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ABSTRACT
As part of the evolution of software systems, effort is of-
ten invested to discover in what parts of the source code a
feature (or other concern) is implemented. Unfortunately,
knowledge about a concern’s implementation can become
invalid as the system evolves. We propose to mitigate this
problem by automatically inferring structural patterns among
the elements identified as relevant to a concern’s implemen-
tation. We then document the inferred patterns as rules that
can be checked as the source code evolves. Checking whether
structural patterns hold across different versions of a system
enables the automatic identification of new elements related
to a documented concern. We implemented our technique
for Java in an Eclipse plug-in called ISIS4J and applied it
to a number of concerns. With a case study spanning 34
versions of the development history of an open-source sys-
tem, we show how our approach supports the tracking of
a concern’s implementation through modifications such as
extensions and refactorings.

Categories and Subject Descriptors: D.2.6 [Software
Engineering]: Programming Environments; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement

General Terms: Documentation, Experimentation

Keywords: Concern tracking, software evolution, feature
location, intension template

1. INTRODUCTION
Most software systems involve concerns that are not en-

capsulated in their own module, for a variety of reasons that
do not necessarily question the ability of developers. For
example, some concerns are inherently difficult to encap-
sulate [11], while others become scattered as the result of
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repeated changes [6]. The scattered nature of source code
relating to a given concern means that a developer who must
perform modifications that pertain to the concern must also
spend effort locating and understanding the concern’s imple-
mentation. Concern location is an important software engi-
neering activity, and many approaches have been proposed
to assist it. Examples include the approach of Eisenbarth
et al., who propose to associate source code with features1

based on the analysis of execution traces [7], or SNIAFL, a
technique that associates functions with feature descriptions
based on information retrieval techniques [24]. The result
of the feature location activity is usually a list of program
elements (e.g., methods and fields in an object-oriented lan-
guage) that are associated with the concern of interest.

Depending on the technique used and the concern un-
der investigation, concern location can require an important
amount of developer time. Therefore, the results of the lo-
cation activities should be preserved as part of the project’s
artifacts for later consultation by developers. Unfortunately,
a concern-to-code mapping (or concern mapping) is at risk
of becoming invalid with every new change recorded in the
source code repository. Even trivial changes such as renam-
ing a few methods can potentially destroy hours of reverse-
engineering work if the renamed methods cannot easily be
rediscovered.

In this paper, we propose a technique for tracking the im-
plementation of concerns throughout multiple versions of a
software system by leveraging existing structural patterns
that may exist among the elements in a mapping. We built
a system, called ISIS4J, to automatically infer a number of
structural patterns among program elements based on a pre-
defined set of pattern templates. As a very simple example,
let us assume that for a concern C (e.g., the Autosave fea-
ture in a text editor), a concern location activity yields the
mapping {m1, m2, m3}, consisting of three methods that im-
plement Autosave. If m1, m2, and m3 correspond to all of
the methods in the system that access a field f1, our sys-
tem will detect this pattern and store a representation of
the pattern instance along with the mapping. Once pat-
tern information is available in addition to basic concern
mappings, it is possible to check whether the pattern is still
valid in later versions of the system. When the pattern is

1In this paper, we use the terms concern and feature in-
terchangeably, even though we consider a feature to be a
special case of a concern.



no longer valid, it is possible to automatically discover what
program elements should be included in the mapping to re-
store the validity of the pattern. In the above example, we
could use the detected pattern to automatically be notified
of new accessors to f1 that may now also play a part in the
concern’s implementation.

We assume that the program elements that implement a
high-level concern exhibit enough commonalities to allow us
to infer patterns that will help us track the concern’s im-
plementation in an evolving code base. We evaluated this
assumption by using ISIS4J in an experiment to infer struc-
tural patterns on 16 sample concerns and for a study in
which we tracked the implementation of a concern over 34
releases of an open-source system. Our experiment showed
that although there is rarely a perfect match for a pattern
template, in many cases patterns could be inferred through
small and automatic modifications to the concern mappings.
Our case study validated the usability of ISIS4J, showed how
our approach supports the tracking of a concern’s implemen-
tation through modifications such as extensions and refac-
torings, and helped us identify the kinds of evolutionary
changes that were likely not to be detected by our current
prototype. The contributions of this paper include:

a) a technique to automatically infer patterns based on a
given mapping and a set of pattern templates;

b) the architecture of a complete and usable system for in-
ferring and checking patterns in concern mappings;

c) a body of empirical evidence describing the performance
of our approach under controlled conditions.

In the remainder of this paper, we describe our idea of using
patterns to describe concerns (Section 2) and our inference
system (Section 3). We then present our empirical evalua-
tion (Sections 4 and 5). We conclude with a description of
the related work (Section 6) and our final observations on
our technique (Section 7).

2. REPRESENTING CONCERNS IN CODE
Concerns whose implementation is scattered are an impor-

tant issue in software development, and many approaches
have been proposed to help developers keep a record of the
code associated with a given concern. The idea of explic-
itly representing the implementation of scattered concerns
can be traced back to Soloway et al., who proposed writ-
ing cross-referenced textual documentation as annotations
to the code [21]. More recent techniques for documenting
scattered concerns have focused on representations that al-
low a higher level of automatic analysis (e.g., the use of
regular expressions to specify segments of code related to a
concern [9]). Our work on concern modeling builds on the
ideas developed into the FEAT [18] and ConcernMapper [20]
tools. In this section, we describe the previous work (Sec-
tion 2.1) and new ideas (Sections 2.2 and 2.3) that form the
background for our structural inference system. Section 6
provides a more extensive discussion of the related work.

