
An Example of Stepwise Refinement
of Distributed Programs: Quiescence
Detection

MANI CHANDY and JAYADEV MISRA

University of Texas at Austin

We propose a methodology for the development of concurrent programs and apply it to an important
class of problems: quiescence detection. The methodology is based on a novel view of programs.
A key feature of the methodology is the separation of concerns between the core problem to be solved
and details of the forms of concurrency employed in the target architecture and programming
language. We begin development of concurrent programs by ignoring issues dealing with concurrency
and introduce such concerns in manageable doses. The class of problems solved includes termination
and deadlock detection.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming;
D.4.1 [Operating Systems]: Process Management-deadlocks; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about Programs

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Deadlock detection, program development, stepwise refinement,
termination detection

1. INTRODUCTION

We propose a methodology for the development of concurrent programs and
apply it to an important problem. The methodology is based on a novel view of
what a program is. We view a program as an initial condition and a set of atomic
statements. The operation of a nonterminating program is as follows. Repeat
forever: execute a statement selected nondeterministically, ensuring that in an
infinite number of selections each statement is selected infinitely often. (We do
not describe terminating programs in this paper.)

The state of a computation is given by the values of its variables. The only
effect of executing a statement is to change values of variables. This effect is
achieved by a multiple assignment statement. Hence we view a program as a
declaration of variables and their initial values, and a set of multiple assignment
statements.

This work was supported by the Air Force Office of Scientific Research under grant AFOSR 85-0252.
Authors’ current address: Department of Computer Sciences, The University of Texas at Austin,
Austin, TX 78712-1188.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0164-0925/86/0700-0326 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986, Pages 326-343.

Stepwise Refinement of Distributed Programs l 327

The key features of the methodology are

(a) Concerns about the core problem to be solved are separated from the forms
of concurrency available in the hardware on which the program is to be
executed and the language in which the program is to be written.

(b) We adopt a global view of systems when specifying and reasoning about
them during early stages of design.

(c) Our reasoning about systems employs predicates on system states. Our proofs
are based on properties possessed by all states of the system that might occur
during a computation.

Our reasons for the above desiderata are given later.
We present algorithms to solve a class of problems: detecting quiescent prop-

erties in distributed systems. Such properties include termination and deadlock.
A consequence of our derivation is that we obtain the weakest conditions under
which the algorithms can operate. Specific instances of the quiescence detection
problem have been studied extensively [l-lo, 12-18, 21-251. These algorithms
have the feature that each process is observed over some interval during the
computation, and the intervals are related in some manner-for instance, inter-
vals of neighboring processes overlap. Our solution differs in that we derive a
class of solutions to a collection of problems for a variety of concurrent architec-
tures, and our algorithms permit processes to be inspected at arbitrary times and
in arbitrary order.

The organization of the paper is as follows. In the remainder of this section
we explain our choice of desiderata for concurrent. programming methodologies,
present our model of programs and our methodology, and show how our meth-
odology achieves the desiderata. In Section 2 we specify the quiescence detection
problem and derive solutions in a series of refinements, stopping short of giving
a complete program. In Section 2 the specification and derivation are in terms
of a shared-variable model; the derivation is also appropriate, however, for a
message-passing distributed system. The partial solution obtained in Section 2
can be extended to obtain a program suitable for concurrent architectures. We
have chosen to extend it in Section 3 to obtain a message-passing program
employing an asynchronous communication protocol.

1 .l Desiderata for a Concurrent Programming Methodology

Separating Concerns About the Core Problem from Details About Concur-
rency. Many papers on concurrent programs lump concerns about the core
problem to be solved, the language in which the program is to be written, and
the hardware on which the program is to be executed into a single agglutinous
unit. Some argue that in cases where language and hardware are specified as part
of a concurrent systems problem, concerns about the core problem, language, and
hardware are inseparable. For instance, programs executing on a distributed
network of computers must employ some form of message passing; in such cases
concerns about message passing appear inseparable from concerns about the core
problem. Similarly, since the presence or absence of primitives (such as process
creation and termination) in the programming language influence the program,
it appears that language issues are inseparable from others. Despite these

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

328 l M. Chandy and J. Misra

arguments we maintain that it is possible and important to separate these
concerns-indeed it is even more important to do so for concurrent systems than
sequential systems because concurrency is less well understood.

