
MolhadoRef: A Refactoring-aware Infrastructure
for OO Programs

Danny Dig, Kashif
Manzoor

University of Illinois at
Urbana-Champaign

{dig,manzoor2}@uiuc.edu

Tien N. Nguyen
Iowa State University

tien@iastate.edu

Ralph Johnson
University of Illinois at
Urbana-Champaign

johnson@cs.uiuc.edu

ABSTRACT
Refactoring tools allow programmers to change source code
much quicker than before. However, the complexity of these
changes cause versioning tools that operate at a file level to
lose the history of components. This problem can be solved
by semantic, operation-based SCM with persistent IDs. We
propose that versioning tools be aware of the program enti-
ties and the refactoring operations. MolhadoRef uses these
techniques to ensure that it never loses history.

1. INTRODUCTION
Refactorings [12] are program transformations that change

the structure of a program without changing its external
behavior. In recent years, tools like Eclipse [7] and IntelliJ
IDEA [13] have made refactoring tools a standard for most
Java programmers. The wide-spread use of a new kind of
software tool often forces other tools to adjust to it. Refac-
toring tools make particular demands on software configura-
tion management (SCM) tools. A refactoring tool allows a
programmer to quickly make changes that potentially affect
all parts of a system. Some refactorings are local in scope,
such as extracting a function. However, changing the name
or interface of a global function can have global scope, since
every part of the system that uses the function will have to
change. Changes that seem simple from a refactoring point
of view can be complex from an SCM point of view unless
the SCM tools can treat refactorings intelligently.

Most SCM systems are based on files, not on program en-
tities. They model changes in terms of the lines of a file that
have changed, instead of program entities that changed. In
contrast, a semantics-based SCM is tailored to a particular
programming language and so can represent individual pro-
gram entities such as classes and functions. Further, most
SCM systems identify entities by name, whether it is file
name or the name of a program entity. Renaming or mov-
ing an entity will cause the system to lose track of it. In
contrast, Molhado [19] is an SCM infrastructure that cre-
ates unique, persistent IDs for each entity, and treats the
name as an attribute that can change. Thus, it can track
the history of an entity in spite of it being refactored.

An SCM system needs to deal with branches; versions de-
rived from a common base but not from each other. Making
branches is easy, but merging them can be hard. File-based
SCM systems can merge changes automatically if they are to
different parts of a file, but if two branches change the same
part of a file then the merge fails and must be done manu-
ally. If each branch renames a function and there is a line in

the program that calls both functions then a conventional
SCM system cannot merge the changes automatically. This
demonstration will show that those changes can be merged
by a semantics-based SCM that gives program entities per-
manent IDs. It helps track the history of refactored, fine-
grained program entities, eliminates many conflicts when
merging refactored versions in multi-user environments, and
represents the history at a higher level.

2. OUR APPROACH

2.1 Semantics-based, Operation-based SCM
We developed MolhadoRef, a semantics-based SCM sys-

tem, which is able to capture and version the underlying se-
mantics of Java programs. It also maintains persistent iden-
tifiers for all program entities in its repository. It uses the
operation-based SCM approach [15] to represent and record
refactoring operations as first-class entities in the reposi-
tory. In the operation-based approach, an SCM tool records
the operations that were performed to transform one version
into another and replays them when updating to that ver-
sion. The operation-based approach gives a precise way to
integrate changes caused by editing operations from different
lines of parallel development [15]. As for refactoring, recent
extensions to refactoring engines [12, 7] allow to record and
replay refactoring operations.

MolhadoRef is based on Molhado object-oriented SCM
infrastructure [19], which was developed for creating SCM
tools. Unlike the file-based SCM approach, Molhado allows
an SCM system to model and capture the structure of log-
ical entities within a file and the operations on them. Mol-
hado has a flexible data model that allows it to represent
programs in any language. A program consists of a set of
nodes, each of which has a set of slots that are attached to
it by means of attributes. Nodes are the units of identity,
while slots hold values and attributes map nodes to slots.
Nodes, slots and attributes that are related to each other
form attribute tables, whose rows correspond to nodes and
columns to attributes. The cells of attribute tables are slots.

The Molhado data model can be specialized for a particu-
lar application. MolhadoRef specializes it to represent Java
programs, so nodes are used to represent program entities.
The unique identifiers of nodes facilitate the management of
entities’ histories, especially when they are refactored. Mol-
hadoRef captures the semantics of a program with a Mol-
hado component type named CompilationUnit, which has
a tree-based structure representing the program’s Abstract



Syntax Tree (AST). An AST node is represented as a Mol-
hado node. The class name is one of its properties.

