robillard 
School of Computer Science 

McGill University 
Montreal, QC, Canada  

{imajid, martin} @cs.mcgill.ca 

 
ABSTRACT 
In this paper we describe NaCIN, an Eclipse plug-in that records a 
developer’s code navigation activity and produces sets of 
elements potentially implementing different concerns relevant to 
the current task. It performs an analysis of the navigation paths 
and structural dependencies of the recorded elements and clusters 
the results in groups potentially associated with high level 
concepts. NaCIN partially automates the process of relating 
source code with high-level abstractions and enables knowledge 
about the implementation of different concerns to be reused in 
future investigations. We present the architecture and a 
preliminary assessment of NaCIN.  

Categories and Subject Descriptors 
D.2.3 [Software Engineering]: Coding Tools and Techniques; 
D.2.6 [Software Engineering]: Programming Environments; 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement 

General Terms 
Documentation, Experimentation, Human Factors 

Keywords 
Program Navigation, Program Investigation, Concern Inference, 
Concern Modeling 

1. INTRODUCTION 
Software projects typically require several modifications, often to 
add, modify, or enhance various features. In many cases an 
extensive investigation of the program is required to identify the 
code that is relevant to the change, especially when it is scattered 
across several modules. Integrated development environments 
(IDEs) can assist the developers in navigation and exploration of 
elements related to a certain feature or concern. Unfortunately, 
once code relevant to a change is discovered and understood, the 
information is usually not recorded. This results in a similar effort 
being expended in the case where any subsequent modifications 
of the same feature or concern have to be carried out by a 
different developer (or by the same developer if the system is 
large).  

 
Different approaches, such as Concern Graph [6], can be used to 
associate source code with high-level concepts such as features or 
bug reports. For example, using either FEAT [7] or 
ConcernMapper1, a developer can build concern representations 
while exploring the source code, and save this information for 
future use.  However, these techniques place the onus on the 
developers for producing the concern-to-code mapping.  

The Navigation-based Concern Inference Eclipse plug-in 
(NaCIN) automates the concern generation activity: it monitors a 
developer’s code navigation activity and produces an approximate 
concern model spanning the elements that have been explored. It 
provides the mechanism to record an exploration of the code and 
synthesizes this information for reuse in its subsequent 
investigations.  

2. GUIDING PRINCIPLES 
NaCIN analyzes a variety of relationships between elements 
navigated and uses this information to generate a concern model 
containing several concerns. This strategy differs from the direct 
computation of investigation frequencies for different code 
elements. Instead, our strategy is based on the following 
hypotheses: 

• Navigation paths can indicate high-level associations 
between program elements [8]. During the investigation of 
the source code, the probability that a certain element is 
associated with a given task can be determined by program 
investigation patterns, structural dependencies between 
elements investigated, and the kinds of event revealing the 
elements (e.g., an element that becomes visible during scrolling 
is likely to be less relevant than the one that is selected as a 
result of a cross-reference search). 

• A developer can look at everything visible, not only at 
selected elements. NaCIN is based on the hypothesis that 
developers may look at code visible in the editor even if they 
have not selected it explicitly.  Program elements related to a 
certain concern are generally placed in close proximity. For 
example, method declarations related to a concern are often 
placed together in a class. NaCIN provides a mechanism for 
recording all such elements that were not selected explicitly but 
still became visible to the developer. 

• The instrumentation required to collect fine-grained 
navigation events is not disruptive. The monitoring of a 
developer’s actions does not disrupt his work and does not 

                                                                 
1 http://www.cs.mcgill.ca/~martin/cm/ 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
OOPSLA 2005 Eclipse Technology Exchange (ETX), October 16–17, 
2005, San Diego, CA, USA. 
Copyright 2005 ACM ...$5.00. 

/ / $



require any extra effort. It can be integrated seamlessly and 
does not slow down the machine to a point where it will 
undermine its utility.  

• The results are approximate. Given the human aspect of the 
phenomenon analyzed, the results are expected to be 
approximate.  As such, it should be possible and easy to modify 
the results to better reflect the implementation of concerns of 
interest.  