The ideas that form the foundation of good programming transcend different
forms of concurrency employed in different implementations. Lumping all con-
cerns together results in fundamental ideas getting lost in a welter of detail. A
methodology should make the generality of important ideas manifest so as to
avoid having solutions rederived from scratch for each form of concurrency.

Programs outlive the architecture for which they were initially designed.
Experience suggests that we should anticipate requests to modify our programs
to keep pace with modifications in architecture-witness attempts to “parallelize”
sequential programs. Dijkstra [111 points out that a modification of a program is
really a refinement of one of its ancestors; the further removed the ancestor, the
more difficult the modification. It is difficult to make modifications necessitated
by changes in the form of concurrency employed in a target architecture if the
specific form of concurrency is a primary concern early in the design cycle.
History tells us that we should not begin to solve a problem by asking ourselves
whether we are going to use shared variables, message passing, or sequential
programs, any more than we begin by asking ourselves if the word size is to be
60, 32, or 16 bits.

The Process-Eye View versus a Global Perspective. It may be more natural for
a human being to “identify with” a single sequential process than with a system
in which many actions happen “simultaneously” in different places. This iden-
tification results in arguments based on what each process “sees,” “knows,” and
“learns” at specific points in the computation rather than on unvarying facts
about the system. Reasoning about a system from the point of view of what is
observable to each process and denying oneself a global perspective is to handicap
oneself to no purpose. Therefore, we avoid arguments based exclusively on a
collection of process eye-views. This view of reasoning has been strongly advo-
cated by Lamport [19] and also appears in Manna and Pnueli [20].

Postulating subsystems to implement a desired system is an important part of
program development. In the initial stages of program development we may not
know what processes we are going to employ; we must perforce take a global
perspective at this stage.

Reasoning About Unchanging System Properties versus Operational Reason-
ing. Operational arguments are about process behaviors unfolding over time.
These arguments have the following flavor: “when process u receives a token it
knows no other process is in its critical-section, and so it enters its critical-
section and then, when it gets out, it sends the token and then, . . .“. This form
of reasoning specifies one or more sequences of actions for system execution and
derives properties of the system from these action sequences. There is evidence
that such arguments are error-prone. Operational reasoning is more difficult
than reasoning about system properties because most of us find it more difficult
to comprehend unfolding histories of actions than unchanging properties. This
is especially important when dealing with nondeterministic systems because

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Stepwise Refinement of Distributed Programs l 329

nondeterminism leads to a combinatorial explosion in the number of possible
histories. A danger with operational arguments is that some possible sequence of
actions may be overlooked, while a proof must cover all possible sequences.

Specifications

Specifications are given in terms of predicates on system states. Let u, u be
predicates on system states and let t be a statement in the program. We use

(4 t @I

to denote that if u holds immediately before execution oft, then the execution of
t terminates and u holds upon termination.

A predicate I is an invariant means I is true initially and (I) t (I), for all
statements t in the program. We define a binary relation +- (read “leads to”)
between predicates, with respect to a given program, as follows:

U-U holds for a program =

(la) for all statements t in the program: (U and not u) t (U or u) and
(lb) there exists a statement t in the program such that

(uandnotu) t(u), or

(2) for some predicate w,

(u--*w) and (w-u).

From (la) it follows that if u holds at any point d in a computation, then (1) u
holds at point d, or (2) u and not u holds continuously from d onwards until
eventually u holds, or (3) u and not u holds at d and continuously thereafter; the
third case is ruled out by our rule of program execution and (lb). The + relation
is transitive from (2).

Hence, u + u holds for a given program means that if u holds, then within
finite time (i.e., within a finite number of executions of program statements), u
holds.

Heuristics for Stepwise Refinement

In this paper we focus attention on three heuristics.

(1) During early stages of design we give ourselves the freedom of using
whatever variables are necessary to formulate a solution. Concerns about the
distributed implementation of such variables are postponed to a later stage of
design.

(2) We often generalize predicates on systems to predicates on subsystems.
For instance, the predicate “system P is idle” may be generalized to “subsystem
S of P is idle.” This form of generalization often suggests how the next refinement
step is to be carried out.

