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ABSTRACT

We study the expected size of the 2D visibility complex of randomly distributed objects
in the plane. We prove that the asymptotic expected number of free bitangents (which
correspond to O-faces of the visibility complex) among unit discs (or polygons of bounded
aspect ratio and similar size) is linear and exhibit bounds in terms of the density of the
objects. We also make an experimental assessment of the size of the visibility complex for
disjoint random unit discs. We provide experimental estimates of the onset of the linear
behavior and of the asymptotic slope and y-intercept of the number of free bitangents
in terms of the density of discs. Finally, we analyze the quality of our estimates in terms
of the density of discs.

Keywords: Visibility complex; free bitangents; expected size.

1. Introduction

Visibility computations are central in computer graphics applications. Computing
the limits of the umbra and penumbra cast by an area light source, identifying the
set of blockers between any two polygons and determining the view from a given
point are examples of visibility queries that are essential for the realistic rendering
of 3D scenes. In global illumination algorithms, where the flow of light in a scene
is simulated according to the laws of geometrical optics, visibility computations

§This work was done while the fourth author was visiting LORIA.
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bitangent type—3 segme

Fig. 1. Bitangents and free segments corresponding to vertices of the visibility complex.

are excessively costly. In fact, more than half of the overall computation time can
routinely be spent on visibility queries in radiosity simulations.'?

One approach to speeding up rendering is to store global visibility information
in a data structure which can then be efficiently queried. The visibility complex, a
partition of the set of maximal free line segments, and its 1-skeleton, the visibility
skeleton, have been proposed as unified data structures encoding the visibility in-
formation of a scene!® and have been used for rendering purposes.®-3° Other related
data structures include Pellegrini’s ray-shooting structure,'® the aspect graph'” and
the visual hull'#; see Ref. [7] for a recent survey.

One problem with these types of data structures which may prevent their appli-
cation in practice is their potentially enormous size. In 3D, the size of the visibility
complex of a set of n triangles is ©(n?) in the worst case,® which is prohibitive
even for scenes of relatively modest size. Worst-case examples are somewhat artifi-
cial and indeed Durand et al.%® provided empirical evidence indicating that these
worst-case upper bounds are largely pessimistic in practical situations; they ob-
served a quadratic growth rate of the visibility skeleton, albeit for rather small
scenes (with less than 1,500 triangles). The ©(n?®) observed time complexity of
their algorithm (which occasionally resorts to a systematic ©(n®) enumeration)
and the lack of robustness of their implementation prevented experiments on much
larger scenes. It was later proved that the expected size of the 3D visibility complex
of random unit balls is linear.® Despite the fact that objects in graphics scenes are
seldom distributed uniformly, the theoretical linear asymptotic bound hints that
the experiments of Durand et al. may not have been performed for a sufficiently
large number of objects to reach an asymptotic behavior. Because of the absence
of a robust and eflicient implementation for computing the visibility complex (or
skeleton), estimating in practice the onset of the asymptotic linear behavior and
the constants (slope and y-intercept) of the asymptote remains an open problem
in 3D.

We focus here on the 2D case. While the worst-case complexity of the 2D vis-
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ibility complex is quadratic, experimental results on scenes consisting of scattered
triangles strongly suggest that the size of the visibility complex is linear.* In this
paper, we carry out a detailed study of the size of the 2D visibility complex of discs
and disc-like objects. First, we provide theoretical evidence to support the afore-
mentioned observations. We prove that the expected number of free bitangents, i.e.,
of maximal non-occluded line segments tangent to two discs, among n uniformly
distributed, possibly intersecting, unit discs in R?, is linear. This result is not sur-
prising considering that the analog result was already proved in 3D for unit spheres.®
We also show a linear bound on the expected number of maximal free line segments
connecting two vertices of the union boundary of the set of discs (which we call type-
4 free segments, as they are defined by four discs) or defined by one such vertex and
tangent to another disc (which we call fype-3 free segments); see Figure 1. These
free segments are relevant since, together with the free bitangents, they correspond
to the vertices of the visibility complex defined as the partition of the set of maximal
free line segments in connected components of segments touching the same discs.
Furthermore, we show that these bounds also hold for random bounded-complexity
objects enclosed between discs of non-zero constant radii (whose 3D analog is not
proved).

The main result of our paper is a detailed, theoretical and experimental, study
of the constants in the asymptotic linear behavior of the expected number of free
bitangents. We provide theoretical upper bounds and experimental estimates on
the slope and y-intercept of the asymptote in terms of the density of discs. We also
estimate the onset of the linear behavior in terms of the density.