3.  SCENARIO 
We describe NaCIN through a scenario of a software 
modification. In this scenario, a developer is asked to fix the 
problems related to the “Markers” concern of a popular open 
source text editor, jEdit2 version 4.2. Markers are a means of 
highlighting certain lines in files and in version 4.2 some of the 
menu items related to this concern are not functioning as required. 
Before a developer can perform the required modifications, the 
developer has to identify the code related to this concern. The 
developer selects to record the transcript of his investigation 
activity by pressing the Start button of NaCIN. NaCIN now 
records information about the navigation of the developer through 
source code.  
The developer starts by searching for the declaration of a 
“Marker” Java type in jEdit and finds one. The developer browses 
its code briefly and, to find the places where it is being used, 
searches for the references of its constructor in the project. The 
search leads to the addMarker method in the Buffer class. 
The developer scrolls around the Buffer class and finds a 
collection of methods related to markers. He uses the Search, 
Type Hierarchy and Call Hierarchy views repetitively to find 
other related methods scattered in several classes. During this 
investigation task, the developer also selects elements of 
significance from the Package Explorer and the Outline views.  

 

                                                                 
2 http://www.jedit.org 

Figure 1. Markers Concerns inferred by NaCIN 
As this investigation focused on one feature of the system, 
Markers, the developer mostly visited the elements relevant to it. 
After spending some time investigating the source code, the 
developer believes he has some understanding of this concern and 
presses the Generate button of NaCIN. The developer provides 
the name of the concern and the number of elements it should 
have. NaCIN analyzes the investigation data and generates a 
concern model. This concern model is then made visible to the 
user through an Eclipse View (Figure 1). The generated concern 
model requires a final review by the developer, who adds those 
elements that have been missed by NaCIN and removes those that 
are not relevant to the Markers concern. This concern model can 
be saved as an XML file and can be used for future investigations 
related to the Markers concern of jEdit.  

NaCIN, instead of putting all the navigated elements in one 
basket, clusters them into relevant concerns. In Figure 1, the 
markers concern represents the methods related to the storage 
mechanism of markers while markers3 represents the methods 
related to the removal of markers. These concerns can be renamed 
and altered using the view shown in Figure 1. 

4. ARCHITECTURE 
NaCIN comprises three modules, The Recorder, The Inference 
Engine and ConcernMapper (the user interface). The Recorder 
records a developer’s code navigation activity and generates an 
investigation transcript file in XML format. The Inference Engine 
performs inference on the investigation transcript and produces a 
Concern Model. This concern model is passed to ConcernMapper, 
which displays it to the user. ConcernMapper has been developed 
independently and allows a developer to store program elements 
relevant to a concern. In our architecture it is used as a third-party 
component.  

 
Figure 2. Architecture of NaCIN 

4.1 The Recorder 
The Recorder records the actions performed by the developer 
(e.g., selecting a method in the Package Explorer) and the 
corresponding visible information (i.e., all the methods with code 
visible in the editor). In terms of the visible information, method 
declaration is used as the unit of granularity. The Recoder runs 
seamlessly in the background and captures all the method 
declarations that become visible on the screen as a developer 
navigates the code using the tools provided by Eclipse, like 



Package Explorer, Outline, Search, Type Hierarchy and Call 
Hierarchy views. The Recorder generates an XML transcript 
containing an ordered list of such events. 

The recorder distinguishes between five different categories of 
events [5]:  

• Selection: the content of the active editor changed as the result 
of selecting an element to be displayed 

• Cross-reference: the content of the active editor changed as 
the result of following a cross-reference between two elements. 

