
Embedded Device Solution Life Cycle Support with Eclipse

ChangWoo Jung
IBM Ubiquitous Computing Laboratory

The MMAA Building, 467-12 Dogok-dong,
Gangnam-gu, Seoul, Korea

jungcw@kr.ibm.com

Han Chen
IBM T.J. Watson Research Center

19 Skyline Dr, Hawthorne, NY 10532

chenhan@us.ibm.com

ABSTRACT
The effectiveness of life cycle management of an embedded
device solution is crucial to its value proposition. This paper
shows that Eclipse technology can be used for both tooling
and runtime support of device solutions using a visual flow
language. We introduce a prototype implementation based
on Eclipse 3.2 and Equinox and demonstrate that it helps a
user in each stage of a solution life cycle.

1. INTRODUCTION
Computerized sensors and actuators are used in diverse

applications such as industrial automation, asset manage-
ment, smart office/living space, healthcare, etc. For ex-
ample, a smart office [5] may be laden with sensors which
measure ambient light, temperature, humidity, human pres-
ence, etc., and computer-addressable actuators such as light
switches, dimmers, Heating, Ventilation and Air Condition-
ing (HVAC) blowers, dampers, and so on. In retail industry
passive RFID technology is used to improve the efficiency of
supply chain. RFID-enabled receiving portal is one exam-
ple. It is a dock door integrated with motion detectors for
sensing the presence of incoming pallets, RFID readers for
acquiring IDs from the tagged cases, and a light stack for
indication of operational status.

In order to carry out functions desired by users, these
sensor and actuator devices must be coordinated. This is
usually accomplished by connecting the devices to a con-
troller node via wireless links or wired connections, as seen
in Figure 1. The controller node executes certain applica-
tion logic so that the office space is customized according to
the occupant’s preference and the receiving portal alerts the
operator automatically when unexpected shipment occurs.
We generally refer to the application logic as an Embedded
Device Solution.

How easily an embedded device solution can be created,
deployed, and managed has a direct impact on its value to
the user. We have proposed Rapid Integrated Solution En-
ablement (RISE) as a framework for managing the life cycle

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Computing NodeSensors Actuators

Wired

Wireless

Composite
Component

Component

Input Port

Output Port

Connection

Solution

Figure 1: An integrated embedded device solution

of embedded solutions [4]. We argued that a high-level vi-
sual programming model is better suited for these solutions
than textual languages such as Java. As a result we cre-
ated the Graphical Composition Language (GCL), a model-
driven component-based programming language, to describe
the behavior of an integrated device (Figure 1). Based on
Java, GCL defines the component interface in high level
terms such as ports and parameters. Developers can cre-
ate primitive (or atomic) components using the Java base
classes or construct composite components from other com-
ponents hierarchically.

While [4] discusses the design methodology and architec-
ture of RISE, this paper focuses on how Eclipse technology
is used to support the entire life cycle of a solution. The rest
of the paper is organized as follows. Section 2 discusses the
life cycle of an embedded device solution in general and how
Eclipse technology fits in the picture. The updated imple-
mentation of RISE is described in Section 3 and Section 4
shows how the tool is used. Section 5 concludes the paper
and points out some future work.

2. SUPPORTING EMBEDDED DEVICE SO-
LUTION LIFE CYCLE WITH ECLIPSE

Like any piece of software code an embedded device so-
lution passes through several stages from the time of being
conceived to that of decommission. During its life cycle there
are different roles involved in each stage. A well designed
tool should support the entire life cycle of a solution so that
all user roles can perform their tasks easily.

Development

Deployment
Management

&
Monitoring

Testing

Debugging

Publishing

Reuse

Deployer

Developer

Administrator

Figure 2: Life cycle of an embedded device solution

2.1 Life Cycle of a Solution
Following a model-based development methodology to en-

courage software reuse we partition the life cycle of an em-
bedded device solution into three broad stages: develop-
ment, deployment, and management, as shown in Figure 2.
Some stages can be further decomposed into smaller steps,
as outlined in the following list.