The rest of this paper is organized as follows. Section 2 describes the models of
distributions of unit discs we consider in this paper. We prove in Section 3 theoretical
upper bounds on the expected number of free bitangents and free segments of types
3 and 4 among uniformly distributed, possibly intersecting, unit discs or polygons of
bounded aspect ratio and similar size. We present in Section 4 our experiments and
the interpolation of the number of free bitangents among random pairwise disjoint
unit discs and conclude in Section 5.

2. Models

We describe in this section the two different probabilistic models we consider in
this paper. The motivation for considering two different models comes from these
simple observations:

e the theoretical analysis is most easily performed when the objects are in-
dependently chosen, and so can possibly intersect;

¢ the experimental assessment uses the only known released implementation
of the 2D visibility complex that is time efficient (i.e., the one due to An-
gelier and Pocchiola!) and this implementation requires disjoint discs.
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In what follows, let n € N, Dy,..., D, be n unit discs and call p; the center of
D;. Let also U (resp. Ut) be the disc of radius R > 0 (resp. R + 1) centered at the
origin O.

Intersecting-discs model. A sample scene in this model consists of n unit discs
D;,i =1,...,n, whose centers are independently chosen from the uniform distribu-
tion over the disc i/. Since the centers p; are distributed over U/, the discs D; may
intersect each other and are contained in the universal disc ¢/

Note that random points over a disc of radius R can be generated using two
uniformly distributed variables r € [0, R?] and 6 € [0,27) and then taking

T = /T cos8,
{ y = +/rsinb.
The distribution induced by this model is uniform, in the sense that, for any region
A CU of area |4],
4]
Pr((z,y) € A) = R
The average number of centers inside a unit disc inside U is thus 4 = gz. The
value p reflects the “density” of points inside the universe. Since we are interested
in asymptotic behavior as n increases, we set u to a constant value and define the
radius R of the universe U to be such that
rR="
7
Disjoint-discs model. The model we consider for our experiments is different
from the theoretical one in the sense that we consider pairwise disjoint discs. A
random sample is constructed by choosing the n centers of discs one at a time
from the uniform distribution over I/ with the constraint that each newly generated
center is at distance larger than 2 from all the centers already generated.

Mimicking the intersecting-discs model, we set ;s to be a constant and choose
R such that R? = %+ In this model, the density of discs inside U" (defined as the
ratio of area covered by discs to the total area) is

n
m ~ i when n — oc.

Note that this distribution is different from the uniform distribution of disjoint
discs which would be achieved by generating sets of n centers independently from the
uniform distribution over ¢ until a set is generated in which all the corresponding
discs are pairwise disjoint (such a distribution is clearly impractical for generating
large and dense scenes).

In order to get a grasp on our two models, we present the results of some
experiments. First, Figure 2 shows examples of random scenes for various densities
for the two models. Figure 3 shows the percentage of free discs and the complexity
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(b)

Fig. 2. Scenes of (a) random disjoint and (b) possibly intersecting unit discs with densities p =
0.0025, 0.1, and 0.55.

of the union boundary for random scenes in the intersecting-discs model. Notice
that the percentage of free discs is substantial even for rather high densities but the
complexity of the union boundary never exceeds 1.4n for our data sets, which is
consistent with the tight theoretical worst-case bound of 6 n — 12.*% Figure 4 shows
that the discrepancy between the two models is rather small. First the number of free
bitangents in the intersecting-discs model is asymptotically less by at most 15% than
in the disjoint-discs model. Second, the number of free bitangents in the disjoint-
discs model is asymptotically less by at most 12% than the number of vertices of
the visibility complex, that is the number of free bitangents plus the number of type
3 and 4 free segments, in the intersecting-discs model. Finally, Figure 5 shows that
the number of type 3 and 4 free segments does not exceed 40% of the total number
of vertices of the visibility complex for the considered densities. Note finally that
these graphs do not show any dependency on n and that the standard deviations
seem small (each data point corresponding to only one sample scene).



366 H. Ewverett et al.

100 2

s o GERSIYOS LW & T density 05 W
\Vr‘\w”*‘"ww fonyeE Genayoa =
sy 03 = gensiy03 -
oy F E ¥
. Jenst Lo enst -

w P G s el oo
density 001 S

,f‘*‘*WJ‘*\W* v

jon boundary over n

% of frae discs.

N Sty O
2 B o NN rys w/‘/—»_\l/&/‘%ﬂ

e T U S ]

SN s e TN

I e e e e

) 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
discs. discs

(a) (b)

Fig. 3. (a) Percentage of free discs in the intersecting-discs model. (b) Complexity of the union
boundary over the number of discs.
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Fig. 4. Discrepancy between the two models in terms of the number of free bitangents (expressed
as a percentage): (a) f—;g where f and ¢ are the number of free bitangents in the disjoint and

’
intersecting-discs models, respectively; (b) gg%f where ¢’ is the number of free bitangents plus

type 3 and 4 free segments in the intersecting-discs model.