2.1 Concern Modeling
Essentially, a concern mapping consists of an association

between a high-level concern and a set of source code ele-
ments. Such a set of elements can be discovered in a number
of ways, including through manual inspection of the code or
more sophisticated reverse-engineering techniques.

The simplest way to represent a concern’s implementa-
tion is to record the source code elements that correspond
to its implementation. For example, if a Printing feature
in a text editor is found to be implemented by four methods
m1 −m4, we would simply record the signatures of the four
methods as associated with Printing. In this case we con-
sider the concern to be represented extensionally, and the
list of elements associated with the concern is its extension.
This simple scheme is the one used by the ConcernMap-
per concern modeling tool [20]. The major advantage of
representing concerns extensionally is the simplicity of the
scheme: one can associate source code elements with a con-
cern by listing them. In situations where automatic feature
location techniques are used, it is thus possible to take the
output of the technique as the concern mapping (an exten-
sional representation). On the other hand, the main weak-
ness of the extensional technique is that it is not resilient to
evolutionary changes: modifications to the source code (such
as refactorings) will easily invalidate the mapping. For ex-
ample, renamed elements will not be found in later versions
of the system.

One can also model concerns intensionally.2 In this case,
elements relating to a concern are not listed explicitly but
through patterns, called intensions, that describe their char-
acteristics. For example, if all of the methods that access
field f1 are involved in the implementation of Printing, the
intension all accessors of f1 would be recorded. The use
of intensions to represent concerns in source code is sup-
ported by a number of concern modeling tools, including
CME [22], IntensiVE [15], AspectBrowser [9], and FEAT [18].
The advantage of specifying concerns intensionally is that
this scheme is more tolerant of evolutionary changes. For
instance, in the case described above, if accessors of field
f1 are added or removed as the code evolves, the changes
will automatically be reflected in the concern model. In
particular, the FEAT tool implements a model of concerns
that combines both intensions and extensions, a technique
that has been demonstrated to be robust to many types of
evolutionary changes [17, 18]. Unfortunately, representing
concerns intensionally requires more effort from developers,
and intensional descriptions are not produced by feature lo-
cation techniques. We have thus developed a technique to
automatically infer intensions based on a given mapping and
a set of intension templates.

2.2 Intension Inference
Given a concern mapping, we can posit a number of po-

tential intensions. For instance, given four methods m1−m4

and a field f1, the following situations could occur:

• Methods m1 −m4 are all the methods that access f1.

• Methods m2 − m4 are all the methods that override
m1 (or any combination thereof).

• Methods m1 −m4 are all the callers of a fifth method
m5 that is not part of the mapping.

• Methods m1−m4 and field f1 constitute all the mem-
bers of class C.

2We use the term “intension” in the sense of Eden and Kaz-
man, to denote a structure that can “range over an un-
bounded domain” [3, p.150].



All of the above examples can be encoded as intensions.
Our system (described in Section 3) is able to automatically
detect, encode, and check such intensions.

We currently consider seven kinds of intension templates
for Java systems: callersOf, calledBy, accessorsOf, accessedBy,
overrides, implements, and declaredBy. In the following defi-
nitions, e is the intension criterion (a method, field, or class).

• callersOf(e) denotes all methods in the program that
call the same method e.

• calledBy(e) denotes all methods in the program that
are called by method e.

• accessorsOf(e) denotes all methods in the program that
access (read or write) the same field e.

• accessedBy(e) denotes all fields in the program that are
accessed (read or written) by the same method e.

• overrides(e) denotes all methods in the program that
override a method e.

• implements(e) denotes all methods in the program that
implement method e that is declared in an interface or
abstract class.

• declaredBy(e) denotes all methods and fields that are
declared within the same class e.

Finally, we define the apply operator on intensions. Given
an intension I(e), apply(I(e)) produces the extension corre-
sponding to the elements matching the intension on a given
version of the program.3 For example, apply(accessorsOf(f1))
returns all the methods accessing field f1.

2.3 Confidence
In practice, it is doubtful that we will find intensions

whose extension is completely within a mapping. There-
fore, we need a way to express such incomplete intensions
within concern mappings. We call the degree with which an
intension is matched the confidence of an intension.

Given a concern mapping C and an intension I(e) with
criterion e, we define the confidence of intension I(e) with
respect to C to be the proportion of concern elements c ∈ C
that are in the extension of I(e):

confidence(I(e), C) =
|C ∩ apply(I(e))|
|apply(I(e))|

For example, if a field f1 is accessed by four methods m1–
m4 but only m1 through m3 are in concern mapping C, we
would say that the confidence of intension accessorsOf(f1)
with respect to C is 3/4 or 75%.

3. THE ISIS4J SYSTEM
The Implicit Structure Inference System for Java (ISIS4J)

is a tool to infer and apply intensions that describe the im-
plicit structure of a concern. We define implicit structure as
the set of intensions that can be inferred for a concern map-
ping at a given level of confidence. We implemented ISIS4J

as a plug-in for the Eclipse platform.4 Before presenting
the details of the ISIS4J implementation, we describe an ex-
ample concern and illustrate how ISIS4J can help maintain

3The program version is an implicit parameter of apply that
is not mentioned because it will be clear from the context.
4www.eclipse.org
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Figure 1: ISIS4J Overview

the knowledge of the concern’s implementation as the sys-
tem evolves. Figure 1 presents an overview of the data-flow
through ISIS4J, as tailored for our example.

