
XPlainer: Explaining XPath within Eclipse

John W.S. Liu
∗

IBM Canada Inc.
Toronto Lab

jwsliu@ca.ibm.com

Mariano P. Consens
University of Toronto

CS Department

consens@cs.toronto.edu

Flavio Rizzolo
University of Toronto

CS Department

flavio@cs.toronto.edu

ABSTRACT
The popularity of XML has motivated the development of novel
XML processing tools many of which embed the XPath language
for XML querying, transformation, constraint specification, etc.
XPath developers (as well as less technical users) have access to
commercial tools to help them use the language effectively. Exam-
ple tools include debuggers that return the result of XPath subex-
pressions visualized in the context of the input XML document.

This paper describes XPlainer-Eclipse, a novel kind of query un-
derstanding and debugging tool that provides visual explanations of
why XPath expressions return a specific answer. XPlainer-Eclipse
combines editors for visualizing both XML documents and XPath
expressions as trees together with the explanation of the answers.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments—Pro-
grammer workbench, Integrated environments; D.2.5 [Software
Engineering]: Testing and Debugging—Code inspections and walk-
throughs, Debugging aids; D.2.2 [Software Engineering]: Design
Tools and Techniques—User interfaces

General Terms
Languages, Program Analysis

Keywords
XPath, Debugging, Eclipse, IDEs, XML, Data Visualization

1. INTRODUCTION
The widespread adoption of XML has motivated the develop-

ment of new languages and tools geared toward XML processing.
XPath [22], the most ubiquitous of XML-related languages, is used
as a sub-language for tasks like XML querying, transformation,
constraint specification, web service composition, etc.

∗This work was completed when this author was a graduate student
at Computer Science Department of the University of Toronto.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Eclipse Technology eXchange (ETX) Workshop at OOPSLA 2006 Portland,
Oregon USA
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

The use of XPath expressions in a large variety of computer lan-
guages (such as XSLT, XQuery, XForms, BPEL, Schema, XJ, SQL
extensions, etc.) motivates the interest of a large population of de-
velopers in learning how to use the language. Providing explana-
tions of why XPath expressions return specific answers is a com-
pelling approach to facilitate understanding and debugging XPath
applications.

A large number of software tools have been developed to try to
help XPath users understand the evaluation of query expressions in
the language. These initiatives include open source projects such
as LOGILab XPath Visualizer [16], XPE XPath Explorer [6] and
Visual XPath [14] and commercial products such as Altova XML-
Spy XPath Analyzer [5], Top XML XPath Visualizer [4], WSAD
XPath Expression [11] and Oxygen XML Editor [3].

This paper introduces the concept of explanation queries. Given
an XPath expression, we define a new language, XPlainer, that re-
lies on visual explanations to describe why the given XPath ex-
pression returns a sequence of selected nodes from an input XML
document. The explanation provided displays all the intermediate
nodes that contribute to the result of the XPath expression. While
this is an intuitive notion, we show that providing explanations for
arbitrarily complex expressions while supporting all the constructs
in the XPath language is a non-trivial task. This difficulty justi-
fies defining a new language (XPlainer) with the same syntax as
the original target language (XPath) been explained, but whose se-
mantics precisely state what additional information is returned to
explain a query result in the target language.

General motivation for our visualization approach originates in
the work of Edward Tufte [20], who states:

Visual explanations is about pictures of verbs, the rep-
resentation of mechanism and motion, of process and
dynamics, of causes and effects, of explanation and
narrative.

We describe a visual explanation tool based on the XPlainer lan-
guage that assists XML developers to learn, understand, use, and
debug XPath expressions. The explanations tell what nodes in an
input XML document are matched by the sub-expressions, provid-
ing a representation of the basic mechanism at play during XPath
processing.

The XPlainer-Eclipse tool that we have developed extends the
XML and XPath development facilities available in the Eclipse
environment [1] with the ability to support explanation queries.
Eclipse is an open source platform built by an open community of
tool providers. A large variety of both commercial and open source
development tools have been integrated within this environment.