• Recall: an editor window was recalled from an existing buffer 
of visible windows, such as a history list or tabbed pane 

• Scrolling: the content of the active editor window changed as 
the result of scrolling up and down in a file 

• Text Search: the content of the active window changed as the 
result of selecting an element through a keyword search 

The Recorder is implemented by instrumenting the jdt.ui plug-
in of Eclipse. When an editor part is activated, a singleton class 
(Recorder) is added as its listener. The Recorder implements 
PartListener, which enables it to listen to 
activation/deactivation of editor parts and generates events 
accordingly. It also implements ViewportListener enabling 
it to record an event whenever the visible area of the text editors 
is changed.  
The following locations are instrumented in jdt.ui (identified 
in Figure 3) 

1. Events are recoded when elements are opened in an editor 
from the Package Explorer. Similar events are recorded 
when an element is opened using the short-cut key (F3). 

2. Selection of an element in the Outline view generates an 
event.  

3. Selection of an element from the Java Search Result Page 
generates  a cross-reference event. 

4. Selection of an element in the Type Hierarchy View 
generates an event. 

5. Selection of an element in the Call Hierarchy View produces 
an event. 

6. A text search event is generated on a keyword search in 
editor.  

We are currently experimenting with different possible mappings 
between instrumentation points and event types. 

4.2 The Inference Engine 
The Inference Engine takes a transcript file as input and generates 
a group of elements that are potentially involved in the 
implementation of a concern. We use the algorithm described in a 
previous paper [5]. The algorithm can generate concerns based on 
a calculation of how different elements were related during 
program investigation session. The concern inference algorithm is 
divided into three phases. In the first phase, each visible element 
of every event is assigned a probability that this element was 
actually examined by the developer. In the second phase, a 
correlation metric of every pair of elements in the transcript is 
calculated. The Eclipse Java Model and Search Engine are used to 
identify the structural relationships between elements and the 
pairs of structurally connected elements are given proportionally 
more weight. The third phase generates a set of concerns based 
on the correlation metric calculated in the second phase and  
passes these to ConcernMapper.  

 

 
Figure 3. Instrumented views of Eclipse jdt



 

4.3 ConcernMapper 
ConcernMapper is developed separately as an Eclipse plug-in. 
Developers can use it independently as they navigate the code and 
associate elements with a Concern Model. However in our case it 
takes in as input the elements of a concern generated by the 
Inference Engine. The integration with ConcernMapper is 
straightforward. We create a concern by giving its name and then 
add the elements in that concern. This integration allows the user 
to immediately analyze the concerns produced by the inference 
engine. The user can further prune and complete the 
representations identified by the algorithm using ConcernMapper. 
ConcernMapper also provides the facility to store the concern, 
allowing it to be used in later investigations. 

5. PRELIMINARY EVALUATION  
NaCIN is currently in an early phase of development and being 
assessed though small experiments.  We present one of these 
experiments here as a way to illustrate the cost and benefits of 
using this technology. In this experiment, we asked three 
developers to investigate how they would improve a weakness in 
the implementation of Violet3, a UML editor written in Java 
consisting of approximately 6600 lines of code. The change 
posited in this study concerned an inconsistency between 
associations supported by different UML figures. In this study, 
the subjects (S1, S2 and S3) were asked to investigate the code of 
Violet.  

S1 is the second author of the paper. S2 is an undergraduate 
student with around 3 years of development experience. S3 is an 
undergraduate student with one year of development experience. 
None of the subjects are part of the development team of NaCIN 
(although S1 is obviously associated with the project). The 
subjects all had experience with Eclipse but had no previous 
knowledge of the code of Violet. They were not given any initial 
hint and were not allowed to use the debugger, though they could 
modify the program by inserting print statements.  

By studying the code of Violet and examining the code 
investigated by the subjects, we determined two important pieces 
of information about the source code that were relevant to the 
change: 

• Nodes and Edges: A set of classes responsible for figures 
and edges displayed on different diagrams. 

• Connection: The event-handling system that connects edges 
with nodes. 

5.1 Results 
All three subjects were able to locate and rectify the problem 
related to the given task. We applied our inference algorithm on 
each transcript, requesting in each case a concern model for 10 
elements. Table 1 shows the characteristics of the transcripts 
produced. The second column lists the number of events, the third 
column lists the number of unique program elements visible to the 
developer during this investigation, the fourth column shows the 
number of classes navigated in this study and the fifth column 
shows the amount of time taken to complete the task. 