MolhadoRef assumes that the front-end editor recognizes
refactoring operations that were performed on program en-
tities. When a user checks in changes to the current ver-
sion, refactoring operations are recorded along with other
changes. Refactoring operations are represented as Molhado
components and recorded as attribute values associated with
AST nodes. Parameters of an operation are recorded as at-
tribute values associated with the operation.

Version control is added into the data model by a third
dimension in attribute tables. That is, slots in any data
type can be versioned. Molhado’s version model is called
product versioning in which a version is global across entire
system [19]. It allows branching and merging of versions
as well. Molhado stores and retrieves versioned attribute
tables. No file versioning is involved. A novel structure-
oriented versioning algorithm for attributed trees was devel-
oped to provide the fine-grained content change and version
management for ASTs.

2.2 Composition of ID-based Refactorings
Most refactoring engines assume a single user. Refac-

toring engines make it easy to change a lot of code, but
when multiple developers refactor the same code, it is likely
that they will create conflicts. The refactorings that one
user performed during a programming session might be per-
fect alone, but are invalid when they are combined with
the refactorings that another user performed on the same
code. Current refactoring engines are purely based on the
names of the source code entities, therefore we call them
name-based refactorings. Even though in a single user en-
vironment name-based refactorings work fine, they fail in
environments where multiple users refactor the source code
in parallel. Therefore, a theory for composing refactorings
is needed to accommodate multi-user environments.

To overcome the shortcomings of name-based refactoring,
we propose an extension to the refactoring engines called
ID-based refactoring. We were inspired from the real life of
human beings. The citizens in most countries hold a unique
ID (e.g., in U.S. this is the Social Security Number) that
allows the person’s identity to remain the same even though
the person might change her name (e.g. through marriage)
or relocate to a different part of the country. We assign to
each source code entity a unique ID which remains the same
even when the entity is refactored. New IDs get created
when new source code entities are added to the program,
and IDs get deleted when their corresponding entities get
deleted. IDs are stored in the SCM system along with the
source code entities when the source code is checked in.

The presence of persistent IDs can solve several types
of conflicts in multi-user environments that are unsolvable
within the name-based refactoring paradigm. More details
on our ID-based refactoring composition theory are in [5].

3. TOOL IMPLEMENTATION
Programming tools are more likely to be used in prac-

tice when they are conveniently incorporated into an Inte-
grated Development Environment (IDE). We implemented
a semantic, operation-based SCM as an Eclipse plugin, Mol-
hadoRef. MolhadoRef uses the Eclipse Java programming
editor as the front end and the Molhado framework as the
SCM back end. MolhadoRef connects two systems that work

in different paradigms. Eclipse editors operate at the file
level granularity. Molhado models source code entities at
a finer level of granularity than file-based systems. Also,
Eclipse offers a name-based refactoring engine whereas Mol-
hadoRef requires an ID-based refactoring engine.

First, we extended the Molhado framework with support
for the program elements found in Java programs as de-
scribed earlier. Molhado offers two types of components:
composite components that can contain other composites
and atomic components (the lowest level of granularity).
Java packages and compilation units (Java source files) are
modeled as Molhado composite components. Program ele-
ments within a Java class (e.g., methods, fields) are modeled
as atomic components. Although Molhado affords model-
ing at even finer level of granularity (e.g., program state-
ments and expressions), for efficiency reasons we stop at the
method and field declaration level. The name and signature
of the method are attributes that allow for distinguishing be-
tween possible overloaded methods in the same Java class.
Along with methods and fields, inner classes are modeled
as entries in the table associated with the main class of a
compilation unit; inner classes can expand into new tables
when they contain fields and methods.

The interaction with the Eclipse front-end is triggered
when a user wants to check in the code. The first time an
Eclipse project is checked into in the repository, MolhadoRef
does a lightweight parsing of the source code. We call it
lightweight parsing because it stops at the level of method
and field declaration; the parser stores the program state-
ments and expressions within the method bodies or field
initializers as a single string. For each Java program en-
tity, MolhadoRef creates its Molhado counterpart. These
Molhado entities are connected to form trees mirroring the
lightweight Java ASTs. Java source files contain other infor-
mation like copyright notice and documentation embedded
in javadoc comments. Even though technically the docu-
mentation is not part of the compiler’s AST nodes, we save
this information as “documentation” attributes of the cor-
responding Molhado entities.