3.1 Typical Usage Scenario
We base our example on the jEdit open-source text edi-

tor.5 jEdit includes a feature that allows users to “mark”
certain lines in a file (the Marker feature). During a mod-
ification to the Marker feature, a developer identifies a
number of methods that are associated with the feature.
These could be recorded manually by the developer using
a tool like ConcernMapper [20], or simply obtained as the
list of changed methods when committing the change. The
developer then runs ISIS4J to infer the implicit structure of
the mapping for the Marker feature, producing a collec-
tion of intensions (the marker.xml file, Figure 1). This step
is represented by arrows 1 and 2 in Figure 1. A number
of releases later, the developer needs to perform a second
modification task on the same feature. The developer exe-
cutes ISIS4J, using the marker set of intensions (marker.xml,
arrow 3) and the original concern mapping file (marker.cm,
arrow 1). ISIS4J removes the elements listed in the concern
mapping file that no longer exist (e.g., a method that was
deleted) and applies the intensions to see if any new ele-
ments are discovered (e.g., a new method accessing a field
identified by the accessorsOf intension). ISIS4J then adds
the newly discovered elements in the concern mapping file
(marker.cm, arrow 4) so the developer can inspect these el-
ements for relevance and proceed with the task.

3.2 Implementation
The above scenario is completely supported by our ISIS4J

prototype, described as follows:

Explicit Concern Model. The main input of ISIS4J is
a concern mapping file (e.g., marker.cm) created using the
ConcernMapper plug-in. In our current implementation, the
user creates the initial definition of the concern of interest
by explicitly selecting Java methods and fields from a Java
project and adding them to the concern mapping by drop-
ping them into the ConcernMapper view.

Data Mining and Rule Engine. Once a concern of inter-
est has been defined, ISIS4J uses the JayFX6 Eclipse plug-
in to create a fact base describing structural relations such

5www.jedit.org
6www.cs.mcgill.ca/˜swevo/jayfx/



<rule name="inferDeclaredBy">
<!-- All methods declared by the given class are
part of the given concern -->
<condition>
<column id="concern" type="Concern"/>
<column id="class" type="ClassElement"/>
<eval>
checkConfidence(Relation.DECLARES,class,concern)
</eval>
</condition>
<consequence>
RuleWriter.createIntension("declaredBy",

Relation.DECLARES,class);
</consequence>
</rule>

Figure 2: Example Rule Template

as method calls, inheritance relationships, and field accesses
in the source code of the project. For the method call rela-
tion, JayFX uses class hierarchy analysis (CHA) [2]. CHA
conservatively infers the target of dynamically-dispatched
calls by traversing the class hierarchy to discover all appli-
cable bindings. ISIS4J then infers the implicit structure of
the concern by checking the elements of a concern mapping
against the fact base. ISIS4J performs this data mining op-
eration using the JBoss Rules rule engine7 and a set of rule
templates that we defined in the Drools 3.0 XML language8

(Rules.xml, Figure 1). Rule templates expressed in Drools
correspond to our intension templates as described in Sec-
tion 2.2. For example, as illustrated by Figure 2, there is a
rule template responsible for discovering whether all mem-
bers of a given class are contained in the user-defined map-
ping. If such a situation occurs, that rule template would
then generate an instance of the declaredBy intension tem-
plate defined in Section 2.2. In other words, ISIS4J goes
through all Java elements in the project (interfaces, classes,
methods, and fields) and, for each element, computes the
confidence of each one of the seven intension templates with
respect to the mapping. If the computed extension meets a
predefined confidence threshold, ISIS4J stores an intension
associated with this particular element.

Implicit Structure as a Set of Intensions. The output
of ISIS4J is an executable rule set describing the inferred in-
tensions and written in the Drools 3.0 XML language (e.g.,
marker.xml). We chose to use rules to express intensions
to facilitate the integration of the rule engine with our sys-
tem. In theory, intensions could be expressed in a variety
of other mechanisms, such as concern graphs [18] or JQuery
queries [10]. With intensions encoded as rules, we can run
ISIS4J on any version of the Java project to add to the con-
cern mapping all of the Java elements that correspond to
its implicit structure. We refer to this step as complet-
ing the mapping, and additional elements are the result of
intension-based completion (see Figure 3). Given a map-
ping C and an intension I(e), we define this operation as
expand(I(e), C) = C ∪ apply(I(e)). It should be noted that,
in practice, there might exist Java elements in a concern
mapping that are not described by any intension.

Customizable Inference. As mentioned in Section 2.3,
ISIS4J can infer intensions describing the concern structure
even if not all of the elements matched by the intensions
are present in the original concern mapping, provided that

7www.jboss.com/products/rules
8drools.org/drools-3.0
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Figure 3: Intension-based Completion of Concern c1

System Version LOC Concern Size

GanttProject 2.0.2 43 246 22, 30, 26, 13
Jajuk 1.2 30 679 14, 18, 17, 11
jBidWatcher 1.0pre6 23 051 20, 20, 10, 19
Freemind 0.8.0 70 435 18, 28, 16, 14

Table 1: Characteristics of Target Systems

their confidence reaches a certain threshold. This threshold
is expressed as an integer value between 0 and 100 repre-
senting the required confidence level in percentage and can
be set in the Rules.xml file by the user. ISIS4J uses this
parameter when it infers a concern’s implicit structure. Al-
lowing a threshold under 100% raises the issue that if ISIS4J

completes a mapping by adding missing elements to the con-
cern, the presence of the added elements might increase the
confidence for other intensions above the threshold, allowing
those intensions to be added to the intension set. We thus
introduced an option to run ISIS4J until it reaches a fixed
point (where new intensions can no longer be inferred).

Runtime Performance. The runtime performance of
ISIS4J easily allows its application with every transaction to
the source code repository. For example, it took less than
one minute to infer and complete a concern mapping on
jEdit version 4.0-pre1 (59 kLOC) on a Pentium M 1.8GHz
with 1GB of memory.

