
DOES ASPECT-ORIENTED
PROGRAMMING WORK?

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 75

WWouldn’t it be advantageous to know in advance that the use of AOP

[3] for your next project would be successful? Unfortunately, developers

and managers seldom have access to evidence assuring them that the

benefits promised by a new technology, such as AOP, will be achieved if

they adopt the technology. Instead, they must take a leap of faith, believ-

ing the technology will help them overcome

problems encountered previously.

To thoroughly evaluate the usefulness of AOP, multiple software

development organizations would need to build their products both

with and without AOP and compare the results. Such an approach is

unrealistic. Is the situation then hopeless? Can software engineering

researchers provide any help to determine if it is beneficial for software

development organizations to adopt AOP for building their software

products? We believe researchers can provide help. Toward that goal, a

Gail C. Murphy, Robert J. Walker, Elisa
L.A. Baniassad, Martin P. Robillard,

Albert Lai, and Mik A. Kersten

Determining the best method for evaluating the
effectiveness of a new technology.

76 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

number of studies have been conducted to assess the
usefulness of AOP and similar technologies.

There are two basic techniques for assessing a pro-
gramming technology: experiments and case studies.
Experiments provide an opportunity for direct com-
parison, allowing researchers to investigate how the
technology performs in detailed ways. Case studies
take many forms, from small-scale comparisons to lon-
gitudinal studies of the technology in action. Case
studies tend to provide broader knowledge about the
use of a technology.

Experiments: Debugging and Change
We conducted two semicontrolled experiments to
investigate whether AOP, as embodied in AspectJ,
made it easier to develop and maintain certain kinds of
application code [5, 8]. One experiment considered
whether AspectJ enhanced a developer’s ability to find
and fix faults present in a multithreaded program. The
second experiment focused on the ease of changing a
distributed system. Each experiment involved three
trials that compared the actions and experiences of two
groups: one group worked with AspectJ; the other
group worked with code implemented in a control
language—Java for the first experiment and Emerald
[1] for the second experiment.

An early version of AspectJ, which had two
domain-specific aspect languages, was used for these
experiments. The COOL aspect language expressed
synchronization code; the RIDL aspect language spec-
ified code related to remote data transfer in a distrib-
uted program.

The first experiment showed that when locating a
fault involved reasoning within a single class or an
aspect, programming teams using AspectJ were able to
correct a seeded program fault faster than the Java
teams. Furthermore, teams using AspectJ had fewer
discussions about the semantics of the base code. The
second experiment showed that the RIDL aspect lan-
guage did not allow developers to implement changes
to a distributed program faster than developers work-
ing in the control language. We attributed this result
to the fact that the developers did not spend enough
time analyzing the code prior to beginning coding;
they were led astray by assuming the change could
largely be implemented using the aspect language.

Analyzing the results of these two experiments led
us to two key insights. First, the range of effect the
aspect code has on the system code matters. The
COOL code affected limited, discernable parts of the
rest of the system: The participants could look at
COOL code and understand its effect without having
to analyze vast parts of the rest of the code. The RIDL
code did not have this property. Second, the presence

of aspects in the code changed the way in which par-
ticipants tackled the tasks. Participants first looked for
a solution that could be modularized in an aspect.
When this solution was appropriate, AOP was benefi-
cial. However, when the solution could not be encap-
sulated within an aspect, the participants took longer
to reach a solution.

We also conducted both large and small case stud-
ies to investigate the usefulness of AOP. A large case
study affords the opportunity to examine how a pro-
gramming technology affects multiple issues concern-
ing the building of a specific system, such as the design
of the system and the development process. Smaller
case studies afford the opportunity to investigate spe-
cific development issues on smaller systems.

Case Study: Web-based Learning Environment.
Atlas is a Web-based learning environment we imple-
mented as a multitier distributed application with
AspectJ 0.2 [2]. Atlas allows students to register for
courses and to navigate through course material using
personalized views. Atlas comprises approximately
11,000 lines of code spread over 180 classes, and 17
aspects. The versions of AspectJ that were used sup-
ported a general-purpose aspect language.

Atlas uses aspects for several different purposes.
One set of aspects supports different tier configura-
tions in which Atlas can run, such as on an application
server or as an applet. Other aspects encapsulate design
patterns. A final set of debugging and tracing aspects
supports the development process.

This case study taught us several lessons about
designing and programming with aspects. For exam-
ple, we learned one must carefully consider the differ-
ent kinds of “knows-about” relationships between
classes and aspects. As another example, we found it
useful to use aspects as factories to simplify the exten-
sion of an object’s behavior.

Case Study: Comparing Separation of Concern
Technologies. We have also undertaken a small, com-
parative case study in which three different mecha-
nisms for separating concerns—AspectJ, Hyper/J,
which supports the hyperspaces concept [7], and a
lightweight, lexical means of separating code—were
applied to pieces of two existing programs: jFTPd
and gnu.regexp [6]. Using these mechanisms, we
attempted to separate features discernible by users,
such as whether or not the regular expression package
could match expressions over lines.

Applying the three mechanisms to the same pro-
grams and concerns allowed us to compare the effect
of each mechanism on the coding of concerns, the
restructuring necessary to expose and extract a con-
cern, and the process required to perform the separa-
tion. Not surprisingly, no single mechanism was

perfect: Each had a different set of tradeoffs. For exam-
ple, some mechanisms are likely easier than others to
use when concerns are to be developed independently
by different teams.