Design and Development During this stage a developer
creates reusable components or an entire solution.

Reuse During the development stage a developer may choose
to import existing components or solution templates
instead of re-implementing them from scratch. These
components may come from various external sources,
for example, local file systems, company-wide reposi-
tories, or Internet update sites.

Testing During development the developer tests a solution
to verify that it is functioning correctly. Testing can
be achieved with either a model-driven formal verifi-
cation tool or via a simulator which offers quick visual
feedbacks but lacks rigorous proof. Development and
testing typically alternate; this loop will go on for mul-
tiple iterations before the solution is finalized.

Debugging If problems are uncovered during testing a de-
veloper may need to debug a solution interactively in
order to locate any design flaws and correct them.

Publishing After a developer finishes a solution or a com-
ponent that is deemed general enough to be reusable,
he publishes the solution or component to some exter-
nal destinations. This allows it to be reused by other
solutions later.

Deployment During deployment a deployer, who can be
different from the developer, installs a solution on a
target runtime that controls the devices.

Management After a solution is installed, an administra-
tor supervises its execution by performing manage-
ment tasks such as pausing, stopping, restarting, re-
configuring parameters, etc.

Monitoring While a solution is running an administrator
monitors its health and performance status, for exam-

ple, message throughput, latency, etc. When the ad-
ministrator encounters problems or the user require-
ments cannot be met by the current solution, he re-
quests another iteration for solution upgrade, which
leads to the design and development stage again.

2.2 Eclipse’s Role
Eclipse is an open-source software that is gaining wide ac-

ceptance in the software engineering community. At its core
Eclipse is an extensible plug-in management engine. A plug-
in is a software module that provides a set of features ac-
cording to a well-defined specification of an extension point.
A plug-in can define extension points thus allowing its func-
tionality to be extended by other plug-ins. This modular
architecture gives developers opportunities to create an end-
less variety of tools.

Most of tools rely on the workbench plug-in for user in-
terface; it defines the extension points of editor, view, and
perspective. A tool maker can create an editor plug-in for a
specific file type in a workspace. He can use view plug-ins
to offer detailed representations of key aspects of a devel-
opment process. A perspective plug-in allows the tool to
organize the myriad of editors and views in logical groups
to target different user roles.

Its perspective-based UI, extensible plug-in architecture,
and other supporting tool projects such as Eclipse Model-
ing Framework (EMF) and Graphical Editing Framework
(GEF) make Eclipse the perfect tooling platform for em-
bedded device solution life cycle support.

Since version 3.0 Eclipse has incorporated the Open Ser-
vices Gateway Initiative (OSGi) Service Platform [2] in its
runtime architecture. The specifications of OSGi define how
service modules, or bundles, are managed inside a Java vir-
tual machine. With OSGi bundles can be installed, started,
stopped, updated, or uninstalled dynamically. This pro-
vides a flexible and powerful mechanism to any application
that requires modularity and collaboration among its com-
ponents. Therefore we choose Equinox, the Eclipse OSGi
implementation, as the runtime for an embedded device so-
lution, which should result in easier component management
and better interoperability.

3. PROTOTYPE IMPLEMENTATION
The RISE software architecture consists of three main

platforms: tooling, runtime, and component repository, as
shown in Figure 3. The tooling platform provides an in-
tegrated development environment (IDE) for developers to
build, deploy, and manage embedded device solutions. The
runtime platform executes the solutions. The repository al-
lows components and solutions to be shared and reused at
build-time and dynamically loaded at run-time.

The original proof-of-concept prototype in [4] used Eclipse
2.1 for tooling support only. We have since updated the
implementation to leverage Eclipse 3.2 as both the tooling
and runtime technology provider.