4. IMPLICIT STRUCTURE
For ISIS4J to be useful to developers requires concern map-

pings to have latent intensions. We investigated the nature
and characteristics of the intensions produced by ISIS4J on
a number of concern mappings independently produced by
different subjects on four open-source systems.

4.1 Research Questions
We evaluated our assumption that the implementation of

concerns has an implicit structure by assessing specific char-
acteristics of our approach:

1. What is the impact of the confidence threshold on the
number of intensions detected?

2. ISIS4J can infer intensions in a single pass, or can re-
peat this process until fixed point is reached and no
new intensions can be inferred. What are the trade-
offs of using fixed point inference versus single pass
inference (see Section 3.2)?

3. We defined seven intension templates. Are all of these
equally useful for generating intensions?

4.2 Experimental Design
To collect initial evidence that would allow us to answer

the questions in Section 4.1, we analyzed 16 concerns ob-
tained from a previous empirical study of feature location [19].



In this study, different subjects created concern mappings
for 16 different concerns in four different systems (Table 1).
Our target systems were all non-trivial, mature projects. As
for the concern descriptions, they consisted of a paragraph
of text written by two investigators as part of a different
study. The concern descriptions were created by explaining
a feature of the system as mentioned in the user manual,
help pages, or user interface of the system. The complete
experimental package associated with this study is available
on-line.9

For each concern, three different subjects were asked to
identify the fields and methods that were judged to be the
most relevant to the implementation of the concern. The
subjects were undergraduate and graduate students with
Java programming experience in Eclipse. No method, pro-
cess, or tool (besides the features of the Eclipse environment)
were given to them to complete this task. This process re-
sulted in 16 × 3 = 48 different mappings. Since we were
interested in studying the documentation of relatively large
sets of elements corresponding to a concern’s implementa-
tion, we selected, for each concern, the mapping with the
highest number of elements. This resulted in 16 data points
corresponding to one mapping for each concern (four in each
of our target systems). In Table 1, the last column lists the
cardinality of each of the four mappings considered for each
system. For example, for GanttProject, our four concern
mappings included 22, 30, 26, and 13 elements, respectively.
The average mapping size across our 16 data points is 18.5
elements. Our 16 sample concern mappings thus represent
the fields and methods that would be identified as relevant
to a concern as manually determined by a programmer.

For each concern mapping, we used ISIS4J to infer inten-
sions. We then completed the concern mappings based on
those intensions (i.e., for incomplete but above-threshold in-
tensions, we added the elements missing in the intensions’
extension). We automated ISIS4J and parameterized its ex-
ecution according to two variables.

Fixed Point. We evaluated the impact of reaching a fixed
point where no more new intensions could be inferred versus
inferring intensions only once in the initial concern mapping.

Threshold. We tested the effect of four different confidence
thresholds: 60%, 75%, 90% and 100%.

4.3 Results
Table 2 shows our results. For each concern (Cn.), for

different thresholds, with both the single pass (S) and fixed
point (FP) inference options, the table lists the number of
intensions detected with ISIS4J and the number of elements
added through intension-based completion (in parentheses).
The last column of the table provides the average number
of detected intensions of each row (Avg.). The original con-
cern mappings size is reported in Table 1 (mappings 1-4 for
GanttProject, 5-8 for Jajuk, 9-12 for jBidWatcher and 13-16
for Freemind). For example, for concern 1, with a thresh-
old of 75% and using single pass inference, ISIS4J inferred
two intensions, and completing the mapping based on these
intensions resulted in adding three elements to the original
concern mapping’s 22 elements (see Table 2). Based on this
data, we provide answers to each of our research questions.

Impact of Confidence on Number of Intensions. For

9http://www.cs.mcgill.ca/˜martin/concerns

a threshold above 90%, almost no intensions were inferred.10

We see that using a more relaxed threshold (of 60%–75%)
yields, in many cases, the inference of intensions among the
elements of a concern. This observation highlights the fact
that in order to preserve intensional knowledge about the
implementation of a concern, the extension corresponding
to latent intensions must often be completed.

Fixed Point Inference Tradeoffs. Fixed point inference
only made a difference when using a threshold of 60%. ISIS4J

also inferred an extreme number of intensions using fixed
point for concern mapping 3 for a threshold of 60%. Com-
pleting the mapping based on these intensions resulted in
the addition of 75 new elements. Although rare, this situa-
tion illustrates the potential cascading effect of fixed point
at a low threshold. Since aggregated values based on the
data of Table 2 are sensitive to extreme values, we consid-
ered concern 3 an outlier and did not take it into account in
our calculation of overall quantitative assessments.

With fixed point inference, over all 15 concerns, ISIS4J

discovered 52% more intensions than with single pass infer-
ence, for a total of 100 intensions instead of 66 (the average
is respectively 6.6 and 4.4 intensions per concern mapping).
A higher number of intensions per concern mapping is de-
sirable when tracking a concern in an evolving system since
ISIS4J can then track more types of changes.

On average, intension-based completion performed with
fixed point inference made the size of the concern mappings
grow by 24% while single pass inference made it grow by
only 14%. In both cases, the size of 75% of all concern
mappings did not grow by more than 30%. Thus, most of
the final mappings produced by ISIS4J were representative
of the original mapping done by the subject. This provides
evidence that the quality and relevance of concern mappings
produced by ISIS4J do not degrade significantly.

For both fixed point and single pass inference, intensions
described between 44% and 86% of the elements in most of
the concern mappings (11 out of 15). This suggests that
ISIS4J is capable of inferring an implicit structure represen-
tative of most of the concern mapping.