(3) We exploit locality of interactions in distributed systems by replacing in
predicates “there exist processes p, q” by “there exist processes p, q which
interact,” when appropriate.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

330 . M. Chandy and J. Misra

Consequences of Using the Model

We suggest that the methodology as outlined has the desirable features discussed
in Section 1.2. Specifications are in terms of (constant) system properties:
invariants and the relation +. The focus on constant system properties facilitates
the derivation of programs hand-in-hand with their proofs [13]. The uniform
view of programs, independent of architecture, encourages the separation of
concerns of the core problem from the form of concurrency employed in the
target architecture and language. By focusing attention on the total system being
considered at a refinement step, the model discourages reasoning based on the
process eye-view. By employing nondeterminism to the limit and avoiding all
forms of sequencing, the model inhibits operational reasoning.

Though the target architecture in this paper is a distributed system, the model
and methodology (with additional heuristics) have been used to derive programs
for diverse architectures including systolic arrays, PRAMS (parallel random
access memory machines), and uniprocessors.

Notation. We use s I] t where s and t are statements to denote their parallel
execution. Where s, t are assignments statements, s I] t is a multiple assignment
statement. The only form of conditional we use is, if b then s else t (and where
s, t are assignment statements this is equivalent to a multiple assignment
statement with conditional expressions in the right-hand side). We also use send
m along c, receive m along c to denote sending and receiving (respectively) of
message m along channel c; again, these may be viewed as assignment statements
to channel state variable SC of channel c where SC is a queue of messages: send m
along c is equivalent to

SC := SC; m (; denotes concatenation)

receive m along c is equivalent to

(SC := tuil(sc) 11 m := head(if SC # empty

2. SPECIFICATION OF DETECTION PROBLEMS

We first specify the general form of detection problems and later narrow the
specification to quiescence detection.

We are given a program called the underlying program and a predicate W on
the underlying program such that W is preserved by the underlying program (i.e.,
once W holds it continues to hold). It is required to “superpose” a program on
the underlying program where the superposed program has a boolean variable
claim satisfying:

Invariant: W or not claim
Progress : W + claim

The invariant means that if claim holds, then so does W. The progress condition
means that if W holds, then claim holds in finite time.

The superposed program can record but not affect the underlying computation.
The superposed program can employ variables not named in the underlying
program; for instance, claim is such a variable.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Stepwise Refinement of Distributed Programs 331

Example. Let W be given by W = the number of statement executions in the
underlying program exceeds 10.

We superpose a program by transforming the underlying program as follows.
Introduce superposed variables count, claim of types integer, boolean and initial
values 0, fake, respectively. Transform each statement s in the underlying
program to

(s 11 count := count + 1)

and add a statement t to the program where

t: claim := (count > 10).

We specify W in terms of count as follows: W = (count > 10).
The invariant (count > 10 or not claim) is easily proved. The progress condition

(count > 10) + claim follows from: for all statements s in the transformed
program:

(count > 10 and not claim) s (count > 10 or claim)

and, there exists a statement, namely t, in the transformed program:

{count > 10 and not claim1 t {claim).

This little example illustrates what we mean by superposition.

We have specified detection problems in general. We now turn our attention
to a subclass of detection problems: quiescence detection.

Quiescence detection deals with a specific property W and a specific class of
underlying programs. The underlying program is a concurrent program consisting
of a fixed set P of processes. In our notation, a concurrent program is an initial
condition and a set of statements; a process is a subset of statements, and the
union of all processes together with the initial conditions forms the program. In
the following, p, q are processes, and all propositions about p, q are universally
quantified unless stated otherwise. We are given a binary relation affects between
processes, and associated with eachp is a predicatep.qui. The underlying program
satisfies the following local quiescence property: for all statements t in the
underlying program:

{p.qui and [V q such that q affects p: q.qui]) t (p.qui).

This property means that p can transit from quiescence (p.qui) to nonquiescence
(not p.qui) only if it has a nonquiescent affector.

The W to be detected is

W = [V p: p.qui].

From the local quiescence property, it follows that W is preserued (i.e., once true
it remains true).

At this point in program development, we do not interpret p.qui except to
require that transitions from p.qui to not p.qui take place only if p has a
nonquiescent affector. In particular, we do not specify whether p.qui is a local

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

332 l M. Chandy and J. Misra

variable of p. (Later we shall find that there are some architectures in which
p.qui is not local to p.)