                                                                 
3 http://www.horstmann.com/violet/ 

 

Table 2. Characteristics of investigation transcripts 

Subject Events Elements Classes Time 
S1 40 62 8 12 mins 
S2 91 74 11 20 mins 
S3 79 104 20 30 mins 

Tables 2, 3 and 4 show the concern models generated for subjects 
S1, S2 and S3 respectively.  

Table 2. Results for Subject S1 

 Concern Model 
1 Edge.getEnd() 

Edge.getStart() 
Graph.add(Node, Point2D) 
Graph.connect(Edge, Point2D, Point2D) 
NoteEdge.draw(Graphics2D) 
NoteEdge.getConnectionPoints() 
SegmentedLineEdge.getConnectionPoints() 
ShapeEdge.getShape() 

2 EditorFrame.changeLookAndFeel(String) 
EditorFrame.EditorFrame(Class) 

 

Table 3. Results for Subject S2 

 Concern Model 
1 Graph.findEdge(Point2D) 

Graph.findNode(Point2D) 
GraphPanel$1.mousePressed(MouseEvent) 

2 Edge.connect(Node, Node) 
Graph.connect(Edge, Point2D, Point2D) 
NoteEdge.draw(Graphics2D) 
NoteEdge.getConnectionPoints() 
NoteEdge.getShape() 

3 RectangularNode.writeObject(ObjectOutp..) 
RectangularNode.writeRectangularShape(Object..) 

 

Table 4. Results for Subject S3 

 Concern Model 
1 CallNode.getConnectionPoint(Direction) 

NoteNode.NoteNode() 
2 AbstractNode.AbstractNode() 

ReturnEdge.getPoints() 
NoteNode.getShape() 
ShapeEdge.getShape() 
NoteEdge.getConnectionPoints() 
RectangularNode.clone() 
ReturnEdge.ReturnEdge() 
NoteNode.draw(Graphics2D) 

Concern models generated for S1 and S2 included the most 
important elements and classes (Graph, Edge, NoteEdge) 
related to the assigned task. The methods in bold in Table 2 and 3 
not only represent the common methods between the concern 
models of S1 and S2 but also the location where the modification 
was made. It is not surprising that NaCIN was able to identify the 
modified location along with the relevant elements since modified 
elements usually form an important part of the navigation activity. 
Clustering of relevant elements ensures that those navigated 
pieces of code that are heavily associated during the program 
navigation are reported as part of the same concerns. Concern 2 in 
case of S1 and Concern 3 in case of S2 represent this aspect of the 
approach.  



Even though S3 was able to correct the problem, the randomness 
in his navigational activity made it impossible to identify any 
meaningful concern. This data reinforces a previous observation 
that the algorithm performs better in the case of a relatively 
methodical investigation of the code [5]. In these situations useful 
concerns can be documented at minimal cost to help in future 
tasks. 

5.2 User Experiences and Feedback 
The three subjects agreed that the presence of instrumented code 
was unnoticed and did not hinder their investigation of the code. 
The time required by the inference engine to generate the concern 
models was between 10 and 20 seconds. We are planning further 
empirical testing of the approach as an ongoing component of this 
research project. 

6. RELATED WORK 
FEAT allows the programmer to create views of structurally 
related elements by explicitly adding them to a Concern 
Graph [7]. The Concern Manipulation Environment also supports 
associating concerns with code through a query mechanism [2]. 
Both of these approaches use a specialized view to show the 
program elements related to the current task and place the burden 
on the programmer to declare the task-specific program elements. 
In contrast, NaCIN captures these program elements implicitly, 
reducing the programmer’s effort.  

Many IDE tools have monitored the programmer’s context to 
present related program elements. Exton and McKeogh provide 
quantitative insights into how different programmers develop and 
maintain software [4].  They use Excel to visualize the recorded 
information. In comparison, NaCIN studies elements at finer 
granularity and analyzes the inter-relationships between them.  