Insights
Reflecting on the results of the assessment efforts we
have performed, three areas emerge as important in
supporting the use of AOP:

• Exposing join points. Many concerns in a system will
likely not be designed from scratch as aspects.
Rather, many concerns will emerge as a system
evolves. From our experience, capturing such con-
cerns as aspects requires restructuring of the base
code to expose suitable join points. For instance, we
have extracted code from existing methods into a
new method to expose a method-level join point.
Tools to help in the restructuring would make it
easier to introduce aspects into an existing system.

• Managing aspect interfaces. We have observed that it
is easier to build and debug an AOP system when
the interface between the aspects and the base code
is narrow and unidirectional. By narrow, we mean
the aspect code has a well-defined effect on particu-
lar points in the code. By unidirectional, we mean
the aspect code refers to the base code but not vice
versa. Lippert and Lopes have made a similar obser-
vation based on a study of using AspectJ to capture
exception-handling constructs [4]. They have
suggested that tool support for showing the local
effect aspects have on classes might make it easier to
use aspects.

• Structuring aspects. In several cases, we have found it
easier to understand and manage aspects when the
aspect code forms the glue between two object-ori-
ented structures. For instance, when capturing a
user-level feature as an aspect, we have found it
beneficial to express the feature in its own object
structure and to use an aspect to inject that feature
into the base code. This style should be investigated
further as AOP design guidelines are developed.

What Next?
Does AOP work? Based on the results of the experi-
ments and case studies we have conducted, AOP
shows promise. We have determined particular situa-
tions where AOP benefits developers, and we have
characterized “aspects” of how AOP has worked, pre-
senting design and process guidelines we have found
helpful in developing AOP systems.

However, we have much left to learn about AOP.
Does it work for large, multideveloper projects? To
what kinds of problems is it best suited? What kinds of

constructs are most usable for specifying crosscuts? To
answer these questions, more experiments and studies
are needed. In particular, as AOP mechanisms stabi-
lize, longitudinal industrial case studies are needed to
better qualify and quantify the benefits of AOP.

Assessing a new technology is not without its diffi-
culties, but the effort of assessment is worthwhile
because at least three separate groups of users can ben-
efit. Early adopters can use the results to decide when
to make a trial effort with the technology and can ben-
efit from design and other guidelines resulting from
the assessment activities. Researchers can build upon
the assessment approaches used to broaden and
deepen the studies conducted, and AOP technology
developers can determine which parts of the technol-
ogy are proving beneficial.

References
1. Black, A., Hutchinson, N., Jul, E., and Levy, H. Object structure in the

Emerald system. ACM SIGPLAN Notices 21, 11 (Nov. 1986).
2. Kersten, M.A. and Murphy, G.C. Atlas: A case study in building a Web-

based learning environment using aspect-oriented programming. In Pro-
ceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications, (Nov. 1999).

3. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.J. and Irwin, J. Aspect-oriented programming. In Proceedings of the 11th
European Conference on Object-Oriented Programming, (June 1997).

4. Lippert, M. and Lopes, C.V. A study on exception detection and handling
using aspect-oriented programming. In Proceedings of the 22nd Interna-
tional Conference on Software Engineering (June 2000).

5. Murphy, G.C., Walker, R.J., and Baniassad, E.L.A. Evaluating emerging
software development technologies: Lessons learned from assessing aspect-
oriented programming. IEEE Transactions on Software Engineering 25, 4
(Jul./Aug. 1999).

6. Murphy, G.C., Lai, A., Walker, R.J. and Robillard, M.P. Separating fea-
tures in source code: An exploratory study. In Proceedings of the 23rd Inter-
national Conference on Software Engineering, (May 2001).

7. Tarr, P., Ossher, H., Harrison, W., and Sutton, S.M. N degrees of separa-
tion: Multi-dimensional separation of concerns. In Proceedings of the 21st
International Conference on Software Engineering, (May 1999).

8. Walker, R.J., Baniassad, E.L.A., and Murphy, G.C. An initial assessment of
aspect-oriented programming. In Proceedings of the 21st International Con-
ference on Software Engineering (May 1999).

Gail C. Murphy (murphy@cs.ubc.ca) is an associate professor in
the Department of Computer Science at the University of British
Columbia in Vancouver, Canada.
Robert J. Walker (walker@cs.ubc.ca) is a Ph.D. candidate in the
Department of Computer Science at the University of British
Columbia in Vancouver, Canada.
Elisa L.A. Baniassad (bani@cs.ubc.ca) is a Ph.D. candidate in the
Department of Computer Science at the University of British Columbia
in Vancouver, Canada.
Martin P. Robillard (mrobilla@cs.ubc.ca) is a Ph.D. student in
the Department of Computer Science at the University of British
Columbia in Vancouver, Canada.
Albert Lai (alai@cs.ubc.ca) is a Master’s student in the Department
of Computer Science at the University of British Columbia in
Vancouver, Canada.
Mik A. Kersten (mkersten@parc.xerox.com) is a member of the
research staff at Xerox PARC’s Computer Science Laboratory.

This work was supported in part by grants from NSERC, Xerox, and IBM.

© 2001 ACM 0002-0782/01/1000 $5.00

c

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 77