The XPlainer-Eclipse tool is capable of invoking an arbitrary
XPath processor to implement the semantics of the XPlainer lan-
guage. Using this approach, the tool can provide explanations that

are faithful to the XPath processor invoked while supporting all
the language constructs and functions in the XPath processor.
We also address successfully the challenge of reproducing the be-
havior of implementation dependent features. In debugging sce-
narios, this ability to invoke the original XPath engine is a crucial
requirement.

Programming language debuggers support stepping through the
state of an execution while inspecting variable values. When deal-
ing with XPath (or any other a declarative/functional query lan-
guage), stepping through an execution is only acceptable for de-
bugging the internal implementation of the execution engine. Any
other debugging of XPath expressions should not depend on the
execution path chosen by the engine’s optimizer, instead it should
help understanding the semantics of the expression at a logical level
(and, to the extent that is possible, regardless of the engine used).
Existing debugging tools achieve this by providing the result of an
expression with no additional information. XPlainer goes much
further by giving all the intermediate information (still at the logi-
cal level).

There is a fine line between debugging a declarative language
by giving all the logical intermediate information (including im-
plementation dependent intermediate results!), and debugging the
engine of such a language by stepping through the actual execution
path. XPlainer fully supports declarative debugging of an arbitrary
XPath engine without crossing that line.

1.1 Related Work
There is a rich literature in graphical query languages, starting

with QBE [23] in 1977. A research effort over 10 years old refers
to the existence of more than fifty different visual languages for
databases [21]. A more recent proposal that specifically targets
visual XML queries appears in [8]. Beyond visual queries, com-
bining data visualization with visual queries has been pursued by
[15, 17].

The work we propose does not attempt to introduce a new visual
query language, instead it utilizes visualizations as a mechanism to
provide explanations for the semantics of an existing textual query
language (XPath). The visualization of answers and intermediate
results supported by XPlainer can certainly be used as a data vi-
sualization mechanism, but that is not the goal addressed in this
paper.

The explanation mechanism introduced in this paper has been
inspired in earlier work on graph-based data visualization [9]. The
Hy+ system employed the concept of GraphLog filter queries that
return all the intermediate tuples obtained by a Datalog logic pro-
gram, and they can be (loosely) seen as the analogous of an expla-
nation query for a Datalog program. The Hy+ system did not use
filters to explain the answers to Datalog queries, they were used
instead to create graph-based visualizations of database facts. We
can apply the XPlainer language concepts described in this work
to a rule based language (and not just to a functional language like
XPath).

The XPath debugging tools mentioned earlier limit themselves
to showing the selected nodes of an XPath expression (i.e., the re-
sult of the evaluation) either in a separate view [5, 14, 4, 16], or in
the context of an existing XML editor [11, 3, 16]. All the tools cur-
rently available simply display the result of the XPath expression1.
The state of the art tools do not display the intermediate nodes
selected by the subexpressions that contribute to the answer. There-
fore, they do not provide information about relationships among

1For an online sample image from XMLSpy, one of the
most popular and complete tools currently available, see
http://www.altova.com/features xpath.html.

subexpressions, contexts and/or selected nodes. These are all novel
capabilities provided by the XPlainer language introduced in this
paper and that current tools do not posses.

Finally, we note that the application of the XPlainer language as
a tool to select the subset of an XML document that contributes to
an XPath answer is similar to the XSquirrel [18] subtree queries.
These type of queries have been shown useful for defining docu-
ment views, in access control applications, and in actively distribut-
ing XML documents [7]. XPlainer queries provide much more con-
trol over the nodes that are retained compared to subtree queries.
XSquirrel queries retain the nodes selected by the original XPath
expression together with all their ancestors and descendants, while
XPlainer explanation queries retain all those intermediate nodes
that contribute to the original XPath result (these can include nodes
that are not ancestors nor descendants of the answer).

