
High Velocity Refactorings in Eclipse
Emerson Murphy-Hill and Andrew P. Black

Portland State University
1900 SW 4

th
 Avenue

Portland, OR 97201

{emerson,black}@cs.pdx.edu

ABSTRACT

In Eclipse, and in most other development environments,

refactorings are activated by selecting code, then using a menu or

hotkey, and finally engaging in a dialog with a “wizard”.

However, selection is error-prone, menus are slow, hotkeys are

hard to remember, and wizards are time-consuming. The problem

is that as a consequence, refactoring tools disrupt the

programmer’s workflow and are perceived to be slower than

refactoring by hand. In this paper we present two new user

interfaces to Eclipse’s existing refactoring engine: marking menus

and refactoring cues. Both are designed to increase programming

velocity by keeping the tool out of the programmer’s way.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques;

D.2.6 [Software Engineering]: Programming Environments.

General Terms
Design, Reliability, Human Factors

Keywords
Refactoring, tools, usability, environments

1. INTRODUCTION
Refactoring is the process of changing the structure of code

without changing the way that it behaves [3]. Refactoring

accounts for a significant portion of software development effort.

For instance, Xing and Stroulia estimate that in Eclipse’s JDT

project, 70% of changes may be due to refactoring [19].

Refactoring can be semi-automated with a tool that can, in

principle, perform a refactoring faster than a programmer can do it

by hand, and without inadvertently changing program behavior.

In Eclipse, several steps are normally required to use a refactoring

tool. First, the programmer must select a program element to be

refactored, either by selecting code in the editor or by selecting

code in a view, such as the Outline or Package Explorer. Second,

the programmer initiates the refactoring via a system menu,

context menu, or hotkey. Eclipse responds by bringing up a

several-step wizard before finally performing the refactoring.

The dominant method of refactoring, floss refactoring [12], takes

place when programmers refactor frequently to maintain healthy

code. Floss refactoring is subsidiary to higher-level programming

goals [3] and is mixed with other programming tasks [18]. As a

consequence, it is vital that refactoring tools do not slow

programmers down or distract them from their primary goals.

2. THE PROBLEM
We have found that the user interface for refactoring in Eclipse

does not always support floss refactoring. When we surveyed 28

programmers at Agile Open Northwest 2007 who spend at least

10 hours per week programming and have refactoring tools

available at least 90% of the time, 40% reported that they

sometimes did not use refactoring tools because they could

refactor faster by hand. There are a number of possible reasons

for this: it can be difficult to select code suitable as input to a

refactoring tool; initiating a refactoring can be slow or

unmemorable; and configuration of refactorings is sometimes

unnecessarily complex. Eclipse’s refactoring user-interface is

typical of those in other integrated development environments,

which have been typically been built in the same style as the

original Refactoring Browser [16], so refactoring tool problems in

Eclipse are representative of problems in most environments.

Selecting code as input to a refactoring tool is sometimes difficult

because code can be long, complex, or unreadable, so a

programmer may waste time trying to make an appropriate

selection, or completely give up [11]. Furthermore, it is not

always obvious what should be selected as the input to a

refactoring tool. For example, exactly what should be selected

when you want to extract an interface from a class: a class name, a

class reference, the text of a whole class definition, or the file that

defines the class? Eclipse also poses a difficulty for the

programmer because selecting multiple program elements for the

same refactoring is not consistently supported. For instance,

while a programmer can use the outline view to select a dozen

constants for moving to another class, selecting a dozen constants

for renaming is not supported at all.

Initiating a refactoring can also be a problem. For instance, a

programmer can initiate a refactoring using a system menu, but

the refactoring system menu has become so long that it can be

hard to navigate. One Eclipse user complained to us that the

“menu is too big sometimes, so searching [for] the refactoring

takes too long.” The context menu suffers from the same

problem, and also imposes the burden of searching a large parent

menu for the “Refactoring” submenu. Hotkeys would seem to be

the ideal alternative, but can be difficult to learn and recall. We

believe programmers must make a triple cognitive mapping: from

their mental model of the structural change that they want to make

(like “put this code into a new method”), to a capriciously named

Copyright is held by the author/owner.