After code is checked in for the first time, subsequent
‘check-in’s need to store only the changes from last check-in.
In a pure operation-based SCM, all the changes are recorded
at the time when they happen and are stored as operations
in the SCM system. These operations are then replayed on
the source code of a user who wants to update to the latest
version of the code. This operation-based approach can be
very accurate in recording the exact type of change, but a
large number of change operations introduce overhead both
for recording and replaying. At the other end of the spec-
trum, in the state-based approach, the deltas are computed
just before the user commits the code by comparing the
two versions. This is more efficient (since the changes are
computed only once per programming session) but it cannot
recover the semantics of the changes (it gathers all changes
in a large pile of seemingly unrelated changes). For instance,
a method rename can result in a lot of changes: changing
the declaration of the method, updating the method callers
as well as the transitive closure of all declarations and call
sites of overridden methods.

MolhadoRef uses a mixture of both paradigms to maxi-
mize efficiency and accuracy. MolhadoRef uses the Eclipse
compare engine to learn the individual deltas (e.g., changes
within a method body or addition/removal of classes, meth-



Figure 1: History of Refactored and Modified Entity

ods, and fields) and it captures the refactorings performed
by the Eclipse refactoring engine to record the semantics
of refactoring operations. The changes caused by refac-
toring operations are reported by both the compare engine
and the refactoring engine. For instance, renaming method
LANPacket.getPacketInfo to getPacketInformation, causes the
compare engine to report deletion of getPacketInfo and ad-
dition of getPacketInformation. However, since the refactor-
ing engine also reports the renaming, the change reported
by the compare engine is overruled, and the name of the
method is updated in tables, thus avoiding loss of history.

The Eclipse compare engine offers several APIs for report-
ing changes at different levels of granularity. MolhadoRef
uses Differencer to find changes at the directory or file
level. Once it learns the Java files that changed, it uses
JavaStructureComparator to report the changes in terms of
Java program elements (e.g., classes, methods and fields).
From the program elements, the RangeDifferencer finds the
low level changes (e.g., changes inside a method body). All
the differencers report their results as a tree of DiffNodes,
which serve as inputs to JavaStructureDiffViewer that dis-
plays graphically the changed elements.

The Eclipse refactoring engine was recently extended (start-
ing with Eclipse 3.2M4 of December 2005) to record refactor-
ing operations. MolhadoRef uses the new refactoring engine
to record and store the performed refactorings. The repre-
sentation for refactorings in MolhadoRef, which is based on
attribute tables as described, is compatible with the XML
format that Eclipse refactoring engine uses. Therefore, the
refactoring operations can be resuscitated and replayed back
by the refactoring engine during an update operation.

When the user invokes a checkout operations, MolhadoRef
reconstructs (from its internal representation) the Java com-
pilation units and packages and invokes the Eclipse code for-
matter on the files. After MolhadRef brings the classes and
packages into a project in the current Eclipse workspace, the
user can resume her programming session.

The snapshot in Figure 1 illustrates the history of a re-
named method. The reader can find more screen shots and
download MolhadoRef at: netfiles.uiuc.edu/dig/MolhadoRef

4. EVALUATION
Modeling source code entities and refactoring operations

requires extra space when compared with file-based SCM

Table 1: Evolution of Eclipse’s core.refactoring
Version LOC Changed LOC #Pack #Classes #Methods

01/31 19933 - 14 114 868
02/28 19993 1786 13 114 871
03/29 20405 526 13 114 875

systems. We compare the space required by MolhadoRef
with the space used by CVS to keep track of source code.

We checked out of Eclipse CVS repository three revisions
of org.eclipse.ltk.core.refactoring. This subcomponent
is the core of the refactoring engine in Eclipse. These revi-
sions are tagged in the Eclipse repository at 01/31, 02/28/
and 03/29 2006. Table 1 shows how the source code evolved
along this time interval. Even though the total number of
lines of code does not reveal a great number of changes,
the component passed through a great deal of changes re-
vealed by the number of individual lines of code changed.
Between versions 01/31 and 02/28, our refactoring-inference
engine reveals several structural changes: four classes moved
to other packages, one class was renamed, five classes were
deleted and five new unrelated classes were added, four meth-
ods were renamed and four changed their signatures, one
method moved to another class. Between versions 02/28 and
03/29, most changes are edits, e.g., all the classes changed
their copyright notice.