Although fixed point inference produced 52% more in-
tensions, these intensions described no more than 7% of
additional elements. This observation indicates that the
additional intensions mostly described elements that were
already in the extension of existing intensions. For exam-
ple, if we take method m1 that accesses fields f1 and f2, a
single pass inference might detect the accessorsOf(f1) inten-
sion while the fixed point inference will detect an additional
accessorsOf(f2) intension: both intensions describe the same
element, m1. Redundant intensions can be useful to track
changes as they are potentially more robust: in our exam-
ple, even if field f1 is refactored or deleted, we can still track
the accessors of f2.

We conclude that performing fixed point inference is desir-
able as it makes the concern’s implicit structure potentially
more robust to changes while not altering significantly the
nature of the original concern mapping.

Use of Intension Templates. In all of our sample con-
cerns, neither an overrides intension nor an implements in-
tension was inferred. The number of declaredBy as well as
accessedBy intensions inferred varies between 0 and 2 per
concern. The distribution of the remaining three inten-

10Results for 90% and 100% thresholds are identical.



Cn. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avg.

60% S 16(10) 3(3) 5(5) 3(1) 0(0) 8(4) 2(1) 2(2) 2(3) 5(5) 0(0) 3(1) 4(4) 12(8) 2(1) 4(0) 4.4
FP 25(22) 11(12) 83(75) 3(1) 0(0) 10(5) 2(1) 5(5) 3(5) 5(5) 0(0) 3(1) 4(4) 23(13) 2(1) 4(0) 11.4

75% S 2(3) 0(0) 1(1) 1(1) 0(0) 4(1) 2(1) 1(1) 0(0) 1(1) 0(0) 2(0) 3(3) 4(2) 0(0) 3(0) 1.5
FP 4(4) 0(0) 1(1) 3(1) 0(0) 6(1) 2(1) 1(1) 0(0) 1(1) 0(0) 2(0) 3(3) 6(4) 0(0) 3(0) 2

90% S 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 1(0) 0(0) 0(0) 0(0) 0(0) 2(0) 2(0) 2(0) 0(0) 3(0) 0.6
FP 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 1(0) 0(0) 0(0) 0(0) 0(0) 2(0) 2(0) 2(0) 0(0) 3(0) 0.6

100% S 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 1(0) 0(0) 0(0) 0(0) 0(0) 2(0) 2(0) 2(0) 0(0) 3(0) 0.6
FP 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 1(0) 0(0) 0(0) 0(0) 0(0) 2(0) 2(0) 2(0) 0(0) 3(0) 0.6

Table 2: Number of Intensions with Single and Fixed Point Inference at Different Confidence Levels

sion templates (calledBy, callersOf, and accessorsOf), is fairly
even. We expected that intensions based on field accesses
and method calls would constitute the most significant part
of the inferred intensions, but because different concerns can
describe varied subsets of the code of a system, we believe
that a diverse set of intension templates can nevertheless be
useful.

4.4 Threats to Validity
The main threat to the validity of our results is associated

with the sample of concern mappings. We used concerns
from a previous study, wherein the goal was to compare
how different developers would describe the implementation
of a high-level concern. The 16 mappings used may not be
representative of concern mappings in general for two main
reasons. First, they may be unique to the systems or fea-
tures selected. Second, they were produced by people and
as such are subject to the usual human factors (e.g., ability,
experience, skill, and motivation of the subjects). However,
given our intent to model code identified by developers, we
believe that our use of human-generated concern models is
more appropriate. The use of a relatively high number of
sample concern mappings (given the cost of obtaining such
samples) allows us to decrease the importance of any spe-
cific characteristic of a given sample, and thus to achieve a
reasonable level of external validity. Finally, the mappings
we use are publicly available, so their characteristics can be
independently evaluated.

5. IMPLEMENTATION TRACKING
Using historical development data, we simulated how

ISIS4J would have performed in a given situation to validate
the usability of ISIS4J, and to gather insights into the kinds
of evolutionary changes that could and could not be tracked
with our approach. We studied 34 major releases of the jEdit
editor, from version 4.0-pre1 (59 kLOC) to version 4.3-pre3
(92 kLOC). We selected the Syntax Highlighting feature
as the main concern of interest because it existed through-
out all the studied releases and underwent several changes.
This case study enabled us to answer the following research
questions:

1. What changes to the implementation of the feature
were tracked because of the inferred intensions?

2. What changes could not be tracked?

3. Does the intensional definition of the concern mapping
enable us to better track the concern than its exten-
sional definition?

5.1 Experimental Design
We manually created a concern mapping of the Syntax

Highlighting feature in the first and last releases of jEdit
we considered. We explored the source code of jEdit using
Eclipse, identifying fields and methods that we thought were
the most relevant if this feature had to be modified. Because
concerns typically do not exhibit crisp and explicit bound-
aries, we limited ourselves to no more than the 30 most rel-
evant elements, to avoid systematically creating very large
concern mappings. Thus, in the first and last versions, we
identified respectively 24 and 27 elements. We used the map-
ping for the first version to infer the initial set of intensions.
The mapping for the last version, not extended by ISIS4J

or any other tools, enabled a comparison with the results
produced by using ISIS4J to track the concern mapping’s
evolution.