1.2 Contributions
The following are the key contributions of our work:

• We introduce the novel concept of explanation queries and
describe XPlainer, an explanation query language for XPath.

• We provide a formal definition for the semantics of XPlainer
that in turn builds upon the semantics of XPath expressions
(which is a very desirable property in debugging applica-
tions)2.

• We describe a tool that implements visual explanations based
on XPlainer.

While XPlainer specifically targets XPath, the concept of expla-
nation queries that can assist developers in learning, understand-
ing, using, and debugging query expressions has general validity
(beyond the specific case of XPath). Also, explanation queries are
a convenient mechanism to extract the subset of a database that
contributes to a query expression, and as such it can be used as a
powerful and concise sub-document filtering mechanism.

1.3 Organization
The paper is structured as follows. In the next section we intro-

duce the concept of explaining query expressions. We provide ex-
amples to motivate explanations and highlight the differences from
simple partial evaluation of subexpressions. In Section 3 we pro-
vide an overview of a tool based on the XPlainer language (to-
gether with a description of its implementation). We conclude in
Section 4.

2. VISUAL EXPLANATIONS
This section provides a glimpse of the capabilities of our ap-

proach to visual explanations. We assume that the reader has a
basic understanding of the XPath query language constructs.

Given an XPath query and an input XML document, an expla-
nation of the query gives as answer all the XPath result nodes to-
gether with intermediate nodes. The intermediate nodes are those
nodes resulting from the partial evaluation of the subexpressions of
the original XPath query that contribute to the answer. Obtaining
the explanation of a complex XPath query can be challenging, as
shown in the following example.

2The semantics definition is omitted in this paper due to the paper
size limit, interested reader may refer to our technical report at
http://www.cs.toronto.edu/∼flavio/xplainer.pdf

Figure 1: Explanation of query q1

EXAMPLE 2.1. Consider the query

q1 = /book/section/section[title = “Audience”]

/following :: section/figure

which returns the figures in sections that appear after a section with
title = “Audience” which is itself within a section of book. An
explanation of q1 is depicted in Figure 1.

The first view in the top left corner of the figure, XPathView, is
an XPath expression editor with two input fields and one message
field, where the user can enter an XPath expression (query q1 in the
example).

The second input field in the XPathView indicates that the con-
text is the root of the XML document (/, but in general this could
be any other XPath expression). The message field displays the
number of nodes in the result of the expression.

The second view on the left (just below XPathView) is XPathTree-
View and displays a specific parse tree representation of the XPath
expression that appears in XPathView. It appears as an intuitive
representation of the structure of the XPath expression. In partic-
ular, the steps in the XPath expression are represented as separate
nodes and they are labeled with a sequence number (〈1〉, 〈2〉, 〈3〉,
〈5〉, and 〈6〉 in the figure).

The XPathTreeView is paired with the XML editor view on the
right side of the image in Figure 1 that displays a book document.
Nodes in the XML editor and their corresponding leaf step in the
XPathTreeView have the same step number labels and the same
colours: orange for the nodes in the answer and blue for the inter-
mediate nodes.

Since current XPath query evaluation tools do not provide expla-
nations, the only available debugging techniques involve either par-

tial evaluation of subexpressions or evaluating reversed axis. A par-
tial evaluation cannot see beyond the current evaluation step, so it
has no way of filtering out nodes that will have no effect in the final
answer. For instance, a partial evaluation of the /book/section/
section subexpression would return the two top-level sections of
the document, which includes one that is not an intermediate node
(the second one). The same happens with a partial evaluation of
following :: section, which also returns a superset of the inter-
mediate nodes: all sections after section 〈3〉, including those that
do not contain figures. In contrast, an explanation of the query
would include only those sections that satisfy the rest of the query,
which is the one labeled by 〈2〉 for /book/section/section and
those labeled by 〈5〉 for following :: section. Although a partial
evaluation sometimes does provide exactly the intermediate nodes
(like the partial evaluation of section[title = “Audience”]), in
general it just returns a superset of the intermediate nodes.