3. Theoretical Bound

We prove in Section 3.1 a linear bound on the expected number of free bitangents of
n uniformly distributed discs. We then generalize the result, in Section 3.2, to free
segments of types 3 and 4 and, in Section 3.3, to discs of various radii and polygons
of bounded aspect ratio and similar size.

3.1. Free bitangents

We prove the following theorem.
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Fig. 5. Percentage of the number of type 3 and 4 free segments over the total number of free
bitangents and type 3 and 4 free segments, in the intersecting-discs model.

Theorem 1. The expected number of free bitangents among n uniformly dis-
tributed, possibly intersecting, unit discs is ©(n). More precisely, the upper bound

8 <u+%) (n—1).

Definitions. Let A be the set of ordered pairs (i,7) chosen from {1,2,...,n} such
that 4, 7 are distinct. In our model, the probability that two centers coincide is zero,
so we may assume that any two discs admit at most 4 real common tangent lines.
For any pair of discs we order arbitrarily the 4 bitangents (two of which are possibly
complex) to the two discs.

Given two discs D; and Dj, we denote by L7;, for w in {1,...,4}, the event
that the w'® bitangent to D; and Dj is real, and that p; is not closer than p; to the
boundary of . Whenever L7 ; occurs, we denote the points of tangency of that line
on D; and Dj by t7 and ¢¥, respectively. Let J;; be the event that £¢; occurs and
the line segment ¢¢7 is not occluded.

Let x; ; be the random variable representing the distance from p; to p;, and y;
be the random variable representing the distance from p; to the boundary of the
universe.

is less than

Proof of Theorem 1. There is a one-to-one correspondence between the free
bitangents to D; and D; and the events 4;’; that occur. We thus have the following
straightforward lemma.

Lemma 1. The expected number of free bitangents among n uniformly distributed
unit discs is Z(i,j)e/\f Zzzl Pr(d¢;).

We bound the probability Pr(6gfj) by integrating over the distance x between
p; and p;. However we treat independently the case where both p; and p; are close
to the boundary of the universe. Dealing with boundary cases is usually the major
difficulty with uniform distributions. However, handling the boundary case is here
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straightforward, since the expected number of centers falling in the annulus bounded
by the circles of radius R and R — 1 is

(R = (R—1)*)p= (2R — 1)u = O(v/n),

so we trivially get that the expected number of bitangents between discs near the
boundary is of order n.

Lemma 2. Pr(d¥;) < 4” + I, where I = f2R Pr(6¢; | xij =z, yi 2 1) - Pr(z <
X5 <X+ dl‘)
Proof. First notice that
Pr(6y;) = Pr(67; 0 (yi < 1)) + Pr(67; N (y: 2 1)). (1)
Recall that if §%; occurs then p; is closer to the boundary of U than p;. Thus
Pr(d¢; N (yi < 1)) is less than or equal to the probability that both p; and p; lie

within distance 1 of the boundary of U/. Since all the points are independently and
identically drawn from the uniform distribution over I/, we have

) TRZ—w(R—1)2\?> [(2R-1\® 4 4y
Pr(éi’jﬂ(Yi<1))<Pr(Yi<1)2:( TR2 ) :< R? ) < '

Now, considering the second term of (1), we have
Pr(67; N (ys 2 1)) =Pr(6; | y: 2 1) - Pr(y; 2 1)
<Pr( |lyiz ) =1
by the Total Probability Theorem.'® O

We now prove that the integral I is bounded by O (%) For clarity, let Z denote
the event (x;; = z, y; > 1). In order to bound from above Pr(d¢; | E), we first
need to bound from below the area of #; ; N, where H; ; denotes the set of points
at distance 1 or less to a tangent ¢} corresponding to an event £7;.

Lemma 3. When Z and L3 ; occur, the area of H;; NU is greater than §.

Proof. Let K be the disc with diameter p;t¥. Note that K and p; are both
contained in I and in H;;. The convex hull of p; and K is thus contained in
Hi,j NU, and its area is half the area of the disc K, %, plus the area of a cone of
apex pj, of base a diameter of K, and of height greater than z — % The area of that
cone is at least $(z — 3), hence the area of H; j NU is greater than £ + % — 1 > £,

O
Lemma 4. Pr(5¢; | Z) < 2 exp (—42).