OOPSLA Eclipse Technology Exchange October 21–22, 2007,

Montréal, Québec, Canada.

ACM 978-1-59593-865-7/07/0010.

refactoring (EXTRACT METHOD), and then to a key combination

(Alt+Shift+M, remembering that Alt+Shift means refactor, and M

means EXTRACT METHOD rather than MOVE METHOD). The

middle step can be especially confusing, given that refactorings

are not assigned universally meaningful names (and we suspect

that none exist). In practice, perhaps for these reasons, developers

don’t often use refactoring hotkeys. For instance, Murphy and

colleagues showed that among 41 heavy Eclipse users, none ever

used hotkeys to initiate the PULL UP refactoring, the fourth most

popular refactoring in Eclipse [10].

Finally, configuring a refactoring can slow a programmer down.

In Eclipse, refactorings are typically configured using a modal

“wizard” interface; this forces programmers to go through

configuration steps that may not be necessary, and which may

induce visual disorientation [2]. One exception is Eclipse’s in-

line RENAME, an excellent example of a refactoring user interface

that unobtrusively gathers the required configuration information.

Unfortunately, it is not clear how to extend this interface to other

refactorings.

3. ALTERNATIVE USER INTERFACES
We have prototyped two tools designed to alleviate the problems

discussed in the last section. Because these tools have very

dynamic interfaces, we have provided short screencasts at
http://multiview.cs.pdx.edu/refactoring/activation.

3.1 Marking Menus
Marking menus (an extension of pie menus [1]) were originally

designed as an alternative to context menus, applicable in a wide

variety of applications [6]. Rather than having menus items

displayed in a vertical list, marking menu items display radially.

Items in a marking menu can be selected with the mouse just like

items in context menus, but they can also be selected by invoking

the menu and gesturing in the direction of the required item.

We implemented marking menus in SWT, based on a Swing

implementation from the University of California [4]. Figure 1

shows an example of a refactoring marking menu; this menu was

displayed after a programmer selected the method name in a

method declaration, held down the center mouse button, and

gestured upwards with the mouse. Up to four refactoring options

are shown per refactoring marking menu, with no submenus.

After a refactoring menu item is chosen, the refactoring is applied

without a wizard. When the transformation is complete, the user

may change the names of any generated variables using Eclipse’s

standard in-line rename.

As with context menus, the items in a marking menu depend on

the current selection. For instance, the right menu item is

EXTRACT METHOD when statements are selected, but EXTRACT

LOCAL VARIABLE when an expression is selected. Table 1 shows

the refactorings that are displayed in each direction when various

pieces of code are selected. An empty cell means there is no

refactoring assigned to that location. The design rationale is that

“up” means move up the hierarchy, “down” means move down

the hierarchy, “left” means specialize, and “right” means

generalize.

Table 1. Refactoring assignments in marking menus

Selected

Code
Up Down Left Right

Method
PULL

UP

PUSH

DOWN
INLINE

INTRODUCE

INDIRECTION

Field
PULL

UP

PUSH

DOWN
 ENCAPSULATE

Local

Variable
 INLINE

CONVERT TO

FIELD

Constructor
INTRODUCE

FACTORY

Statement(s)
EXTRACT

METHOD

Anonymous

Class

CONVERT TO

NESTED

Nested Class
CONVERT TO

ANONYMOUS

CONVERT TO

TOP LEVEL

3.1.1 Advantages of Marking Menus
In general, marking menus have two advantages over traditional

context menus. First, marking menus can initiate operations faster

than traditional context menus because the user does not have to

precisely position the mouse in a small rectangle; instead, she

need only aim in a particular direction. Furthermore, once the

user has learned where the desired item is located, she does not

have to read the menu or even wait for the menu to be painted on

the screen: she need only make a mouse gesture in the desired

direction. Second, the locations of items on marking menus

become memorable with frequent use because marking menus

exploit muscle memory.