An evaluation that reverses the axis will not necessarily give
us exactly the intermediate nodes either. For instance, evaluating
the last reversed subexpression entails obtaining the parent of all
figure nodes in the answer. (Remember that figure is child ::
figure in the unabbreviated syntax, and its reverse axis is parent).
This evaluation gives us correctly the three intermediate section
〈5〉 nodes that appear in the Figure. However, the reversed evalu-
ation of the next subexpression, following :: section will return
all the preceding sections, when in fact the only intermediate node
at that point is section 〈3〉.

We have shown with the previous example that we cannot rely
on either partial evaluation or in evaluations that simply reverse the
axes to obtain the intermediate nodes and explain why an XPath
expression returns a specific answer.

The increasing difficulty of providing these explanations for ar-

bitrary XPath queries motivated us to formally define the semantics
of explanations. For instance, in the case of a more complex query
like

q2 = /book/((section[1]/section)[2] |
(section[3]/section)[4]/figure))[5]/title

which includes parenthesis and a disjunction, obtaining the inter-
mediate nodes without such semantics becomes extremely chal-
lenging.

XPlainer is the proposed new language for addressing the prob-
lem discussed above: an explanation of a given XPath query is
computed as the result of an XPlainer query. XPlainer query an-
swers are structured into XPlainer trees whose nodes correspond to
subexpressions and are associated with precisely the intermediate
nodes that contribute to the answer of the query being explained.

3. AN XPLAINER-BASED TOOL
The goal of an XPlainer-based tool is to provide a concrete im-

plementation for the visual explanation approach described in the
previous sections. The visual information presented by the XPlainer
language describes the correspondence from the (parse) tree dis-
play of a query to the query’s output and its explanation layered on
a (document) tree display of the input.

This approach can be supported by another quote from Edward
Tufte’s work [19]:

Amongst the most powerful devices for reducing noise
and enriching the content of displays is the technique
of layering and separation, visually stratifying various
aspects of the data.

Our XPlainer-based tool layers on top of the input XML docu-
ment annotations that explain the semantics of evaluating a given
XPath query on the document. There is a conscious decision to
limit the highlighting to a minimal use of color labels to distin-
guish the context, the selected nodes (the result of the query), and
the intermediate nodes (the ones providing the explanation of the
query result). In addition, numerical labels describe the association
between XPath subexpressions and the intermediate nodes selected
by them.

The XPlainer-Eclipse tool that we have developed extends the
XML and XPath development facilities available in the Eclipse
environment [1] with the ability to support explanation queries.
Eclipse is an open source platform built by an open community of
tool providers. A large variety of both commercial and open source
development tools have been integrated within this environment.

While the most prominent programming language supported by
Eclipse is Java (and indeed the framework itself is implemented
as an extensive Java library), tools have been developed to support
a variety of programming environments. Of interest to XPlainer-
Eclipse are tools that support XML-related development, since most
of them support XPath as an embedded language. Several of these
tools have been incorporated within Eclipse, most notably around
the Web Tools Platform project (WTP) [2].

In particular, there is an XML editor in Eclipse WTP that dis-
plays text and tree views of XML documents. XPlainer-Eclipse is
an Eclipse plugin that uses the WTP XML editor to highlight the
XPath path nodes and the XPath selected nodes directly in the XML
tree.

Let us illustrate the XPlainer-Eclipse visual capabilities with an
additional example. Consider the expression

book/section[2]/section/preceding-sibling :: section[1]

This example query selects the first preceding sibling section of
each child section of the second section from an XML document
describing a book.

Now consider a similar expression which contains parenthesis

(book/section[2]/section/preceding-sibling :: section[1])

The explanation of the evaluation of the latter expression on the
book XML document appears in Figure 2 (right-hand side) together
with the explanation of the former (left-hand side). The parenthe-
sis impact whether document order or axis order (reverse document
order in this case) applies to the result of the parenthesized expres-
sion, and before the position predicate is applied.