Deriving a Program Skeleton

For convenience in reading we repeat the specifications:

W 3 [If p: p.qui]

Invariant: W or not claim
Progress: W + claim

A superposed program (added to the underlying program) that meets the speci-
fication is

initially: claim = false;
statement set: claim := W

Though this is a satisfactory program for a sequential machine, we cannot
implement it directly on a distributed system because it is not possible to evaluate
the conjunction W (all processes are quiescent) in an atomic statement, so we
now add to our initial specification the constraint that each atomic statement in
the superposed program can only access variables named in a single component
process. We now turn our attention to evaluating the conjunction, given
this constraint.

Refinement Step

Processes are inspected one-at-a-time, and a process is added to a set checked of
processes if the process satisfies some condition (and we postpone consideration
of what this condition should be). We postulate that

claim = (checked = P) where P is the set of all processes.

In other words, “all processes are in checked” means claim holds. For brevity,
processes in checked are called checked processes, and those not in checked are
called unchecked processes. The idea of inspecting processes one-at-a-time and
“checking them off” until all are checked off is an obvious way of satisfying the
constraint that it is not possible to inspect all processes “simultaneously”; let us
see where the idea leads. Eliminating claim from the specification, we get

Invariant: W or (checked # P)
Progress : W + (checked = P)

Predicate W is a system-wide property. Our next refinement is obtained by
generalizing W to obtain a subsystem property w defined on process sets S where
S C P, such that

w(P) = w

We use the obvious definition: w(S) = [V p in 5’: p.qui].
The reason that we replace system-wide properties by their generalizations is

that we want the specifications to give us guidance about the variables of our
program. In particular, we want the specifications to give us more guidance
about checked.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Stepwise Refinement of Distributed Programs 333

Refinement Step

We rewrite the specification in terms of the generalization w as

Invariant: w(checked) or checked # P
Progress: w(P) --j (checked = P)

The equivalence of the invariant predicates in the previous and the current
refinement steps follows from: if checked # P, then both predicates evaluate to
true (since the second terms of the disjunction hold), and if checked = P, then
both predicates evaluate to W (since the second terms of the disjunction do not
hold, and W = w(P)).

Refinement Step

In sketching out the algorithm in the first refinement step we said that an
unchecked process is added to checked only if it satisfies some condition, and we
postponed consideration of what that condition should be. Let us call the
condition for p, p.inc or the “inclusion condition for p.” The inclusion condition
is a boolean predicate on system states. We postpone consideration of the precise
definition and implementation of the inclusion condition.

We postulate the following statements (one for each p) in the superposed
program:

if p.irzc then checked := {p] U checked

Process p can be added to checked only by execution of the above statement.
Suppose w (checked) does not hold prior to executing the above statement and

suppose p is the only unchecked process. After executing the statement
w(checked) continues to remain fake (see the definition of w). Therefore, for the
invariant to hold we must have checked # P, and hence p must remain unchecked.
Therefore, a precondition to the above statement is that if w(checked) does not
hold, then there is at least one unchecked process q for which not q.inc holds.
This argument suggests that we strengthen the invariant to

Invariant: w (checked) or [3 unchecked q : not q.inc]

We elaborate our progress condition to

Progress :

(a) w(P) +- [Vp:p.inc] and
(b) [V p :p.inc] + checked = P

Refinement Step

We propose a stronger invariant by exploiting the “locality” of the relation affects.

Invariant: w(checked) or

[3 unchecked q, checked p : (not q.inc) and (q affects p)]

The reasons for the stronger invariant are as follows: Suppose w (checked) does
not hold. Consider the latest point d at which w (checked) became false. From the
definition of w, not w(checked) means that there exists a nonquiescent checked
process. A quiescent process becomes nonquiescent only if it has a nonquiescent

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

334 l M. Chandy and J. Misra

affector. Hence at d there exists an unchecked nonquiescent q, checked p, and
q affects p. Intuition suggests that the process q that causes w (checked) to become
false should have its own inclusion condition set false. This argument leads us to
propose the above stronger invariant.

Refinement Step

From the definition of w it follows that the invariant of the previous step is
equivalent to

Invariant: [t/ checked p :p.qui] or

[3 unchecked q, checked p : (not q.inc) and (q affects p)]

We propose to strengthen it to

Invariant I: [V checked p:p.qui and p.inc] or

[3 unchecked q, checked p : (not q.inc) and (q affects p)]

Our reasons for the stronger invariant are as follows. A process is added to
checked only if its inclusion condition holds. If at some point in the computation
the system is quiescent and a process’ inclusion condition holds, then we expect
it to continue to hold. A checked process changes its inclusion condition from
true to false only when the system is nonquiescent, in which case (we design our
algorithm so that) the second term in the disjunction holds.