Mylar uses a degree-of-interest (DOI) model to capture the 
context of a task [3]. It focuses on the elements visible in IDE 
views but associates editing and navigation activity with program 
elements alone and does not model navigation paths. Instead, 
NaCIN is based on programming activity and infers the 
programmer’s context by analyzing the structural navigation 
paths. NaCIN, by means of concern models, also provides storage 
and hence reusability of knowledge related to a task.  

NavTracks keeps track of the navigation history of software 
developers, forming associations between related files [9]. These 
associations are then used as the basis for recommending 
potentially related files as a developer browses the software 
system. The value of the suggested files diminishes as the size of 
the files increases. Instead of focusing on file-to-file relationships, 
NaCIN works at the level of individual methods.  

Several approaches have been developed to identify relevant 
source code using data mining. Zimmermann et al., have 
developed an approach that uses association rule mining on CVS 
data to recommend source code that is potentially relevant to a 
given fragment of source code [10]. Hipikat is a tool that provides 
recommendations about project information that a developer can 
consider during a modification task [1]. Hipikat draws its 
recommended information from a number of different sources 
apart from the source code. NaCIN can complement these 
approaches and the concern models generated by NaCIN will 
prove more helpful for data mining purposes.  

7. CONCLUSIONS 
NaCIN is an inexpensive tool that analyzes the developer’s 
investigation of code and produces an approximate concern model 
spanning the explored elements. It records all the methods that 
become visible as the result of a navigation event and clusters 
them into groups based on navigation paths and structural 
relations. It partially automates the process of relating source code 
with high-level concerns and enables the information collected in 
this way to be reused in future investigations. An initial 
evaluation of NaCIN suggests that it can provide useful results in 
case of relatively methodical investigation of code. 

8. ACKNOWLEDGMENTS 
The authors are grateful to the study subjects. This research was 
supported by an Eclipse Innovation Award and by a start-up grant 
from McGill University. 

9. REFERENCES 
[1] Davor Cubranic and Gail C. Murphy. Hipikat: Recommending 

pertinent software development artifacts. 25th International 
Conference on Software Engineering (ICSE'03), pages 408–418, 
2003. 

[2] William Harrison, Harold Ossher, Stanley M. Sutton Jr., and Perri 
Tarr. Concern Modeling in the Concern Manipulation Environment. 
Research Report RC23344, IBM Thomas J. Watson Research 
Center, Yorktown Heights, NY, September 2004. 

[3] Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model 
for IDEs. In Proceedings of the 4th Conference on Aspect-Oriented 
Software Development, pages 159–168, 2005. 

[4] John McKeogh and Chris Exton. Eclipse plug-in to monitor the 
programmer behaviour. OOPSLA, Eclipse Technology eXchange 
Workshop, pages 93–97, 2004.   

[5] Martin P. Robillard and Gail C. Murphy. Automatically inferring 
concern code from program investigation activities. In Proceedings 
of the 18th International Conference on Automated Software 
Engineering, pages 225–234, 2003. 

[6] Martin P. Robillard and Gail C. Murphy. Concern Graphs: Finding 
and describing concerns using structural program dependencies. In 
Proceedings of the 24th International Conference on Software 
Engineering, pages 406–416, 2002. 

[7] Martin P. Robillard and Gail C. Murphy. FEAT: a tool for locating, 
describing, and analyzing concerns in source code. In Proceedings of 
the 25th International Conference on Software Engineering, pages 
822–823. May 2003. 

[8] Martin P. Robillard and Gail C. Murphy. Program navigation 
analysis to support task-aware software development environments. 
In Proceedings of the ICSE Workshop on Directions in Software 
Engineering Environments, pages 83–88. IEE, 2004. 

[9] Janice Singer, Robert Elves, and Margaret-Anne Storey. NavTracks: 
Supporting navigation in software maintenance. In Proceedings of 
the International Conference on Software Maintenance, 2005. To 
appear.  

[10] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and 
Andreas Zeller. Mining version histories to guide software changes. 
In Proceedings of the 26th International Conference on Software 
Engineering, pages 563–572, 2004.