Table 2 shows the space taken by the source code relying
on the local disk, compared with the space taken by CVS
and Molhado. We used the Unix ‘disk usage’ (du) utility to
calculate the total space. We give the size in bytes (as re-
turned by ‘du -abc’) and in kilobytes (‘du -akc’). The Linux
machine uses a block size of 1kB for files and 4kB for direc-
tories. To calculate the space taken by CVS we checked into
our own CVS server the three versions of the source code.
As for Molhado, we checked in the three versions. After each
check-in we executed a check-out. We used Eclipse compar-
ison utility to verify that our Molhado implementation did
not lose/add any source code along the three revisions.

The size in bytes for MolhadoRef degrades gracefully; it
is respectively 2.21, 2.69, and 2.80 times larger than the
size of initial source code. However, Molhado adds a large
number of small files (between 20 and 80 bytes) to represent
internally the versioning information. Since the operating
system on the machine where we ran the evaluation allocates
1kB for any of these small files, the ratio between the actual
files size used to store the source code in Molhado and the
initial source code is respectively 3.55, 5.52, and 7.04. On
a Windows system that allocated less space for small files,
the space on disk for MolhadoRef repository was 2.39, 3.23,
and 3.66 times larger than the original source code.

However, given the current trend that disk space is getting
cheaper, we believe that the benefits gained by being able
to track structural changes far outweigh the extra space.

MolhadoRef correctly retrieves the history of classes and
methods renamed or moved in the 02/28 version, while CVS
loses their history. In addition, browsing through the history
with MolhadoRef reveals the refactoring operations, thus
offering a higher-level understanding of code evolution. CVS
shows a lot of changes scattered throughout the source code,
with no connection between them.

In the future, when open-source projects will store logs
of refactorings performed by different developers, we plan
to estimate how many refactorings could be merged within



Table 2: Comparison among spaces required for storing the source code on local disk (no version control),
CVS and Molhado. For each system, space size in bytes (B) is the sum of all bytes in every file, while the
space used by the operating system to store the files is given in kiloBytes(kB).

Version Local[B] Local[kB] CVS[B] CVS[kB] Molhado[B] Molhado[kB]

01/31 722596 984 724717 968 1602252 3500
02/28 718026 968 832425 1104 1934408 5344
03/29 735525 988 869721 1136 2063352 6964

an ID-based environment. We plan to implement a merging
algorithm based on the conflict tables and evaluate what is
the time saved when merging with our tool. Since there are
currently no logs of refactorings for open-source projects,
this must wait for the future.

Checking in the source code for the three versions using
MolhadoRef took respectively 11, 9 and 7 seconds, while
checking out each version took respectively 10, 14, and 14
seconds (check out time includes the compilation of the
whole Eclipse project). Using CVS, check-ins took respec-
tively 2, 3, and 2 seconds and each check-out took 8 seconds.

5. RELATED WORK

5.1 SCM Systems
Many sources can be served as excellent surveys on SCM [4,

27]. Early SCM systems (e.g. CVS [18]) provided version-
ing support for individual files and directories. In addi-
tion to version control, advanced SCM systems also provide
more powerful configuration management services. Subver-
sion [24] provides more powerful features such as version-
ing for meta-data, properties of files, renamed or copied
files/directories, and cheaper version branching. Similarly,
commercial SCM tools still focus on files [27].

Several SCM systems have recognized the importance of
managing the version history of program entities. Similar to
our approach, Gandalf [11] works at the AST level. In Gan-
dalf, each module has a unique interface and potentially mul-
tiple realization variants, each of which evolves into versions.
In DAMOKLES [6], which is heavily based EER database,
leaves of the object composition hierarchy may be as small
as statements. POEM [14] provides version control in terms
of functions and classes in C++ programs, which are in-
terrelated via a dependency graph that is partitioned into
work areas. The unique identifiers in MolhadoRef is simi-
lar in spirit to unique tags for AST nodes in Westfechtel’s
system [26]. In that system, tags are used in incremental
updating of revisions of dependent documents.