Proof. If 67 occurs, then L7, necessarily occurs, thus
Pr(6y; | ) =Pr(6;; N L7; | E) = Pr(LY; | B) - Pr(6y; | £3;, E)
<Pr(dy; | £, B)-
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Pr(é¢; | £¢;) is equal to the probability that for all v # 4,7, point p, is outside
‘H; ; given E. Since all the points are independently and identically drawn from the
uniform distribution over I/, we get

Pr(6y; | E) < Pr(p & Hij | L1,

Area of H; s NU no2
<l1—-—= 7 & .
(1 Area of U 2 i “)

By Lemma 3, the area of H; ; N is bounded from below by Z, thus

Pr(s?; | 2) < (1- %{5)"_2,

with z < 2R and R > 1, since y; > 1. Thus 5% < WR .Foranyt, 1—t < e ?,
thus for any ¢ < 1/7, we have (1 — )" 2 < e7"e? < 26*”‘ Hence

= zn z
Pr(67; | E) < 2 exp (_271'R2) =2 exp (—';—W) . |

We now bound the second term appearing in the integral I.

[11

)n~2

Lemma 5. Pr(z < x;; <z +dz) < ﬁdm

Proof. When p; is given, p; must belong to a circular annulus between two
circles of center p; and radii z and z + da. The probability Pr(z < x;,; < z+dz), if
p; is known, is exactly the area of the part of the circular annulus inside ¢/ divided
by the area of Y. The area of the part of the circular annulus inside i/ is bounded
from above by the area of the circular annulus which is 2wrzdz. Since the area of
U is mR* we get the claimed bound. (The exact value of Pr(z < x;; < z +dz) is
given in Ref. [20] but the above approximate bound is enough for our purposes.) O

We can now conclude by bounding the integral I.

1672

Lemma 6. I < .
un

Proof. By Lemmas 4 and 5 we have

2R +oo
pr 2z 4,u/ nx
I< 2 c—=dzx £ — —— ) dx.
\/w -0 exp( 27r) RS =0 mexp( 27r> o

Changing 5~ by z we get

p (T2 2 16 72
Ig—“/ —nzexp(—z)—wdzg T
n J—o 4 p pn
since fooo zexp(—z)dz is bounded by 1. m|

This completes the proof of the upper bound of Theorem 1 because Lemmas 1,
2, and 6 imply that the expected number of free bitangents is less than

) (482 (o ) 0
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Lemma 7. The expected number of free bitangents among n uniformly distributed
unit discs is in Q(n).

Proof. Let §; ; be the event that the external (say, left) bitangent between discs
Dj and Dj is not occluded. The probability that d; ; occurs is at least the probability
that d;; occurs and that the two discs centers p; and p; are greater than distance
1 from each other but less than distance 2. Thus

Pr(éi,j) > PI‘(l <X < 2) - Pr(éi,j | (1 <X < 2))

For n sufficiently large, the area of a circular annulus between two concentric
circles of radii 1 and 2 centered in ¥ is at least ?jT”, a quarter of the area of the
annulus. Hence the probability that p; and p; are within distance 1 and 2 is at least
37 divided by the area of U, that is & . L = 3

Pr(d; ; | (1 < x;; < 2)) is the probability that the (left outer) bitangent to discs
D; and Dj is not occluded by n — 2 other discs given that p; and p; are within
distance 1 and 2. This probability is (1 — —%5)"~2 where V is the area of the region

inside ¢/ and at distance at most 1 from the bitangent. Since V < 7w + 4,
n

—2

r+4\" 2 1+ 2)p o a
Pr(d; | (1<x;;<2) > (1 oy > = (1 — T) > e~ (1438,

We thus get that Pr(d; ;) > Z—Z e~(+2)% and the result follows by Lemma 1. O

This completes the proof of Theorem 1.

3.2, Free segments of types 3 and 4

Theorem 1 generalizes in various ways.

Theorem 2. The expected number of free segments connecting two vertices of the
union boundary of a set of n uniformly distributed, possibly intersecting, unit discs
is ©(n). More precisely, the upper bound is less than

11 p(p?+87%) (n—3).

Proof. The proof of Theorem 1 generalizes as follows. We first define some
notation similarly as before. Let A be the set of ordered pairs (4, j, k,{) chosen from
{1,2,...,n} such that i,j, &, are distinct. Given four discs D;, D;, Dy, and Dy,
we denote by £, ,, for win {1,...,4}, the event that the wt? segment joining an
intersection point of D; and D}, to an intersection point of D; and Dj is real, that
p; is the farthest of all four centers from the boundary of I, and that p; is farther
than p; to the boundary of ¢/. Whenever LY, . ; occurs, we denote the endpoints of
that segment by ¥ and ¢y, respectively. Let 8¢, , ; be the event that L7, , ; occurs
and the line segment ¢7t% is not occluded. Let x; ; (resp. X;x,X;,;) be the random
variable representing the distance from p; to p; (resp. from p; to py and from p;
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to pr), and y; (resp. y;) be the random variable representing the distance from p;
(resp. p;) to the boundary of the universe.