To perform our case study, we automated the execution
of ISIS4J. We selected a confidence threshold of 60% and in-
ferred intensions until we reached a fixed point in the first
version. We then used the same set of intensions throughout
all other jEdit versions and did not try to infer new inten-
sions in each version (since the intermediate concerns were
not created by developers). Furthermore, we configured the
experimental framework as follows:

Intension Conservation. As the system evolves from one
version to another, program elements such as methods and
fields can be added or removed. It is thus possible that an
intension’s confidence decreases to a point where it no longer
meets the required threshold. In this case, we automatically
flag the intension as disabled in the concern definition, but
we keep the elements that were previously matched by that
intension. Disabled intensions are automatically re-enabled
if they reach the threshold again. For example, there might
exist an intension matching all the five methods accessing
a field f1 in program version 1, and all those five methods
are part of the concern. If there are ten methods accessing
field f1 in version 2, confidence drops to 50% (five methods
are in the concern mapping out of ten existing methods);
thus, the intension will no longer be enabled in the inferred
set of intensions, but the original five methods are kept in
the concern mapping. It should be noted that in our study,
disabling an intension is not the same as simply removing it,
since we do not attempt to re-infer intensions in intermediate
versions.

Inconsistencies. It is possible that an element (e.g., a
method) identified in the concern mapping got deleted in
a later version. This situation introduces an inconsistency
between the concern mapping and the version of the system
because the mapping describes elements that do not exist.
Our automated experimental framework removed inconsis-
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Figure 4: Intensions, Concern Elements and Cover-
age in Each Version of jEdit

tent elements from the concern mapping before applying the
intensions on a version of the system. Elements that were
renamed or moved are expected to be automatically discov-
ered with our system provided that 1 ) they are still matched
by one of the intensions and 2 ) the corresponding intension’s
confidence still exceeds the required threshold.

To summarize our experimental procedure, we manually
produced a concern mapping for the first version of the sys-
tem, and inferred a set of intensions for this mapping. Then,
ISIS4J completed the mapping based on the inferred inten-
sions. This process was repeated until a fixed point was
reached. We then imported the modified concern mapping
along with the final set of intensions in the next version of
the system. Our framework then removed inconsistent el-
ements from the mapping and disabled the intensions that
no longer reached the threshold. ISIS4J then completed the
mapping based on the intensions that were still enabled. We
repeated this process until we reached the last version, and
compared the final tracked concern mapping with the final
manual concern mapping.

5.2 Results
Figure 4 shows the progress of the following measurements

for the syntax highlighting concern for each of the 34 con-
sidered versions of jEdit: the number of enabled intensions,
the average number of concern elements per intension, the
concern size (cardinality), as well as the ratio of elements in
the concern that are matched by the enabled intensions (also
called coverage). We started with 47 intensions in jEdit 4.0-
pre1 and ended with 13 intensions in jEdit 4.3-pre3. We
have a manual concern mapping sizes of 24 and 27 elements
respectively, and an average of 3.66 and 2.62 concern ele-
ments per intension’s extension respectively. Although the
intensions in the first jEdit version cover 97% of the concern,
this coverage drops to 52% after 34 versions.

Initial Intension-Based Completion. After ISIS4J in-
ferred the intensions underlying our manual concern map-
ping, missing elements matching those intensions were added
to the concern: the concern mapping size thus went from 24
elements to 40. All the elements added to the concern map-
ping were considered by the authors to be relevant to the
syntax highlighting feature as they contributed to this
functionality. As we had limited the size of the manual con-
cern mapping to a maximum of 30 elements, it was expected
that ISIS4J would find other relevant elements. For example,
the Token class, the main parsing unit of syntax highlight-
ing, and two utility classes, class GUIUtilities and Text-
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Figure 5: Disabling Intensions

Utilities, were added to the concern description along with
a subset of their methods. These elements had been omitted
in the manual mapping in favor of elements using them.

Changes in Intensions Over Time. The overall evo-
lution in the number of enabled intensions can be seen in
Figure 4 (in the following discussion, release numbers are
followed by the corresponding ordinal index of Figure 4).
Although the number of intensions stays relatively stable
up to jEdit 4.0-final (10), it drops down to 12 intensions
in the following version (4.1-pre1, 11). From then on, the
number of intensions stays mostly constant.

In general, the number of enabled intensions did not vary
significantly between two consecutive jEdit versions. There
are two main reasons why an intension might be disabled
as illustrated by Figure 5: 1 ) too many new elements were
refactored or introduced in the program between two ver-
sions, hence lowering the intension confidence below the se-
lected threshold, or 2 ) the intension criterion (e.g., field f1

in accessorsOf(f1)), was deleted or renamed/moved. In the
evolution of jEdit, 85% of the intensions were disabled be-
cause of the first reason, and 15% were disabled for the sec-
ond reason.

There was only one major occurrence of intension dis-
abling in the evolution of jEdit, indicated by the drop in the
intensions count in Figure 4 (between jEdit 4.0-final (10) and
jEdit 4.1- pre1 (11)). Three factors caused this drop. First,
the deprecation of one class, Buffer.TokenList, removed five
elements and disabled three intensions. Second, the move of
the method stringToToken from class XModeHandler to Token

disabled 14 intensions. This method was referring to fields
only accessed by few other methods. When method string-

ToToken was moved and thus removed from the concern map-
ping, the intensions’ confidence dropped below the thresh-
old. As a result, ISIS4J disabled those intensions, the move
was not captured and subsequent methods that referred to
these fields were not included in the concern. The third
factor related to the major drop in the intensions number
is related to the syntax highlighting feature extension.
Since a significant number of new elements accessing inten-
sions’ criterion were introduced, this caused the intensions’
confidence to drop below the threshold, disabling them.

Another interesting irregularity can be observed: a dent in
the number of intensions around version 4.0-pre4 (4). The
number of intensions drops from 46 to 32 in version 4.0-
pre4 (4), and comes back to 44 in version 4.0-pre5 (5). We
found this drop was caused by the refactoring of a method
loadStyles that accessed fields used as criterion in various
intensions. Figure 6 depicts how intensions were temporarily
disabled (refactoring of method loadStyles is represented by
methods m1 and m5). In version 4.0-pre4 (4), method m1

was renamed to method m5 causing some intensions confi-
dence to drop below the threshold which disabled them (e.g.,
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accessorsOf(f1)). Since other intensions stayed enabled (e.g.,
accessorsOf(f2)), the new method m5 was added during the
intension-based completion. In the next version, 4.0-pre5
(5), the disabled intensions were re-enabled as their confi-
dence reached the threshold again.