When applied to refactoring, marking menus have some

additional advantages. First, because our implementation limits

the number of menu items to four, a simple key-press scheme

could be used for programmers who prefer not to use the mouse.

For instance, pressing Alt+Shift in the editor could display the

menu, then pressing an arrow key could invoke the desired menu

item. Second, we claim that marking menus are an especially

intuitive refactoring initiation mechanism, because many

refactorings are intuitively directional (e.g., PULL UP),

conceptually similar (e.g., INLINE LOCAL VARIABLE and INLINE

METHOD), and have inverses (e.g., INLINE METHOD and EXTRACT

METHOD). We are in the process of validating this claim

experimentally.

To summarize, we believe that using marking menus to initiate

refactorings will give the programmer the speed of hotkeys

without the difficulty of remembering them.

Figure 1. A marking menu for refactoring in Eclipse.

3.1.2 Limitations of Marking Menus
While context and system menus may accommodate any number

of refactorings, marking menus can accommodate only a limited

number before submenus must be used. This is especially

problematic in our implementation, when we limit the number of

menu items to four. Submenus could be incorporated into our

implementation, but to the detriment of memorability and speed.

Furthermore, because users tend to rely more and more on menu

positioning over time [7], disrupting old menus by adding new

refactorings can decrease usability.

Using our design rationale of “left is specialize, right is

generalize,” some combinations of program elements and

directions are ambiguous. For example, gesturing right on an

expression might mean either EXTRACT METHOD or EXTRACT

LOCAL VARIABLE. In such cases, we assign the smallest

refactoring, reasoning that larger refactorings can be realized in

multiple steps. For example, to EXTRACT METHOD from an

expression, programmers can perform EXTRACT LOCAL VARIABLE,

followed by EXTRACT METHOD on the resulting assignment

statement, and then INLINE LOCAL VARIABLE. Such a multi-step

refactoring can be performed quite quickly using marking menus.

Finally, a limitation of our design rationale is that some

refactorings are not supported. For instance, two currently

popular refactorings in Eclipse, RENAME and MOVE, are

conspicuously absent. We are currently researching how these

refactorings can be included in our design rationale, but we feel

that an initiation mechanism supporting all refactorings is

unnecessary, because programmers already use different initiation

mechanisms for different refactorings [10].

3.2 Refactoring Cues
Refactoring cues are editor highlights that indicate valid

candidates for refactorings, and also provide a way to configure

those refactorings. When using refactoring cues, a programmer

first selects which refactoring that she wants to perform from

several ExpandItem widgets displayed adjacent to an editor. The

ExpandItem then expands to reveal the refactoring configuration

options (Figure 2, right), and the code elements appropriate for

the refactoring are highlighted in the editor (Figure 2, left). The

programmer then indicates on which of the program elements she

wishes to perform the refactoring by clicking somewhere in the

corresponding highlight, turning that highlight from green to red.

When satisfied, the programmer presses a button or hotkey (the

same for all refactorings) to execute the desired refactorings. The

highlights are then removed and the ExpandItem is collapsed.

3.2.1 Advantages of Refactoring Cues
There are several advantages to using refactoring cues over

traditional methods of activating refactorings. First, the

programmer can select multiple pieces of code as input to the

refactoring, and can do so consistently for all refactorings.

Second, the program elements that are appropriate as input to the

refactoring engine are explicitly displayed, so that the programmer

doesn’t have to wonder what to select before initiating the

refactoring. Third, configuration options are displayed non-

modally and can be changed on demand, increasing the speed at

which a refactoring can be performed and reducing visual

disorientation. Fourth, performing the same refactoring on

multiple program elements is handled consistently for all

refactorings. In contrast, refactoring multiple program elements is

supported in Eclipse, but only for certain refactorings (such as

PULL UP) and when using certain views (such as the Outline).