First, Lemma 1 generalizes directly to stating that the expected number of free
segments of type 4 is > ¢ 5 nen > Pr(6¢; ;). Second, Lemma 2 generalizes

almost directly to
ap\’ 4\’

2R
I :/ Pr(df; [ xij =2, yi 2 1, Xip <2, x51 <2) - Pr(z <x5 <z +da),
z=0

by noticing that
Pr(6y; 1N (yi < 1)) < Pr((ys < )N (y; <1)N(xip <2)N (x50 < 2))

where

4 3
= Prlys < 1) Pr(xip < 2° < (7")

since Pr(x;x < 2) < 77:?:2 = %£ and, as in the proof of Lemma 2, Pr(y; < 1) < 2.

Lemma 3 generalizes directly. Lemma 4 generalizes after replacing n — 2 by n — 4,
so that the constant in the upper bound becomes 4 instead of 2. Therefore, the
constant also doubles in Lemma 6. Hence, we get that the number of free segments
of type 4 is at most

3 2
Q)+ (2)22) < Bwr-seren
which gives the upper bound. Finally, the proof of Lemma 7 also generalizes directly
by noticing that
Pr(d; jx1) =2 Pr(l <x;; <2)-Pr(x; <2) Pr(x;; <2)
Pr(di; [ (1 <xq; <2), (xip <2), (x50 <2)),

which yields the linear lower bound. O

Theorem 3. The expected number of free segments through an intersection point
of the boundary of two discs and tangent to another disc among n uniformly dis-
tributed, possibly intersecting, unit discs is ©(n). More precisely, the upper bound
15 less than

11 (4% +87%) (n — 2).
Proof. Similarly as in the proof of Theorem 2, we get that the expected number

of free segments through an intersection point of the boundary of two discs and
tangent to another disc is at most

() () 2) <3 s
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which gives the upper bound. The lower bound follows from Lemma 7 similarly as
in the proof of Theorem 2. m|

3.3. Discs of various radit and polygons of bounded aspect ratio
and similar size

Theorems 1, 2 and 3 also generalize to other types of objects.

Theorem 4. The expected number of free bitangents and free segments of types 3
and 4 among n discs or polygons of bounded complexity, each enclosed between two
concentric discs of radii Tin and Tme, whose centers are uniformly distributed in

U, is 0(n).

Proof. The proof of Theorem 1 generalizes directly by considering the events
Yi =2 Tmae instead of y; > 1. The bounds in Lemmas 2, 3, 4, and 6 then become

2
4‘”;{”” + I, fpin 2 exp (— L& min) and u:ﬁfrgjm, which yield an upper bound of
8 (u T2az + u4rg2. ) (n—1) on the number of free bitangents supported by two dis-

tinct objects. The linear upper bound on the number of free bitangents follows since
the objects are of bounded complexity. The proof of the lower bound in Lemma 7
generalizes directly by considering the probability that p; and p; are within distance
Tmin + Tmaz a0 2 (Trmin +Tmaz) instead of 1 and 2. The proofs of Theorems 2 and 3
also generalize by considering x; 5 and x;; less than 2r,,,, instead of 2. This leads

to upper bounds of 11 72, (u? 7 ..+ f2"_2 ) (n—3) on the number of free segments
of type 4 and 1172, (u®r2,,. + fQi) (n — 2) on the number of free segments of
type 3. " O

4. Experiments

We first describe our experiments in Section 4.1 and then present our experimental
results and their interpretation in Section 4.2.

4.1. Setting

With the disjoint-discs model defined as in Section 2, we measure, for various den-
sities, the number of bitangents in the scene. We also measure the memory usage
and the running-time costs of computing these free bitangents.

We compute the visibility complex using a package due to Angelier and
Pocchiola,! based on the Greedy Flip Algorithm,?'® and the Simple_cartesian
kernel and floating point (double) number type of CGALL.2

We run experiments on scenes with up to 4,500 unit discs and density ranging
from 0.0025 to 0.55. We increment the density by 0.0025 for & < 0.025 and by 0.025
for p > 0.025. We increment the number of discs by 40 up to 1,200 and by 100
after. For small and medium densities, i.e. g < 0.01 and p € [0.0125,0.0225], we
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compute the visibility complex for only up to 1,200 and 2,000 discs, respectively,
because of memory limitations in the software implementation (see Section 5 for
further discussion on this issue).