Comparison with the Final Manual Mapping. Our
approach allowed us to detect four new elements of the
syntax highlighting concern throughout the evolution of
jEdit. Examples of these elements include methods such as
init in class Chunk or setStyles in class TextAreaPainter. Al-
though none of those four elements was included in our final
manual concern mapping, further inspection revealed that
they were related to the syntax highlighting feature and
should have been included in the concern mapping in the
first place. For instance, the Chunk class was introduced in
version 4.1-pre1 (11) and replaced most of the Token class
instantiations by extending it. The setStyles method, on
the other hand, already existed in the first version of jEdit
we studied. However, during its evolution, it became inco-
hesive and redefined a token type, silently contributing to
the syntax highlighting feature. Arguably, those changes
were not easy to manually track as they involved only a few
lines of code in the existing program.

All elements in the final manual concern mapping that
were not in the original manual mapping remained undis-
covered by our approach. For example, a new hierarchy of
classes implementing an interface TokenHandler was not in-
cluded by ISIS4J. Manual investigation of the code revealed
that most of the changes were introduced after version 4.1-
pre1 (11) where the massive drop in the intension number
occurred. Most of those changes could have been captured
by the initial set of intensions provided they had not been
disabled because of refactorings explained previously. In-
deed, most new elements that were not captured actually
accessed the disabled intensions’ criterion.

Intensional vs. Extensional Concern Representation.
We started with 24 concern elements in the first jEdit ver-
sion. Considering that 17 elements became inconsistent dur-
ing the evolution of jEdit and had to be removed from the
concern mapping, we would have ended up with a concern
mapping of only 7 elements if we had used an extensional
concern mapping such as provided by ConcernMapper. Us-
ing the intensional concern definition that ISIS4J provided,
we did better. First, ISIS4J did complete our initial manual
concern mapping with 10 further elements, which indicates
that completion of concerns using fixed point inference of
intensions is helpful. Secondly, the 17 inconsistencies got re-
moved while an additional 4 relevant elements were found.
This gives us 18 concern elements in jEdit’s final version
rather than 7.

5.3 Discussion
The use of the jEdit historical development data allowed

us to qualitatively evaluate the effectiveness of ISIS4J in
tracking changes. The syntax highlighting feature went
through significant and different types of changes through
its evolution: 17 elements were removed or refactored and
the feature was extended in several ways. Our approach suc-
cessfully captured feature extensions (e.g., the Chunk class),
refactorings (e.g., the loadStyles method) and small but im-
portant changes (e.g., the setStyles method) that may have
otherwise been difficult to track manually.

We also found that most of our inability to track changes
(the small dent in the intension number in version 4.0-pre4
(4), the massive drop of intensions in version 4.1-pre1 (11)
and the missed new elements between the manual mappings)
were caused by the intensions’ confidence level not reaching
the 60% threshold. This is an indication that our approach
could actually track changes even when major restructurings
occur, provided that we lower the threshold. Future research
will allow us to explore the tradeoffs associated with this
strategy.

As we explained in Section 2.3, we introduced the thresh-
old variable to ensure that we would only infer intensions
that were representative of a concern’s implicit structure
even if it did not match it perfectly. ISIS4J also used the
same threshold to enable or disable intensions between each
version. We wanted to restrict the number of irrelevant
elements introduced during the intension-based completion
performed after the initial inference and between each ver-
sion. However, as it turned out with the syntax high-
lighting feature, the use of a threshold to enable/disable
intensions inhibited the tracking of important changes, sug-
gesting that it might be worth lowering it significantly or
not using it at all once the initial intensions have been in-
ferred. Indeed, in a manual review of the results, we found
that 75% of the new classes present in the final manual con-
cern mappings and not in the original one could have been
found through the disabled intensions.

Finally, we have so far only investigated seven different in-
tension templates. However, one can think of several other
potentially promising templates. For example, an intension
based on textual similarity would have found new concern
elements as they came up during evolution of jEdit. More
specifically, if we had an intension that would check for tex-
tual similarity, e.g., the same substring in method and field
names, we would have identified all but 7 new elements as
most of them had at least one of the following substrings in
common: keyword, token, or rule.

5.4 Threats to Validity
Although our case study provides a valuable illustration

of the potential benefit of the approach, its external validity
is limited in that the case studied cannot be considered rep-
resentative of the performance of the approach in general.
In practice, two main factors will impact the usefulness of
the approach: the characteristics of the concern analyzed,
and the characteristics of the evolution of the code. In order
to benefit from our system, a concern mapping must exhibit
latent intensions that will be detected and potentially com-
pleted by ISIS4J. As seen in Section 4, not all concerns have
such characteristics. Regarding the impact of the code, dras-
tic changes to the structure of a system will inevitably limit
the usefulness of ISIS4J. Our approach will be particularly



affected by changes involving the removal of elements used
as intension criterion.

Investigator bias is also a threat to the internal validity of
our case study as we selected the high-level concern and pro-
duced the original and final concern mappings. Our knowl-
edge of ISIS4J could have influenced the results of our study.
To reduce this threat, we only inspected the first and last
versions of jEdit to ensure that we would not know about
intermediate changes and involuntarily privilege parts of the
code that could be tracked by our system.