Figure 2: Explaining the impact of parenthesis

XPlainer-Eclipse can explain how a predicate expression chooses
a particular set of XML nodes. When the user clicks on a predicate
node in the XPathTreeView, the XML nodes that make the predi-
cate expression true will be selected and colored in green (a careful
reader may also notice that the icon for predicate nodes is a small
question mark). In this example we can also observe that XPlainer-
Eclipse selectively expands those nodes that are highlighted in the
XML editor, while leaving other nodes collapsed. This effectively
filters those portions of the XML document that are irrelevant to the
visual explanation. XPlainer-Eclipse has a number of additional in-
teractive features not covered here that are part of our prototype 3

(presented also as a demo [10]). As an example, XPlainer-Eclipse
users can selectively collapse (simply by clicking) portions of the
XPath expression to eliminate constraints (this is useful when there
are no answers to a query but the collapsed subexpression can be
satisfied).

Throughout this section we have illustrated how XPlainer-Eclipse
helps XPath developers understand, debug and correct the expres-
sions that they are interested in evaluating against an example XML
document. The tool achieves this goal by highlighting on the input
XML document the context, the selected nodes, and the interme-
diate nodes that contribute to the final result (as specified in the
semantics of the XPlainer language).

3.1 Implementation
The XPlainer-Eclipse tool is implemented in Java. There are

two major components in the system, Core and UI, each one of
them consisting of several packages with over 50 Java classes in
total[13].

3available at http://www.cs.toronto.edu/∼consens/xplainer/

The Core component is a Java application that can be made avail-
able as a package independently of the Eclipse environment. The
Core component of XPlainer-Eclipse consists of classes implement-
ing the Xe tree data structure, an XPath parser, the implementation
of the visual explanation function, and an XPath evaluator module.
The Core component supports two key functions. First, it provides
an implementation of the Xe tree and the VT,c function described
in the preceding section. Second, it manages the invocation of an
external XPath processor.

A very important property of XPlainer-Eclipse is that it is not tied
to a particular XPath implementation. Instead an arbitrary XPath
evaluator can be invoked through a standard interface and used to
evaluate the VT,c visual explanation function. This is a critical en-
gineering decision that allows the XPlainer-Eclipse framework to
be used to provide explanations for different XPath engines. This
is important because, beyond differences in the capabilities of the
implementations, the XPath language itself has several areas where
the semantics are implementation defined. This effectively means
that only the original XPath engine can explain one of its own im-
plementation defined features.

The main XPath engine utilized by XPlainer-Eclipse is the de-
fault XPath engine used in the Java API for XML Processing (JAXP)
1.3 [12], which is already included into J2SE 5.0 (i.e., the Java stan-
dard edition). Also, note the XPlainer-Eclipse Core components
communicates with the XPath engine using the DOM as the XML
data model. This module is fairly generic and can be extended to
implement other internal representations of the XML data model.
The UI component is developed as an Eclipse plugin.

4. CONCLUSIONS
This paper introduces XPlainer, a language defined with the novel

goal of assisting users to understand and develop XPath expres-
sions. XPlainer relies on visual explanations that describe why an
XPath expression returns a sequence of selected nodes from an in-
put XML document. The explanation provided displays all the in-
termediate nodes that contribute to the result of the XPath expres-
sion.

The paper describes an Eclipse-based tool implementing XPlainer
which extends the XML and XPath development facilities available
in the Eclipse environment [1]. The users of XPlainer-Eclipse can
interact with tree views of XPath expressions and input XML doc-
uments. In the XML editor view, intermediate XPath expression
results are selectively highlighted, connecting these nodes with the
associated steps in the XPath expression.

A very important property of the XPlainer-Eclipse implementa-
tion is that it does not re-implement an XPath-like query processor.
The tool relies on the semantic definition of the XPlainer language
in terms of the XPath language itself to evaluate XPlainer queries
by invoking an arbitrary (already existing) XPath processor. While
this approach to evaluate XPlainer queries incurs obvious overhead,
it has the crucial advantage of been able to explain faithfully the
evaluation of all the features of any XPath processor invoked (even
implementation-dependent features!).