We do not consider densities p larger than 0.55 because our scene generation
scheme fails for such large densities. As Figure 2 shows, density 0.55 already implies
a fairly dense scene. (Note that Thue proved in 1890 that the best packing of unit
discs in the infinite plane is the regular hexagonal tiling — each disc being tangent
to six others — and has density \/%; thus \/% =~ 0.91 is an upper bound for the
density of our scenes.)

For each density value and number of discs we consider, we run 10 experiments
and report the means of the measures. The standard deviations are very small and
we do not report them. We report the number of oriented bitangents, the memory
usage in units of kBs and the running time in units of 10~ seconds (so that running
time, number of bitangents and memory usage can be drawn on the same figure).

Note that the visibility complex package outputs oriented bitangents: for each
maximal free non-oriented line segment tangent to two discs, the visibility complex
implementation outputs two oriented bitangents. Since it is more intuitive to count
non-oriented bitangents, we make the distinction between the two in what follows.

All the experiments were made on a 1686 machine with AMD Athlon 1.73 GHz
CPU running Linux and 1 GB of main memory. We use the getrusage() command
to measure user time and mallinfo() function to measure memory usage. We made
use of the ExpLab'? environment to manage our experiments.

4.2. Experimental results and interpretation

We present here our experimental results. We display in Figure 6 the out-
put of our experiments for four representative values of the density (equal to
0.0025,0.005,0.025, and 0.55). Figure 6 shows quite clearly that the number of
oriented bitangents, the memory usage, and the running time have a linear asymp-
totic behavior in terms of the number of discs.* We note that the slopes of the
asymptotes are different for each density p and are decreasing functions in terms of
1. We also observe that the number of discs at which the linear behavior appears
to start is a decreasing function of pu.

In the rest of the section, we use least-squares fitting to estimate, in terms of
scene density p and number of discs n, the linear asymptote of the number of
oriented bitangents and the onset of this linear behavior. For linear least-squares
fitting on a set of p data points (x;,y;), recall that the correlation coefficient r,
which measures the quality of fit, is defined as

r= PO TilYi — Do TiY Vi
VX — X)) vi — ()%
2Note that the linear asymptotic behavior of the time complexity is only apparent since the time

complexity of the Greedy Flip Algorithm is in ©(nlogn + m) where m is the size of the output.
But for the values of n we consider the nlogn part is outweighed by the m part.
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Fig. 6. Plots of the number of oriented bitangents, memory usage, and running time in terms of
the number of unit discs, when scene density is equal to (a) 0.0025, (b) 0.005, (c) 0.025, and (d)
0.55. The unit of the memory usage is kBs, that of the running time is 10~* seconds.

The closer r is to 1, the better the fit is.

4.2.1. Asymptotic properties of the number of bitangents

For each experimental density value p € [0.0025,0.55], we estimate the asymptote
of the number of oriented bitangents (in terms of the number of discs) using a least-
squares fitting on a subset of all the data points, as follows. We compute a least-
squares fitting, first using all data points, and then recursively after removing the
point corresponding to the smallest number of discs, until the correlation coefficient
of the fit of the remaining set of points is larger than some threshold.

We choose the threshold for the correlation coefficient with care. Indeed, a
threshold too small would imply that all the data points are always used for the
least-squares fitting, which would not be satisfactory for small densities (see for
instance Figure 6.a). A threshold too large would imply that only two data points
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Fig. 7. The (a) slope and (b) y-intercept, in terms of p, of the linear asymptote of the number of
oriented bitangents (in terms of the number of discs): experimental data points and interpolations
(of the square points) by (a) % +5.67—19.17 i and (b) —%ﬁ +19,255—23, 789 u. The dashed
curves are the theoretical upper bounds of Theorem 1 (times two since the bitangents are here
oriented).

are kept for the fitting which is also not satisfactory. In practice, we have a small
window for a threshold that is neither too small nor too large. We choose the square
of the threshold for the correlation coefficient to be equal to 0.99969.

Figure 7 shows the estimated slopes and y-intercepts of the linear asymptotes
for the scene densities that are larger or equal to 0.0125 in our experiments. We do
not consider the asymptotes for smaller densities because they are not significant;
indeed these asymptotes are only estimated by two points because of our choice of
correlation-coefficient threshold.