3.1 Development Tool
A unit of development is called component. A component

can be either atomic or composite. An embedded device
solution typically takes the form of a composite component.
A composite component is created as an event flow diagram
written in GCL with an optional state machine that con-
trols the flow. This model is captured and persisted in a

Persistence

Model

Composition

Editor

Atomic

Editor

Code

Generator

Library

Browser

Library

Packaging

Library

Editor

Library

Publishing

Solution

Launching

RISE
IDE

Eclipse
Feature

UI GEFJDT PDE UI PlatformPDE EMF

.rise

model
Atomic Composite Activator Manifest Descriptor

o

Library
Server

RISE
Runtime

EquinoxHost Platform

Factory Engine Agent

Library

Figure 3: Software architecture of RISE

description language; a code generator is used to transform
it into executable Java code. Logically related components
are packaged into a library. Library is the unit of publishing
and dynamic loading.

The IDE consists of several major functional blocks, many
of which are implemented with support of Eclipse platform
and other related tool projects. Details are shown in Fig-
ure 3.

Persistence model An EMF ecore model is created for
the GCL. The resulting EMF classes provide an per-
sistent format in XMI and serializers and deserializers
for the model.

Composition editor The composition editor allows a user
to edit a composite component visually, for example,
creating ports and parameters, making connections be-
tween ports, importing existing components from a li-
brary server, etc. The editor is based on GEF, which
provides visual layout and rendering of graphical ob-
jects.

Atomic editor There is no special plug-in for this part,
but we provide a set of base classes for a developer
to create atomic component using Java Development
Tools (JDT).

Code generation Whenever a composite component model
is modified and saved, the incremental builder invokes
the code generator which transforms the model into
Java classes.

Library browser This is a view that enables a developer
to browse existing components published on library
servers.

Library packaging We map the library concept into Eclipse
plug-in (or OSGi bundle) and leverage Plug-in Devel-
opment Environment (PDE) to create bundle struc-
ture and manifest file. The tool then inserts markers
in the manifest to indicate that it is a RISE library.
It also creates special bundle activator that assists the
dynamic loading of components. A descriptor file is

Figure 4: User interface of RISE IDE

also packaged in the root folder; it lists the compo-
nents available in the library.

Library editor This tool is used by a developer to manu-
ally manipulate the library descriptor file.

Library publishing This tool creates a JAR for a library
and submits it to target library servers.

Solution launching This enables a developer to launch a
solution (component) on a target runtime.

The user interface of the IDE is shown in Figure 4. It
shows the RISE perspective, which contains the composition
editor, the library browser, and the property sheet. Not
shown in the screenshot are various wizards and dialogs that
assist a developer throughout the design process.

3.2 Runtime Platform

The runtime platform is based on Equinox, the Eclipse
implementation of OSGi specification. The three major run-
time components, Agent, Engine, and Factory are all pack-
aged as bundles (see Figure 3). The agent receives com-
mands from outside and controls the runtime. The engine
executes the generated solution code. The factory handles
the dynamic loading of components.

A component is uniquely identified by a Uniform Resource
Identifier (URI) which includes a protocol, a library name,
and a component name. Because libraries are packaged as
bundles, the factory first uses a protocol handler to load the
library binary into the runtime with OSGi support. It then
delegates the instantiation of component to the library’s ac-
tivator.

This provides a convenient, dynamic, and distributed mech-
anism of composition during run-time. In particular, the
child components of a solution need not be loaded from the
same library, nor do all the libraries have to reside on the
same library server.

3.3 Library Server
A library server serves as a repository of reusable compo-

nents and solutions. During the deployment phase it delivers
libraries to a runtime in response to requests coming from
the Factory (see Figure 3).

A desirable feature of the library server is automatic pre-
requisite resolution, that is, generating a list of bundles (or
libraries) a requested library depends on. This simplifies the
runtime management of libraries. It can be computed by in-
specting the manifest of a library for any import packages
and services.