The tree-based versioning framework in COOP/Orm [16]
works not only for programs but also for hierarchically struc-
tured documents. The principles of the framework include
sharing unchanged nodes among versions and change prop-
agation. The Unified Extensional Versioning Model [1] sup-
ports fine-grained versioning for a tree-structured document
by composite, atomic, and link nodes. Each atomic node is
represented via a textual file. Since their focus is on collab-
orative and interactive editing tasks, fine-grained changes
are not persistent. In Coven [3], the exact size of a ver-
sioned fragment depends on the supported document: entire
method and field declaration for C++ and Java programs, or
paragraph of text in LATEX documents. A project in Coven is
a composition of compound artifacts, which are sets of other
artifacts and/or program fragments. In Ohst’s fine-grained
SCM model [20], changes are managed within contexts of

UML tools and design transactions.
The operation-based approach has been used in software

merging [15]. It is a particular flavor of change-based merg-
ing that models changes as explicit operations or transfor-
mations. Operation-based merge approach can improve con-
flict detection [17]. Lippe et al [15] described a theoreti-
cal framework for conflict detection with respect to general
transformations. No concrete application or tool for refac-
torings was presented. Edwards’ operation-based frame-
work [8] detects and resolves semantic conflicts from applica-
tion supplied semantics of operations. However, no existing
SCM tool is able to manage versions of fine-grained program
entities and refactoring operations performed on those enti-
ties in a tightly connected manner as in MolhadoRef.

5.2 Refactoring
Programmers have been cleaning up their code for decades,

though the term refactoring was coined much later [22].
Opdyke [21] wrote the first catalog of refactorings while
Roberts and Brant [23] were the first to implement a refac-
toring engine. The refactoring field gained much popularity
with the catalog of refactorings written by Fowler et al. [10].
Soon after this, IDEs began to incorporate refactoring en-
gines. Tokuda and Batory [25] describe the large architec-
tural changes in two frameworks as a large sequence of small
refactorings. They estimate that automated refactorings are
10 times quicker to perform than manual ones. Record-and-
replay of refactorings was recently demonstrated in Catch-
Up [12] and JBuilder2005 [2] and is planned to be a stan-
dard part of Eclipse 3.2. Our methodology uses the record-
and-replay of refactorings, although there are many more
components needed to build a refactoring-aware SCM.

Ekman and Asklund [9] insightfully present the benefits
of refactoring-aware versioning systems: the ability to track
the history of refactored program entities, better merging in
the presence of well defined semantics of refactoring opera-
tions, and better human understanding of the code evolu-
tion. They too present a programming model that affords
refactoring-aware versioning system for Eclipse. Our ap-
proaches are different in many ways: their model heavily
relies on modifications to the Eclipse front-end (e.g., chang-
ing the Eclipse Java Model class hierarchy to support IDs
for program elements), whereas we rely on a powerful back-
end SCM to model program entities with unique IDs. Since
we do not impose any changes to the development environ-
ment, our approach can be smoothly integrated with other
IDEs (in fact we had another implementation with a stand-
alone front-end editor). Their approach is more lightweight
since it keeps the program elements and their IDs in volatile
memory, thus allowing for a short-lived history of refactored
program entities. Our approach is more heavyweight, pro-
gram elements and their IDs are modeled in the SCM and
stored throughout the lifecycle of the software project allow-
ing for a global history tracking of refactored entities.



6. CONCLUSION & FUTURE WORK
Refactoring tools have become popular because they allow

programmers to safely make structural changes in large sys-
tems. However, such changes create problems for the current
SCM tools that operate at the file level. As a result, the his-
tory of refactored entities is lost. We propose a novel SCM
system, MolhadoRef, that is aware of program entities and
the refactoring operations that change them. Because Mol-
hadoRef uses a unique identifier for each program element, it
can track the history of refactored program elements. In ad-
dition, we introduce the notion of ID-based refactoring and
we show how unique identifiers allow for many more merging
scenarios in multiuser environments than traditional name-
based refactoring.

We implemented a refactoring-aware SCM as MolhadoRef,
an Eclipse plugin. We extended the Molhado framework to
model Java program elements and store refactoring informa-
tion. By evaluating the extra space required to model pro-
gram elements and refactoring operations, we learned that
the extra space is around three times larger than the original
source code. We believe the benefits of tracking refactored
entities far outweigh the extra space cost.

In the future, we plan to focus on algorithms for seman-
tic merging of refactoring operations and regular edit op-
erations, so that the level of user involvement is minimal.
Because we operate at the semantical level of changes, the
merging is going to be much more powerful than traditional
line-based merging.