We observe that the extracted slopes and y-intercepts appear intimately related
to the inverse of u. Moreover, the slopes and y-intercepts are bounded theoretically
(in a slightly different model where the discs may intersect) by functions of the
type % + by — see Theorem 1. We thus try to fit functions of the form ﬁ +bu+c
to the data points. However, we only interpolate the data points corresponding to
densities strictly larger than 0.025 because we are only confident on the quality of
the interpolated asymptotes for these densities. The reason for this is that when the
density gets strictly smaller than 0.025, the number of points used for estimating
the asymptotes drops by more than half because the maximum number of discs used
for the experiments drops from four thousand to two thousand, and the minimum
number of discs used for interpolating the asymptotes increases to over 800 (see
Figure 8); hence, for densities in [0.0125,0.0225], the slopes and y-intercepts are
thus estimated with fewer data points (namely between eight and twelve points).
We also do not use the points of density 0.025 (the cross in Figure 7) because
the y-intercept data point seems inaccurate. Note that although they are not used
for interpolation, the estimated slopes and y-intercepts for u < 0.025 are used for
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asserting the quality of the fits.

Using least-squares fitting, we obtain the interpolating functions # + 5.67 —
19.17 p and —4’}% + 19,255 — 23, 789 i for the slopes and y-intercepts respectively.
As Figure 7 shows, the data points lie very close to the fitting curves. Moreover, the
points corresponding to densities p < 0.025 lie also quite close to the fitted curves,
which is a good hint that our interpolations are satisfactory.

An interesting issue is to determine, as a function of u, the value ng of the
number of discs at which the linear asymptotic behavior starts. We choose ng to
be the smallest value of n used for estimating the asymptote. Figure 8 shows the
value of ng for densities in [0.0125,0.125]; note that we substantially refined the
increment of the density for these experiments. We restricted ourselves to these
densities because our data is only meaningful in that range in view of our choice of
correlation-coefficient threshold. Indeed, outside of it, either only two points or all
points are kept for estimating the asymptote.

Fitting these data points by a function of the form % + b, we obtain the function
16’# + 47.55. As Figure 8 shows, this interpolation is not nearly as good as for
the slope and y-intercept of the asymptote. One of the reasons is that, for a fixed
value of the density u, the number of bitangents has not been computed for every
value of n: there is an increment dn between consecutive data points (dn = 40 for
n < 1,200). So the onset ng is only accurate up to dn. This impacts on the goodness
of fit since least-squares fitting is known to be sensitive to outliers. Better results
are obtained by linearly interpolating the correlation coefficient between consecutive
data points and picking the value of n corresponding to the threshold.

Results. Summarizing, we showed that the number of free non-oriented bitangents
(which is exactly half the number of oriented bitangents) in a scene consisting of n
randomly distributed disjoint unit discs is approximated by

8.74 2,091 16.77
(T +2.84—9.59,u> n——’u—+9,628—11,895u for n> T+47.55 (2)
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where p denotes the density of the scene.

The approximation is good in the sense that, in our experiments, for all the
densities and all numbers of discs greater than 1677 4 47 55 the error between the
observed and estimated number of bitangents is small. More precisely, this error
does not exceed 2% for densities in the range [0.05,0.55]. For smaller densities, the
error increases to roughly 10% for p = 0.025 and 30% for p = 0.0125. For densities
less than or equal to 0.01, the number of discs in our experiments is 1,200 which is
less than the estimated linear onset and we thus do not have a measurement of the
error.

Note that even though the y-intercept of Eq. (2) is not always smaller than the
y-intercept of the theoretical upper bound of Theorem 1 (as hinted in Figure 7.b),
a straightforward computation yields that the estimated number of free bitangents
(Eq. (2)) is always less than the upper bound of Theorem 1 for n > 1. (Indeed,
if F(n) denotes the upper bound minus the estimated number of bitangents, as a
function of n, both F(1) and the slope of F are positive for all densities p > 0.)

4.2.2. Analysis for low densities

To evaluate the quality of our interpolation for low densities, we ran some spe-
cific experiments for density 0.0025 (see Figure 2). We implemented a brute force
algorithm for computing the number of bitangents which, compared to Angelier’s
implementation, is extremely slow but, since it merely counts the bitangents with-
out storing them, uses no memory and therefore allowed us to compute the number
of bitangents for rather large numbers of discs. We ran that experiment on random
test scenes from 1,000 to 20,000 discs with an increment by one thousand. The
entire set of experiments took over 14 days to compute. Figure 9 shows the results
of these experiments as well as the interpolated number of bitangents obtained from
Eq. (2): 3,501 n — 826,846 for n > 6,755. As Figure 9.a shows, the slope of the
asymptote of the number of bitangents seems well estimated by Eq. (2) but the
error on the y-intercept is substantial, leading to an error on the number of bitan-
gents decreasing (strictly) from 34.4% to 17.6% for n ranging from 7, 000 to 20, 000.
However, as Figure 9.b shows, the estimate is rather accurate when compared to the
theoretical upper bound of Theorem 1 or to the number, 4(72’), of possibly obstructed
bitangents.