What we are doing by strengthening the invariant is capturing intuitive,
temporal, behavioral arguments by means of formal, invariant, system properties.

Pause to Review Stepwise Refinement

Before we proceed with stepwise refinement we pause to take stock of what we
are doing. We have proceeded without concerning ourselves too much with the
target architecture. For instance, we cannot implement checking-off statements
directly on distributed architectures because checked is a global variable, and
distributed architectures do not admit global variables. But that is not a serious
concern at this level of program development; if a distributed system is a target
architecture, then we shall concern ourselves later with implementing checking-
off statements on that architecture.

Our understanding of the program is embodied in specifications at an appro-
priate level of detail and in a program skeleton. The skeleton takes the form of
initial conditions and a set of (possibly nonimplementable) atomic statements.

The elaborated specifications can be used to develop apparently dissimilar
algorithms. This suggests that the detailed specifications obtained in stepwise
refinement are valuable quite apart from the algorithms.

Viewing a program as an initial condition and a set of atomic statements gives
our methodology focus. We know that all statements must satisfy the same set
of pre- and postconditions to ensure safety. Statements differ only in their
contributions to progress. To derive a statement we postulate its contribution to
progress (for instance, the purpose of checking-off statements is to increase the
size of checked), and then to deduce the form of the statement from system-wide
pre- and postconditions. In deriving a program we may find that our invariant
needs strengthening. Thus the development of the program is an interplay
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Stepwise Refinement of Distributed Programs l 335

between system-wide safety properties and each individual statement whose
purpose is to ensure some aspect of progress. The disadvantage of this approach
is that by denying oneself the luxury of different contexts for different statements
we require our global invariant to be strong enough to capture all contexts. (An
apparent, but not real, disadvantage is that we must specify subsystems in terms
of system-wide properties; compositional proofs are indeed possible, but there is
insufficient space here to describe them.)

We can continue the refinement for a variety of target architectures; however,
in the interest of brevity, we limit ourselves to only one: static, fault-free
distributed systems with asynchronous sending/receiving of messages and point-
to-point, directed, first-in-first-out channels with unbounded buffers. By “static”
and “fault-free” we mean that processes and channels in the underlying system
are given: they are not created, nor do they disappear or fail. A channel is directed
from precisely one process to precisely one process. There are no restrictions on
when processes send messages. The only restriction on when a process may
receive a message along a channel is the obvious one: the channel must contain
a message. (Of course, we are obliged to prove that the number of messages in
each channel is indeed bounded-but it is helpful to separate concerns: assume
a simple protocol with unbounded buffers and postpone proofs about bounds). A
channel is a shared variable between two processes in the sense that the process
sending and the process receiving along a channel may change the state of the
channel; however, neither process can determine the state of a channel directly.
This aspect of channels makes detection problems in asynchronous distributed
systems particularly interesting.

We leave to the reader the problems of refining the program for shared-variable
concurrent systems, distributed systems with synchronous communication, and
distributed systems with asynchronous multiway channels (connecting many
processes to many processes).

3. REFINEMENT FOR DISTRIBUTED SYSTEM ARCHITECTURE

We now continue refinement for the distributed system architecture described
in the previous section.

Each process and each message has a boolean attribute: stable. A stable process
can become unstable (i.e., not stable) only by receiving an unstable message. All
messages sent by stable processes are stable. The problem is to detect the
(preserved) property W, given by

W = all processes and all messages in all channels are stable.

We define process quiescence so as to ensure W = [V p :p.qui]. We propose

p.qui = p&able and [V p’s input channels c : c.stable]

where

c&able = c contains no unstable message

(Note: We could have used other definitions for p.qui, for instance,

p.qui = p.stable and [V p’s output channels c : cstuble]

Different definitions lead to slightly different programs.)
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

336 l M. Chandy and J. Misra

In a distributed system q affects p means there is a channel from q top. Neither
p nor q can access the state of channel (q, p) directly; q and p must cooperate to
determine the state of channel (q, p). The algorithms differ in how the cooperation
is achieved.