3.2.2 Limitations of Refactoring Cues
Refactoring cues also have some limitations. In particular, the

desired cue might be difficult to recognize when refactoring

candidates are nested. For example, there are 3 nested EXTRACT

METHOD candidates in , each candidate darker

than its parent. We have attempted to limit nesting by specializing

refactorings (for example, by dividing EXTRACT METHOD into

EXTRACT METHOD FROM STATEMENT(S) and EXTRACT METHOD

FROM EXPRESSION, but this complicates the view. Also, because

all refactorings must be shown in the Refactoring Cues view, it

can take some time for a programmer to find a particular

refactoring. This could possibly be alleviated by grouping the

refactorings or by providing a search feature.

4. RELATED WORK
Callahan and colleagues have shown that in controlled

experiments, pie menus are 15% faster than linear menus [1].

These authors also suggest that there are some domains for which

Figure 2. Refactoring cues, ready to perform the EXTRACT CONSTANT refactoring on two string literals, “dx” and “dy”. Each

refactoring is listed on an unexpanded ExpandItem in the Refactoring Cue view at right. Here, the EXTRACT CONSTANT

ExpandItem is expanded, revealing configuration options for that refactoring.

marking menus are especially well suited; we believe that

refactoring is one of these. When using marking menus,

Kurtenbach and Buxton showed that users’ selection time

decreases over a prolonged period [7]; they have also shown that

users of menus similar to ours have less than 3% error rates and

take about 0.75 seconds to select a menu item [6].

Some other environments have touched on manipulation of code

through gestures. Both IntelliJ IDEA [5] and Netbeans [9] have

plugins that allow programmers to use gestures to initiate user-

assignable commands, including refactoring. Ougi, a 3D

environment for novice programmers, supports copying and

moving program elements with virtual hand gestures [13].

Refactoring cues were inspired by several existing tools. First, the

cues themselves are visually quite similar to Lommerse and

colleagues’ Visual Code Navigator, which colors different types

of program elements to aid in program comprehension [8].

Refactoring cues also have a look and behavior similar to Box

View, a tool that allows the programmer to select program

statements, although Box View operates in a separate view rather

than overlaid on program text [12]. Finally, refactoring cues are

somewhat similar to domain/j: both tools provide a separate view

containing a list of available refactorings and both assist the

programmer in selecting code [14]. However, domain/j requires a

code region to be selected first, after which the refactoring is

applied to it; refactoring cues reverse this ordering.

While we have portrayed hotkeys, linear menus, and refactoring-

wizards as typical refactoring tool interfaces, one exception is

worth mentioning. In Eclipse, the MOVE CLASS refactoring can be

activated by dragging an existing class to a different package. We

feel that this is an especially memorable way to activate MOVE

refactorings, but it is not obvious how to extend it to other

refactorings.

5. EVALUATION
We are in the process of conducting evaluations on both of our

tools. In a memory recall experiment, we are trying to determine

how well programmers’ mental models of refactoring map to our

design rationale for refactoring marking menus. In a selection

experiment, we are trying to determine how quickly and

accurately programmers can select cues. In a survey and tool

demonstration with professional programmers, we are trying to

assess if, and how, refactoring marking menus and refactoring

cues can be an effective part of a programmer’s toolset.

6. FUTURE WORK
As we continue our research on marking menus, we plan on

making both functional and interface improvements.

Functionally, refactoring marking menus can be naturally

extended to include other refactorings, such as left and right menu

items on visibility modifiers to decrease or increase visibility. We

are also investigating alternative design rationales to

accommodate more refactorings on the marking menus, as well as

to be more memorable for the programmer. In the marking menu

literature, many alternatives and improvements to the standard

marking menu interface have been proposed [17], and we will

continue to investigate how these alternatives may improve

usability when applied to refactoring. For example, several

programmers have told us that they feel that marking menus are a

waste of screen space, and so we are considering using a “labels

only” display [17].