4.2.3. Analysis for high densities

The above experimental study focuses on scenes whose density ranges in
[0.0025,0.55]. Within this density range, we estimated the asymptotic properties
of the number of bitangents in terms of the number of discs. We show here that
this estimation is likely to be reasonable even for very large densities.

We consider an hexagonal grid as follows; see Figure 10. For any integer i > 1,
the grid G; consists of one central hexagon and ¢ rings of hexagons. We set the
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Fig. 9. Number of non-oriented bitangents for density 0.0025, and estimate of Eq. (2) for n > 6,755,
with, in (b), the number 4(}) of possibly obstructed bitangents and the theoretical upper bound
of Theorem 1 (in dashed).

distance between the centers of adjacent hexagons to be equal to 2(1+¢). We place
one unit disc in each hexagon of the grid and we choose £ > 0 small enough so
that any pair of discs that are not on the boundary of the grid admit no free outer
bitangent. All the centers of the discs in grid G; are contained in a disc of radius
R; = (1 +2i)(1+¢)— 1. Let m; = 6i be the number of hexagons in ring i. The
grid G; contains n; = 1 + Z;Zl mj = 1+ 3i(i + 1) hexagons, thus the density of
centers in the disc of radius R; is y; = g—%, a decreasing function of ¢ which tends
to m.

The number of non-oriented bitangents in G; is as follows. Every disc admits
2 inner bitangents with each of its neighboring discs and with no other disc (for &
sufficiently small); furthermore, all discs have 6 neighboring discs except for 6(i —
1) discs on the boundary of the grid which have 4 neighbors and 6 discs on the
boundary of the grid which have 3 neighbors. Summing, and taking into account
that each inner bitangent is counted twice, we get that the number of inner non-
oriented bitangents in G; isn;—1-6+6(i—1)-4+6-3 =64 (3¢+1). The discs on the
boundary of the grid also admit outer bitangents: the number of outer bitangents
between the 7 + 1 discs on one of the six sides of the hexagonal ring is between 7 (if
the discs are in “convex position”) and @ (if the discs are in “concave position”).
Hence, the total number 7; of of non-oriented bitangents in G; is between 64 (37 +2)
and 3¢ (7¢+ 3).

As can be seen, when i is greater than 25, n; is larger than 1,951, the density
wi lies in (%, %) and the ratio 7;/n; lies in (5.92,7).

For ¢ sufficiently small, it is reasonable to believe that any scene of n; unit discs
in a disc of radius R; 4+ 1 has roughly the same number of bitangents because the
density is high enough that is seems unlikely that scenes may have substantially
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Fig. 10. Hexagonal scene model (G4).

different combinatorial characteristics.? If this assumption is correct, then the slope
of the number of non-oriented bitangents estimated for random scenes should apply.
For a density of 0.75, Eq. (2) gives an estimated slope of 7.3 instead of some value
in (5.92,7) in our analysis. Hence, the estimated slope in Eq. (2) is reasonably close
to the expected slope of the number of bitangents.

5. Conclusion

We have studied the expected size of the 2D visibility complex of randomly dis-
tributed objects in the plane. We proved that the expected asymptotic number of
free bitangents among unit discs (or polygons of bounded aspect ratio and similar
size) is linear and exhibited bounds in terms of the density of the objects. We also
made an experimental assessment of the size of the visibility complex for disjoint
random unit discs.

Our experiments give a good idea of the asymptotic behavior of the number of
bitangents while our theoretical bound is very rough (see Figure 9.b). Furthermore,
the fact that the estimated asymptotic rate of growth is reasonably small in our
random setting indicates that the size of the visibility complex might be tractable
in practical, real-world applications. As an example, for a reasonable density of
1 = 0.1 (see Figure 2) and for n > 215 we can expect 90n — 12,500 bitangents

It should be noticed that the visibility complex package! we used for our experi-
ments is extremely fast (see Figure 6) especially compared to a brute force algorithm
(see Section 4.2.2). However, unlike the brute force approach, the package uses a
substantial amount of memory and this prevented us from running experiments for
very low density and very large numbers of discs. This situation can be improved
by using the antichain feature of the package which, using only O(n) storage, re-
ports the list of free bitangents without storing them in main memory. This feature
allows us to compute, with 1 GB of memory the number of bitangents among up
to 3,500 discs in a scene of density 0.0025 compared to 1,500 discs without using

PNote that not much is known on optimal discs packing inside a disc.!!
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the antichain feature.
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