Towards an Implementation of the 3D Visibility Skeleton
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ABSTRACT

In this note we describe the contents of a video illustrating
an algorithm for computing the 3D visibility skeleton of a
set of disjoint convex polytopes. The video can be found
at http://www.cs.mcgill.ca/~1lzhanglb/video/ with file
name socg07visidemo.mov.

Categories and Subject Descriptors: F.2.2 [Nonnumer-
ical Algorithms and Problems|: Computations on discrete
structures

General Terms: Algorithms

Keywords: Visibility skeleton

1. INTRODUCTION

The 3D visibility skeleton is a graph whose vertices corre-
spond to the maximal free line segments that are transversal
to four edges of at least three distinct polytopes and tangent
to those polytopes; its arcs correspond to sets of maximal
free line segments that are tangent to three polytopes [9].
The visibility skeleton has been used for visibility computa-
tions such as computing shadow boundaries [10, §].

This video demonstrates a sweep plane algorithm for cap-
turing the vertices of the 3D visibility skeleton of a set of
polytopes in 3D [13, 5].

2. THEALGORITHM

The input of the algorithm is a set of k disjoint convex
polytopes in general position with n edges in total. The
output of the algorithm is the set of O(n?k?) vertices of
the 3D visibility skeleton of the input polyhedra. The algo-
rithm, which runs in O(n2k2 log n) time, can also be used to
compute the arcs of the skeleton.

The algorithm performs a rotational plane sweep around
each edge e of each polytope, sweeping from one incident face
of that edge to the other incident face. The sweep plane in-
tersects the polytopes in at most k disjoint convex polygons,
which change their shape as the sweep plane rotates. Figure
1 shows one position of the sweep plane, drawn as a faint
grid, as it rotates around edge e of polytope C. Polytopes A
and B are intersected by the sweep plane. Polytope C lies
above the plane, with edge e in the plane. Polytope D lies
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Figure 1: One position of the sweep plane.

below the plane. Figure 2 shows the view inside the sweep
plane. The polytopes A and B intersect the plane in con-
vex polygons A and B, which support 4 bitangents. Figure
3 shows the 2D visibility skeleton corresponding to Figure 2.
The circular cycle of directed arcs gives the ordering of the
4 bitangents around polygon A; the cycle of the remaining
directed arcs gives the ordering of the 4 bitangents around
polygon B.

During the sweep, the algorithm maintains the 2D visibil-
ity skeleton of the intersected polytopes [14]. The 2D visibil-
ity skeleton for the convex polygons in the initial sweep plane
is computed and then used to determine the initial queue of
critical events that will occur during the sweep. The sweep
planes at which these critical events occur are called event
planes. At a critical event, the 2D visibility skeleton may
change its topology and the algorithm updates it, as well as
the queue of critical events.

There are three types of critical events. A V-event occurs
when the sweep plane encounters a polytope vertex that
supports one or more bitangents in the sweep plane. A T-
event occurs when two or three bitangents become colinear.
An F-event occurs when a bitangent becomes colinear with
a face of a polytope. There are O(nk?) events per sweep,
and they can be computed and processed in O(nk?logn)



Figure 2: The view inside the sweep plane.
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Figure 3: The 2D visibility skeleton for Figure 2.

time in the usual sweep algorithm paradigm.

The vertices of the 3D visibility skeleton are captured
during the sweep, as they correspond to the V, T, F-events
whose associated bitangents intersect the edge e that the
sweep plane is rotating about. After the n sweeps, a de-
scription of the arcs of the 3D visibility skeleton can be
computed, although the details are not illustrated in the
video.

3. IMPLEMENTATION ISSUES AND
TECHNICAL DETAILS

Although the algorithm as described in [5] works for any
set of possibly intersecting convex polytopes in any config-
uration, the current implementation requires that the poly-
topes satisfy certain general position assumptions®.

The key predicate of the sweep algorithm compares two
event planes, to order their occurrences in the sweep. A
detailed study of this predicate and its degree is given in [11].

The algorithm was implemented in C++ using the CGAL
[6] library. We used the CORE library [7] to perform exact
comparisons of algebraic numbers. To compute the 2D vis-
ibility skeleton we used the CGAL-based package due to
Angelier and Pocchiola [3], based on the Greedy Flip Algo-
rithm [4, 14].

The graphical output was produced using the Geomuview
software [12] through the interface provided by the CGAL
library. We took snapshots of the Geomview window display,
while rotating the viewpoint to provide a 3D view of the
objects in the display window. Finally, we used iMovie [2]

IThe precise definition of our general position assumptions
is straightforward but lengthy. It guarantees, for example,
that each critical event corresponds to a unique position of
the sweep plane.

to assemble all the snapshots together into the final video.
We used the Audacity [1] software for the audio.
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