In this implementation we continue to use the bundle
server from Service Management Framework (SMF) [1] as
the library server. We extend the Equinox bundle installa-
tion mechanism to support automatic pre-requisite resolu-
tion by creating a custom protocol handler. It takes advan-
tage of the server-side dependency calculation feature of the
SMF bundle server. Alternatively we could build a proto-
col handler that computes the dependency at client side; this
would be useful for less sophisticated library server platform
such as a web server.

4. USING RISE
In this section we demonstrate how the RISE tool is used

throughout the life cycle of an embedded device solution.

4.1 Creating a Library
After switching to the RISE perspective, the user cre-

ates a new RISE project with the creation wizard. A RISE
project is bound with RISE nature, which uses an incremen-
tal project builder to generate code from models.

The user can convert a RISE project or a source folder
within it into a library folder by using a wizard. The wizard
generates a manifest file (META-INF/MANIFEST.MF), a library
descriptor file (riselib.xml), and a bundle activator class.
The manifest contains special markup attributes so that the
bundle can be recognized as a library.

The library descriptor editor, as shown in Figure 5, is
opened when the user double-clicks on the library descriptor
files. It shows a list of components contained in this library
and the ports and parameters of each component. A search
feature is included in the editor to discover manually created
atomic components.

Figure 5: Library editor

4.2 Creating an Atomic Component
An atomic component is implemented in Java using the

RISE component interface. The user creates an atomic com-
ponent just like he would a regular Java class. In the Java
class creation wizard the user specifies AtomicComponent as
the super class. JDT creates a skeleton code and the user
has to fill in unimplemented methods. Ports and parameters
are declared as member variables of the class.

4.3 Creating a Composite Component
The user uses the new RISE component wizard to create

a composite component. After specifying the destination
folder and file name, a new .rise file is created in the des-
ignated package. The associated composition editor is also
opened. The user can then create and modify the event flow
diagram by adding children components, creating ports and
parameters, and making connections between ports. When
the editor is saved, the code generator will create a Java file
from the model in the same package that the .rise resides.

The GCL allows a composite component to be either state-
less or stateful. When a composite component is created it is
stateless by default. To give a component stateful behavior,
the user clicks the “State Machine Editor” button on the
toolbar of the composition editor. A state machine is then
created and associated with the current composite compo-
nent. The “State Machine Editor” appears as a pane at the
bottom half of the editor (see Figure 4). The user can create
states and transitions among them on the drawing canvas
by using the proper toolbar buttons. The user can create a
different event flow diagram for each state using the editor.

4.4 Browsing Library Servers
The library browser view, shown in Figure 4, shows all

the components that are available for reuse in a compos-
ite component. It is a tree viewer with several top-level
branches. The first one is “Anonymous”, which contains
all the anonymous inner components nested in the current
composite component being edited; this branch is only vis-
ible while editing a compositing component. The second
one is “Base Library”, which is a list of standard compo-
nents that come with RISE. The third one is “Workspace”,
which contains a list of all RISE library folders in the cur-
rent workspace. Within each library folder there is a list of
components. Each one of the rest of the branches represents

a library server. Under each library server node there is a
list of libraries that are discovered from it.

The user can add new library server locations to the list
or remove existing ones from it.

4.5 Reusing a Component
With the library browser view open a user can simply drag

a component from the browser view and drop it onto the
drawing canvas for an composite component. Because the li-
brary descriptor file contains the description of a component
including its ports and parameters, when it is dropped onto
the editor canvas correct ports and parameters are shown.

4.6 Publishing a Library
After the user has finished developing a component or a

solution he may want to make it available for reuse. He can
submit the library using the library submission wizard. The
target library server locations are selected in the wizard.
The tool then generates a JAR for the library and sends it
to the library servers.

After refreshing the library browser view the user will no-
tice that the newly added library is shown under the target
library server folder. It is now ready to be used by others.