We plan on investigating user-interface modifications to

refactoring cues as well. One area in need of improvement is

nested refactoring cues, including determining the optimal

contrast between parent and child cues, and how to accommodate

color-blind programmers. We would also like to investigate how

code smells, especially duplication, can be effectively displayed

using cues. We are also looking into expanding refactoring cues

to allow cue selection from multiple editors and different views.

We are also investigating how to integrate marking menus and

refactoring cues. We would like to accomplish this by allowing

marking menus to initiate a refactoring with no configuration (as

in the current implementation), configuration through refactoring

cues (allowing the programmer to select more code to refactor), or

configuration through standard Eclipse wizards, depending on the

mouse distance from the marking menu’s center (Figure 3).

Heuristically, the greater the distance from the marking menu’s

center, the more heavyweight the configuration. This approach

makes our marking menus much more like control menus [15].

These two tools assist in three phases (selection, initiation, and

configuration) of the larger refactoring process. We plan on

investigating at least three other phases as well: smell detection,

understanding precondition violations, and understanding

refactoring results. For example, we will build alternatives to the

standard Eclipse refactoring preview to help programmers

understand what code was changed during refactoring(s). An

alternative mechanism is especially important when programmers

use fast refactoring activation mechanisms, such as marking

Figure 3. Refactoring marking menus with distance-from-center indicating configuration type.

menus, because it is necessary to provide immediate feedback to

quickly and accurately inform the programmer which program

elements have changed, and how.

7. CONCLUSION
The availability of refactoring tools that promote continuous

refactoring is a major selling point for IDEs like Eclipse: it is the

bait that attracts programmers away from emacs and other editors.

However, there is a danger that programmers will become

disillusioned with Eclipse if they find that the tools that it

provides are slow and cumbersome to activate, that is, if they find

that instead of assisting in their workflow, the tools get in the way.

In this paper we presented two new mechanisms for activating

refactorings. These mechanisms were designed to avoid

introducing unnecessary modality and to have low conceptual and

physical overhead. We hope that future user studies will show

that they increase the usability of Eclipse’s refactoring tools, and

thus play a vital part in promoting the adoption of Eclipse by

professional programmers, and thus in increasing their

productivity and velocity.

8. ACKNOWLEDGMENTS
Thanks to our anonymous reviewers for their helpful comments

and the National Science Foundation for partially funding this

research under grant CCF-0520346.

9. REFERENCES
[1] Callahan, J., Hopkins, D., Weiser, M., and Shneiderman, B.

1988. An empirical comparison of pie vs. linear menus. In

Proc. of the SIGCHI Conference on Human Factors in

Computing Systems (Washington, D.C., United States, May

1988). J. J. O'Hare, Ed. CHI ’88. ACM Press, New York,

NY, 95-100.

[2] de Alwis, B. and Murphy, G. C. 2006. Using Visual

Momentum to Explain Disorientation in the Eclipse IDE. In

Proc. of the Visual Languages and Human-Centric

Computing (September 2006). VLHCC ’06. IEEE Computer

Society, Washington, DC, 51–54.

[3] Fowler, M. 1999. Refactoring: Improving the Design of

Existing Code. Addison-Wesley Publishing Co., Inc.

[4] Hong, J. I. and Landay, J. A. 2000. SATIN: a toolkit for

informal ink-based applications. In Proc. of the 13th Annual

ACM Symposium on User interface Software and

Technology (San Diego, California, United States, November

2000). UIST ’00. ACM Press, New York, NY, 63–72.

[5] IDEA Mouse Gestures. Accessed August 2007.

http://www.smardec.com/products/idea.html.

[6] Kurtenbach, G. and Buxton, W. 1993. The limits of expert

performance using hierarchic marking menus. In Proc. of the

INTERCHI ‘93 Conference on Human Factors in Computing

Systems (Amsterdam, The Netherlands). S. Ashlund, A.