6. RELATED WORK
Many approaches have been proposed to help locate and

document concerns in source code, two activities that are
intimately tied to our goal of tracking concerns in evolving
source code.

Concern Code Location. A number of automated and
semi-automated approaches have been proposed to help de-
velopers map high-level concerns to code entities. Con-
cern location techniques complement our approach because
they can be used to provide the initial concern mappings
to ISIS4J. Concern location approaches often combine mul-
tiple analysis techniques such as information retrieval and
branched call graphs [24] or latent semantic indexing and
probabilistic ranking [16]. Other approaches have used dy-
namic analysis to find code entities that were used by cer-
tain features (e.g., [5, 7, 12]). For example, STRADA [4] is an
Eclipse-based tool that captures and analyzes scenario-based
execution traces in order to recover traceability links be-
tween development artifacts and features or requirements [5].

Static and dynamic aspect-mining techniques aim at lo-
cating crosscutting concerns in a project and could thus also
provide the initial concern mappings to ISIS4J. The main dif-
ference between feature/concern location and aspect mining
techniques is that while the former focus on locating the code
associated with a specific feature, the latter identify code
locations exhibiting a redundant, scattered nature. Various
types of analysis have been proposed for aspect mining, in-
cluding dynamic analysis [23], static analysis of call graph
fan-in [14], and source code repository analysis [1].

Concern Documentation. Numerous approaches address
the problem of documenting and representing concerns in-
tensionally. With FEAT [18], a user can manually create in-
tensional concern representations by selecting relationships
among elements through the graphical user interface, in-
stead of writing queries.

In contrast, the JQuery [10] exploration tool allows a user
to select Java elements through queries. With JQuery, con-
cerns can be described using different structural character-
istics (e.g., hierarchy relationships, method calls, etc.) and
regular expression matches. A different usage of queries was
proposed by Mens and Kellens [15] with IntensiVE, the In-
tensional View Environment in which users can define views
as a set of structurally similar classes and methods in a
Smalltalk program. This is done according to logical rules
that resemble ISIS4J intensions (e.g., all classes that declare
a method ’accept’ with a single parameter).

Aspect-Oriented Programming (AOP) [11] can also docu-
ment crosscutting concerns intensionally: pointcut languages
define naming and runtime patterns that ultimately describe
the code elements where aspects will be injected.

Finally, PUMA [22], the generic query engine of the Con-
cern Manipulation Environment (CME), included a proposal

to enable users to define a concern intension using any kind
of query languages that could potentially select any kind of
artifacts (e.g., code elements, documents, etc.).

All of these approaches allow users to document concerns
in a way that can be robust in the face of evolving soft-
ware by relying on intensions. Although our technique also
uses intensions to track concerns in evolving source code, the
main innovation of our work is to provide a system allowing
the automatic generation of intensions from purely exten-
sional descriptions, such as the ones that could be produced
by a feature location technique. By minimizing the cost
of producing robust concern descriptions, we hope to make
their use more prevalent in the maintenance of long-lived
systems.

Implicit Structure Inference. Various techniques and
tools have been developed to extract different types of im-
plicit structure from development artifacts.

Marin et al. developed an aspect mining framework that
identifies crosscutting concern (CCC) sorts, i.e., rule sets
describing certain concern types [13]. For example, if all
methods accessing a database also open and close a con-
nection, the framework will detect a “Consistent Behavior”
CCC sort. This sort can then be used to find all methods
exhibiting this behavior or to visualize at a higher level the
crosscutting concerns present in the software project. This
framework uses techniques such as concept analysis and fan-
in analysis to perform the rules inference. As opposed to
CCC sorts that must match specific rule sets, ISIS4J can
come up with any rules combination and is not restricted to
one kind of concern.

Finally Ernst et al. [8] proposed an approach to discover
function invariants to support software evolution by using
dynamic analysis. Their technique can discover pre- and
post-conditions such as variable a should equal the size of
array b when entering a function. As is the case for ISIS4J,
their technique benefits from fixed point inference since de-
tected invariants are used to detect new ones. Although
both approaches aim to support software evolution, ISIS4J

performs its inference on coarser-grained elements and fo-
cuses on concern mappings instead of function invariants.

7. CONCLUSIONS
Most software change tasks require knowledge about the

implementation of different concerns related to the task.
This knowledge is often acquired through reverse-engineering
efforts that may include automated feature location tech-
niques. Unfortunately, detailed knowledge about a concern’s
implementation can become invalid as a code base evolves.

We proposed to make descriptions of a concern’s imple-
mentation more robust to evolutionary changes by automat-
ically inferring the implicit structure latent in a concern de-
scription. By detecting intensions (structural characteris-
tics shared by different elements in a concern’s description)
using a rule engine, we can automatically check whether the
intensions continue to hold in future versions of the source
code, and to adapt the concern mappings accordingly.

Our initial investigation of this technique involved seven
different intension templates based on common structural
relations such as method calls and field accesses. Applica-
tion of our technique on 16 independently-produced concern
mappings showed that true intensions were rarely present in
concern mappings, but could generally be inferred by re-
laxing the confidence (completeness) with which intension



templates had to be matched. A simulation of our approach
on historical data involving 34 versions of the jEdit open-
source editor showed how we can track the implementation
of a concern much more robustly than by pruning docu-
mented elements that were no longer found in the code.

Although the usefulness of this approach is inherently tied
to the characteristics of the concerns being tracked and to
the evolution of the system, its complete automation means
that it can be used at a minimal cost to development orga-
nizations (e.g., by running automatically upon committing
changes to the code repository). Our ISIS4J system can thus
provide an inexpensive technique that can be integrated in
development environments to help preserve valuable knowl-
edge acquired through reverse engineering activities.
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