Marker Algorithm

Cooperation between q and p to determine the state of channel (q, p) is achieved
by q sending p a special message, which has no effect on the underlying compu-
tation; this message is called a marker. For channel c from q to p, process q
maintains a local variable c.sm (for send marker) and p maintains local variable
c.rm (for receive marker), with the following meaning. Variable c.sm takes on
values pre, pos, and neg-where its value is pre means the marker has not been
sent along c; its value is pos means the marker has been sent along c, and all
postmarker messages sent along c are stable; and its value is neg means the
marker has been sent along c, and an unstable postmarker message has been
sent along c. Variable c.rm is boolean-where c.rm holds means the marker has
been received along c. These arguments lead us to postulate invariant:

(c.rm and c.sm # neg) + c.sm = pos and c.stable

This gives us a clue about the inclusion condition: we propose that

p.inc = p.stable and

[V p’s incoming channels c: c.rm] and
[V p’s outoing channels c: c.sm # neg]

We now postulate invariants for the marker algorithm. Using Invariant I,
definitions of p.qui and p.inc, we postulate

Invariant K: [V p in checked :p.stable] and

[V channels c to checked processes: c.rm] and
[V channels c to, or from, checked processes: c.sm # neg]

or

[3 channels c from an unchecked to a checked process: c.sm = neg]

Also, from our description about the movement of markers, we postulate an
invariant relating, for each channel c, c.rm, c.sm, and marker in c. Let c.num be
the number of markers in c.

Invariant L:

and

(c.num I 1) and not (c.rm and c.num = 1)

and

(c.sm = pre) + (c.num = 0 and not c.rm)

c.sm = pos =$ [V messages m in c: m is stable or
there is a marker following m in c]

Invariants K and L imply invariant I.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Stepwise Refinement of Distributed Programs 337

We now postulate the progress conditions, taking into account marker trans-
mission and the values of c.rm, c.sm. The first two progress conditions, given
below, are easy to see, The next two describe progress with reference to
c.sm and c.rm.

Progress Conditions for the Marker Algorithm

For all channels c:

(1) c.sm = pre + c.sm = pos and c.num = 1,
(2) c.num = 1 + c.rm,
(3) W * W and [V c: c.sm = pos and c.rm],
(4) W and [V c : c.sm = pos and c.rm] + checked = P.

Progress conditions require that if W holds, then no c.sm remains neg forever.
Therefore, we add an additional progress condition to guarantee that c.sm which
is neg will be set to pre within finite time.
For all channels c:

(5) c.sm = neg ---, c.sm = pre

The marker algorithm follows from the invariant and progress condition. Each
statement implements a progress condition. Each statement must also preserve
invariants. For instance, changing c.sm from neg to pre (see progress condition
5) when c is from an unchecked to a checked process may violate invariant K;
we preserve this invariant by setting checked to empty.

The Marker Algorithm

Initially: checked = empty,

[V c : c.rm = false and c.sm = pre]

Set of Statements.

Marker sending along c:

if c.sm = pre then begin send marker along c 11 c.sm := pos end

Upon receiving marker along c:

if marker is received along c then c.rm := true

Upon sending unstable message along c:

if c.sm = pos and unstable message sent along c then c.sm := neg

Reinitializing c:

if c.sm = neg and c.rm and c is from an unchecked to an unchecked process
then begin c.sm := pre 11 c.rm := false end

Reinitializing c and checked:

if c.sm = neg and c.rm and c is from an unchecked to a checked process
then begin checked := empty 1) c.sm := pre 11 c.rm := false end

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1986.

338 - M. Chandy and J. Misra

Adding q to checked:

if qstable and

[V input channels c of q : c.rm] and
[V output channels c of q: c.sm # neg]

then checked := (q) U checked

Refinement Step

We now have the program in hand, except for the distributed implementation of
checked. Also, variables (c.sm, c.rm) of different processes appear in a single
statement. To implement a global variable on a concurrent system we need only
ensure that every process needing to access the variable does so in finite time, at
most one process accesses the variable at any time, and atomicity constraints are
preserved. In this instance we are dealing with only one global variable-
checked-and hence the problem reduces to that of mutual exclusion. An obvious
way of implementing mutual exclusion is to have a single token in the system at
all times, and to allow a process to execute its critical section (i.e., access checked)
only upon holding the token. The information checked is carried by the token.