Finally, we bring attention to the fact that the visualization of an-
swers and intermediate results supported by XPlainer can be used
as a powerful sub-document filtering mechanism. The semantics
of the visual explanation function provides an effective and concise
filtering mechanism. A large subset of the nodes in the input doc-
ument can be identified by one compact XPath expression when
interpreted as an XPlainer expression (i.e., one that returns a sub-
document with not just the selected nodes, but all of the intermedi-
ate nodes as well). When using the language as a filter mechanism
there is a clear motivation for developing XPlainer-specific opti-

mization techniques.

5. REFERENCES
[1] Eclipse. http://www.eclipse.org/.
[2] Eclipse Web Tools Platform (WTP) Project.

http://www.eclipse.org/webtools/.
[3] Oxygen XML Editor. http://www.oxygenxml.com/.
[4] TopXML. http://www.topxml.com/xpathvisualizer.
[5] XML Spy. http://www.altova.com/.
[6] XPE. http://www.purpletech.com/xpe/index.jsp.
[7] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and

T. Milo. Dynamic XML documents with distribution and
replication. In SIGMOD ’03, pages 527–538, 2003.

[8] D. Braga, A. Campi, and S. Ceri. XQBE (XQuery By
Example): A visual interface to the standard XML query
language. ACM TODS, 30(2):398–443, 2005.

[9] M. Consens and A. Mendelzon. Hy+: a Hygraph-based
query and visualization system. In SIGMOD ’93, pages
511–516, 1993.

[10] M. P. Consens, J. W. Liu, and B. O’Farrell. XPlainer: An
XPath debugging framework (demo), 2006.
http://icde06.cc.gatech.edu/prog-demo.html.

[11] IBM. WebSphere Studio Application Developer (WSAD) 5.1
XPath Expression.
http://www-306.ibm.com/software/awdtools/studioappdev/.

[12] JAXP. Java API for XML Processing (JAXP) 1.3.
http://java.sun.com/webservices/jaxp/index.jsp.

[13] John W.S. Liu. XPlainer: A Visual XPath Debugging
Framework. Master’s thesis.
http://www.cs.toronto.edu/DCS/Grad/Theses/05-
06MSc.html.

[14] N. Leghari. Visual XPath.
http://weblogs.asp.net/nleghari/articles/27951.aspx.

[15] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen,
D. Donjerkovic, S. Lawande, J. Myllymaki, and K. Wenger.
DEVise: integrated querying and visual exploration of large
datasets. In SIGMOD ’97, pages 301–312, 1997.

[16] Logilab.org. Logilab - XPath Visualizer 1.0.
http://www.logilab.org/projects/xpathvis/1.0.

[17] C. Olston, A. Woodruff, A. Aiken, M. Chu, V. Ercegovac,
M. Lin, M. Spalding, and M. Stonebraker. DataSplash. In
SIGMOD ’98, pages 550–552, 1998.

[18] A. Sahuguet and B. Alexe. Sub-document queries over XML
with XSQuirrel. In WWW ’05, pages 268–277, 2005.

[19] E. R. Tufte. Envisioning information. Graphics Press,
Cheshire, CT, USA, 1990.

[20] E. R. Tufte. Visual explanations: images and quantities,
evidence and narrative. Graphics Press, Cheshire, CT, USA,
1997.

[21] K. Vadaparty, Y. A. Aslandogan, and G. Ozsoyoglu. Towards
a unified visual database access. In SIGMOD ’93, pages
357–366, 1993.

[22] W3C. XML Path Language (XPath) 2.0.
http://www.w3.org/TR/xpath20, 2005.

[23] M. Zloof. Query-by-example: A data base language. IBM
Syst. J., 16(4):324–343, 1977.