4.7 Starting the Runtime
Before a solution can be tested or deployed on a device the

RISE runtime needs to be prepared. The user launches the
Equinox OSGi framework on the target device and installs
the runtime bundles that constitute the Agent, the Engine,
and the Factory, as described in Section 3.2. After these
bundles are installed and started the runtime is ready to be
managed by the IDE.

To date the runtime software with Equinox has been tested
on Windows and embedded Linux on Arcom Viper.

4.8 Running a Solution
We use the standard Eclipse run wizard to manage the

running of solutions. The user creates a new run configura-
tion for each solution he intends to deploy. He specifies the
URI of the solution, the address of the target runtime, and
several other options in the dialog page. If the solution has
parameters, the user can set their values in the same dialog.

After making sure that the target runtime is properly pre-
pared and all necessary libraries are submitted to a library
server, the user can activate a run configuration. The wiz-
ard sends the URI and parameter values to the agent on the
target runtime, which then loads and starts the solution.

4.9 Configuring a Solution
While a solution is running its parameters can be dynam-

ically changed to modify its behavior. This is done through
a web application hosted by the runtime.

5. CONCLUSION AND FUTURE WORK
Nowadays many applications call for the integration of

sensors and actuators to create intelligent composite devices.
The effectiveness of managing the life cycle of an embedded
device solution can have a direct impact on the total cost
of ownership of such devices. In this paper we have showed
that Eclipse technology can play a significant role in the life-
cycle of such solutions. We have created a prototype system
consisting of an IDE, a runtime, and a repository based on
various Eclipse related technologies and have demonstrated

that it can simplify the creation, deployment, and manage-
ment of solutions.

As we continue to refine the current design and explore
new opportunities in this space, we have identified some
additional enhancements. We consider them as future work.

Event monitoring Monitoring a solution as it runs can
provide valuable insight into its performance and help
identify latent design flaws. We envision that the com-
position editor can be enhanced to support a monitor
mode, in which an administrator can dynamically at-
tach watch windows to ports or components and mon-
itor events as they occur.

Debugging Although there is a debugging feature avail-
able in JDT, it has very little value when a solution is
created using the flow language. A much more pow-
erful visual debugger would allow a developer to set
breakpoints on components or ports with filtering con-
ditions.

New library server The component libraries are ideally
comprised of a local library and a remotely hosted,
pooled component library. The remote component li-
brary would be beneficial for the developer to find and
leverage pre-built components. This vision is anal-
ogous to the OSGi Bundle Repository (OBR) con-
cept [3]. Supporting OBR as a library platform would
make the system more open and interoperable.

6. ACKNOWLEDGMENT
This work is partially supported by the IT839 project

from the Institute of Information Technology Assessment
and Ministry of Information and Communication in Repub-
lic of Korea. We would also like to thank all the team mem-
bers who have contributed to the design and implementation
of the prototype system: Paul Chou, JeongAh Jang, Andy
Kim, SooYeon Kim, KangYoon Lee, Sam Lee, Johnathan
Reason, JiHye Rhim, YongHoon Um, and Danny Wong.

7. REFERENCES
[1] IBM. Service Management Framework.

http://www-306.ibm.com/software/wireless/smf/.

[2] OSGi Alliance. OSGi Service Platform, Release 4
Specification, 2005. http://www.osgi.org.

[3] OSGi Alliance. RFC-0112 Bundle Repository, 2006.
http://bundles.osgi.org/rfc-0112_

BundleRepository.pdf.

[4] J. Reason, H. Chen, C.-W. Jung, S.-W. Lee, D. Wong,
A. Kim, S.-Y. Kim, J.-H. Rhim, P. Chou, and K.-Y.
Lee. A Framework for Managing the Solution Life
Cycle of Event-Driven Pervasive Applications. In
Proceedings of IFIP International Conference on
Embedded and Ubiquitous Computing, 2006.

[5] S. Yoshihama, P. Chou, and D. Wong. Managing
Behavior of Intelligent Environments. In Proceedings of
IEEE International Conference on Pervasive
Computing and Communications, 2003.