We assume that there are n processes indexed i where 0 5 i < n. We employ a
boolean variable holdstoken with each process, where i.holdstoken = i holds the
token.

We now give the invariant and progress conditions for the token-passing
algorithm given below. We weaken invariant K to

Invariant K:

[V p in checked :p.stable] and
[V c between checked processes : c.stable] and
[V c from checked processes : c.sm = pos]

[3 c from unchecked to checked process: c.sm = neg]

Invariant L is as before.

Define “token is between j, k” to mean “token is in channel (i, i + 1 mod n)”
or (i + l).holdstoken for some i in 1 j, j + 1 mod n, . . . , k - 1 mod n). Invariant
M describes the properties of markers and c.rm with respect to the position of
the token. For all channels (j, k):

Invariant M: Token is between j, k = (j, k).rm or (j, k).num = 1.

Progress conditions describe how processes are added to checked as the token
moves.

Progress Condition. For all sets of channels C and all processes i:

W and i.holdstoken and [V c in C:c.sm = pos] +
W and (i + l).hoZdstoken and [V c in C’ : c.sm = pos]

where C’ = C U (c 1 c is an output channel of process il.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Stepwise Refinement of Distributed Programs 339

Progress Condition. For all sets of processes Q and all processes i:

Wand i.holdstoken and [V c : c.sm =pos] and [V q in Q : q E checked] +
Wand (i + l).hoZdstoken and [V c : c.sm =pos] and [V q in Q’ : q E checked]

where Q’ = Q U (i).
From the first progress condition:

W+ Wand [V c:c.sm =pos]

From the second progress condition:

W and [V c : c.sm = pos] + W and checked = P

Hence W + checked = P.
We now give the algorithm for a process. Note that this is the first time that

we have written our algorithm in terms of statements in component processes.
Up to this point we have presented our algorithm as a set of statements and
ignored questions of how the set is partitioned among component processes.

Algorithm for Process i, 0 5 i < n:

if i.holdstoken and i.stable and [V input channels c of i: c.rm]
then begin

send token to (i + 1) mod n with checked as follows:
if [V channels (i, j) to checkedj: (i, j).sm # neg]
then checked := checked U ii) else checked := empty

11 i.holdstoken := false
11 [for all input channels c of i: c.rm := false]

e/k[for all output channels c of i: send marker along c II c.sm := pos]

Upon process i receiving the token:

if i receives the token then i.holdstoken := true

Upon process i receiving marker along c:

if marker is received along c then c.rm := true

Upon process i sending unstable message along c:

if c.sm = pos and unstable message sent along c then c.sm = neg

Deriving Initial Conditions for the Algorithm

Invariant K is ensured by having checked initially empty. Invariant L is ensured
initially by having for all c: (c.sm = neg) and c.num = 0. Invariant M is ensured
by choosing any initial position of the token and then having (j, k).rm = the
token is between (j, k). We choose to place the token at process 0 initially.
Initially:

-i.holdstoken = (i = 0) {token is at process 0);
-for a channel c from a process i to a process j, for all i, j: c.rm = (i > j);
-no channel contains a marker (i.e., for all c: c.num = 0);
-for all channels c : c.sm = neg;
-checked = empty.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

340 l M. Chandy and J. Misra

Note. In the algorithm we require that each process send the token to the next
process in a cycle. We do not require that there be a channel from each process
to the next one in the cycle. The token can be sent from one process to another
via intermediate processes.

Refinement Steps for Optimization

We now refine the program to improve its efficiency. This final refinement also
results in a simpler program.

Reducing the Volume of Information Carried by the Token. Recall that the
token carries the value of checked. The volume of information carried by the
token may be large because checked may contain many processes; we now seek
ways of reducing this volume. By sending the token in a cycle, numbering
processes O..(n - 1) so that the token is passed from process i to (i + 1) mod n,
and postulating that checked consists of a sequence of processes ending in the
process holding the token, we can determine checked by keeping track of the
identity of the first process in the sequence. Therefore, we postulate that the
token has a field init containing the identity of a process and having the following
meaning. In the interval between the token leaving j and its processing by
(j + 1) mod n:

init = j = checked = empty and
init#j=checked=((init+l)modn,...,jJ

Keeping Track of Output Channels. The only purpose of c.sm is to determine
if c.sm = neg for a channel c to a checked process, The sequential numbering of
processes allows us to implement c.sm for all output channels c of a process by
means of a single local variable, farthest (for farthest negative), of the process,
where i.farthest is the index of the process farthest from i, for which c.sm = neg.
The sequence of processes ranked farther from i is

(i + 1) mod n, (i + 2) mod n, . . . , (i - 1) mod n

When the token is at i, the statement “there is a negative channel from i to a
checked process” means i.farthest is in (init + 1) mod n, . . . , (i - 1) mod n; in
particular, i.farthest = i means all of process i’s output channels are positive.