Henderson, E. Hollnagel, K. Mullet, and T. White, Eds. IOS

Press, Amsterdam, The Netherlands, 482–487.

[7] Kurtenbach, G. and Buxton, W. 1994. User learning and

performance with marking menus. In Conference Companion

on Human Factors in Computing Systems (Boston,

Massachusetts, United States, April 1994). C. Plaisant, Ed.

CHI ’94. ACM Press, New York, NY, 218.

[8] Lommerse, G., Nossin, F., Voinea, L., and Telea, A. 2005.

The Visual Code Navigator: An Interactive Toolset for

Source Code Investigation. In Proc. of the 2005 IEEE

Symposium on Information Visualization (October 2005).

INFOVIS ’05. IEEE Computer Society, Washington, DC, 4.

[9] Mouse Gestures Plugin to Netbeans. Accessed August 2007.

https://mousegestures.dev.java.net.

[10] Murphy, G. C., Kersten, M., and Findlater, L. 2006. How

Are Java Software Developers Using the Eclipse IDE?. IEEE

Software. 23, 4 (July 2006), 76–83.

[11] Murphy-Hill, E. 2006. Improving usability of refactoring

tools. In Companion To the 21st ACM SIGPLAN Conference

on Object-Oriented Programming Systems, Languages, and

Applications (Portland, Oregon, USA, October 2006).

OOPSLA ’06. ACM Press, New York, NY, 746–747.

[12] Murphy-Hill, E. and Black, A. 2007. Why don’t people use

refactoring tools? In Proc. of the 1st Workshop on

Refactoring Tools. ECOOP ’07. TU Berlin, ISSN 1436-

9915.

[13] Osawa, N., Asai, K., Sugimoto, Y. Y., and Saito, F. 2001. A

Dancing Programmer in an Immersive Virtual Environment.

In Proc. of the IEEE 2001 Symposia on Human Centric

Computing Languages and Environments (HCC’01)

(September 2001). HCC ’01. IEEE Computer Society,

Washington, DC, 348.

[14] Perera, R. 2004. Refactoring: to the rubicon… and beyond!.

In Companion to the 19th Annual ACM SIGPLAN

Conference on Object-Oriented Programming Systems,

Languages, and Applications (Vancouver, BC, Canada,

October 2004). OOPSLA ’04. ACM Press, New York, NY,

2–3.

[15] Pook, S., Lecolinet, E., Vaysseix, G., and Barillot, E. 2000.

Control menus: execution and control in a single interactor.

In CHI ’00 Extended Abstracts on Human Factors in

Computing Systems (The Hague, The Netherlands, April

2000). CHI ’00. ACM Press, New York, NY, 263–264.

[16] Roberts, D., Brant, J., and Johnson, R. 1997. A refactoring

tool for Smalltalk. Theory and. Practice of Object Systems 3,

4 (October 1997), 253–263.

[17] Tapia, M. A. and Kurtenbach, G. 1995. Some design

refinements and principles on the appearance and behavior of

marking menus. In Proc. of the 8th Annual ACM Symposium

on User interface and Software Technology (Pittsburgh,

Pennsylvania, United States, November 1995). UIST ’95.

ACM Press, New York, NY, 189–195.

[18] Weißgerber, P. and Diehl, S. 2006. Are refactorings less

error-prone than other changes?. In Proc. of the 2006

International Workshop on Mining Software Repositories

(Shanghai, China, May 22–23, 2006). MSR ’06. ACM Press,

New York, NY, 112–118.

[19] Xing, Z. and Stroulia, E. 2006. Refactoring Practice: How it

is and How it Should be Supported—An Eclipse Case Study.

In Proc. of the 22nd IEEE international Conference on

Software Maintenance (September 2006). ICSM ’06. IEEE

Computer Society, Washington, DC, 458–468.