We believe that the availability of such semantics-aware,
refactoring-tolerant SCM tools is going to encourage pro-
grammers to be even bolder when refactoring. Without the
fear that refactorings are going to cause conflicts with oth-
ers’ changes, software developers will have the freedom to
make their designs easier to understand and reuse.

7. REFERENCES
[1] U. Asklund, L. Bendix, H. Christensen, and

B. Magnusson. The unified extensional versioning
model. In Proceedings of the 9th Software
Configuration Management Workshop. Springer
Verlag, 1999.

[2] www.borland.com/resources/en/pdf/white papers/
jb2005 whats new.pdf.

[3] M. C. Chu-Carroll, J. Wright, and D. Shields.
Supporting aggregation in fine grained software
configuration management. In Proceedings of the tenth
Foundations of software engineering symposium, pages
99–108. ACM Press, 2002.

[4] R. Conradi and B. Westfechtel. Version models for
software configuration management. ACM Computing
Surveys (CSUR), 30(2):232–282, 1998.

[5] D. Dig, T. Nguyen, and R. Johnson. Refactoring-aware
software configuration management. Technical Report
UIUCDCS-R-2006-2710, UIUC, April 2006.

[6] K. Dittrich, W. Gotthard, and P. Lockemann.
DAMOKLES: a database sytem for software
engineering environments. In Proceedings of the
International Workshop on Advanced Programming
Environments. Springer Verlag, 1986.

[7] Eclipse Foundation. http://eclipse.org.

[8] W. Edwards. Flexible Conflict Detection and
Management in Collaborative Applications. In

Proceedings of Symposium User Interface Software
Technology, 1997.

[9] T. Ekman and U. Asklund. Refactoring-aware
versioning in eclipse. Electr. Notes Theor. Comput.
Sci., 107:57–69, 2004.

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Existing Code. Adison-Wesley, 1999.

[11] N. Habermann and D. Notkin. Gandalf: Software
development environments. IEEE Transactions on
Software Engineering, 12(12):1117–1127, Dec 1986.

[12] J. Henkel and A. Diwan. Catchup!: capturing and
replaying refactorings to support api evolution. In
ICSE’05: Proceedings of International Conference on
Software Engineering, pages 274–283, 2005.

[13] JetBrains Corp. http://www.jetbrains.com/idea.

[14] Y. Lin and S. Reiss. Configuration management with
logical structures. In ICSE’96: Proceedings of
International Conference on Software Engineering,
pages 298–307, 1996.

[15] E. Lippe and N. van Oosterom. Operation-based
merging. In SDE5: Proceedings of Symposium on
Software Development Environments, pages 78–87.
ACM Press, 1992.

[16] B. Magnusson and U. Asklund. Fine-grained revision
control of Configurations in COOP/Orm. In
Proceedings of the 6th Software Configuration
Management Workshop. Springer Verlag, 1996.

[17] T. Mens. A state-of-the-art survey on software
merging. IEEE Transactions on Software Engineering,
28(5):449–462, 2002.

[18] T. Morse. CVS. Linux Journal, 1996(21es):3, 1996.

[19] T. N. Nguyen, E. V. Munson, J. T. Boyland, and
C. Thao. An infrastructure for development of
object-oriented, multi-level configuration management
services. In ICSE’05: Proceedings of International
Conference on Software Engineering, pages 215–224.
ACM Press, 2005.

[20] D. Ohst, M. Welle, and U. Kelter. Differences between
versions of UML diagrams. In FSE’03: Proceedings of
the Foundations of software engineering, pages
227–236. ACM Press, 2003.

[21] B. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, U of Illinois at Urbana-Champaign, 1992.

[22] B. Opdyke and R. Johnson. Refactoring: An aid in
designing application frameworks and evolving
object-oriented systems. In SOOPPA’90: Proceedings
of Symposium on Object-Oriented Programming
Emphasizing Practical Applications, 1990.

[23] D. Roberts, J. Brant, and R. E. Johnson. A refactoring
tool for smalltalk. TAPOS, 3(4):253–263, 1997.

[24] Subversion.tigris.org. http://subversion.tigris.org/.

[25] L. Tokuda and D. Batory. Evolving object-oriented
designs with refactorings. Automated Software
Engineering, 8(1):89–120, January 2001.

[26] B. Westfechtel. Revision Control in an Integrated
Software Development Environment. In Proceedings of
the 2nd Software Configuration Management
Workshop, pages 96–105. ACM Press, 1989.

[27] CM Yellow Pages. http://www.cmcrossroads.com/.