Keeping Track of Input Channels. The variables c.rm are used only to deter-
mine if a process has received markers on all its input channels. This observation
allows us to replace variables c.rm by a count nmr for each process where nmr is
the number of markers received by the process (since the token last left the
process). In particular, nmr = number of input channels, means a marker has
been received along each input channel since the token last left the process.

We leave the derivation of the optimized program using init, farthest, nmr in
place of checked, sm, rm to the reader.

A Note on Optimization

In the algorithms we have given, if there is a channel from an unchecked q to
checked p such that not q.inc, then when we change the value of qinc we
reinitialize the algorithm by setting checked to empty, thus maintaining the
invariant: w(checked) or there exists a channel from an unchecked to a checked
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Stepwise Refinement of Distributed Programs 341

process where the sender along the channel does not satisfy the inclusion
condition. It is not always necessary to set checked to empty when the value of
q.inc is changed. It is sufficient to remove from checked the set of processes that
have received unstable messages from q and that may in turn have sent unstable
messages to other checked processes, and so on. The algorithm for removing all
processes from checked that may have been (indirectly) affected by q’s sending
of an unstable message is straightforward. We invite the reader to develop such
an algorithm using the invariant as the foundation of the development.

4. EXTENSIONS

Acknowledgment Algorithm

Our primary purpose in presenting another algorithm is to show how stepwise
refinement leads to a class of solutions. A secondary purpose is that the algorithm
we present is efficient, particularly in distributed systems in which all messages
are acknowledged. Messages may be acknowledged (ack’d) for several reasons;
for instance, the communication protocol may be based on acks. If the system on
which we are to impose a detection algorithm acks messages, we may as well
employ the acks to our advantage. We shall not develop the algorithm in detail
but merely present an outline. The algorithm is based on invariant I.

Each ack has two attributes checked and stable where checked processes send
checked acks, unchecked processes send unchecked acks, and acks for stable
messages are stable acks and acks for unstable messages are unstable acks. We
define q.inc as

q.inc = q.stable and
acks have been received by q for all unstable messages sent by q and
all acks received by q for unstable messages sent by q are unchecked acks.

The algorithm is reinitialized (i.e., checked is set to empty) if an unchecked
process receives a checked, unstable ack. We leave the derivation of elaborated
specifications and the program to the reader.

Comparison with Other Algorithms

Our algorithms differ from most others in one important aspect. In most other
algorithms, if a nonquiescent process is detected, the algorithm is reinitialized
because the presence of the nonquiescent process means that W does not hold.
If the algorithm determines that W does not hold, then why not restart the
algorithm? Efficiency suggests that the algorithm be continued rather than
restarted where possible. Our algorithm is reinitialized only if an unchecked to
checked channel is unstable. Algorithms based on global snapshots [7], and on
overlapping intervals of observation at processes, are reinitialized if the snapshot
or the observation shows that W does not hold.

5. CONCLUSION

Our model of programs (a set of statements) helped us to focus on the appropriate
level of detail of architecture at each step of refinement. The model allows us to
develop pieces of the program given only the invariant, independent of other
pieces. This encouraged concentration of attention on one concern at a time. Our

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

342 l M. Chandy and J. Misra

model of a program (a set of multiple assignments) may appear unduly austere;
however, our experience suggests that the model is adequate. Nondeterminism
captures the essence of various forms of concurrent programming. An ongoing
project, UNITY, has the goal of determining whether programs in diverse areas
may be developed systematically by viewing them as sets of multiple assignment
statements (and initial condition specifications).

The program was not derived in one pass as might be suggested here. We
backtracked several times, and we derived two less efficient algorithms. Ideally,
a description of program derivation should include a description of wrong turns,
consequent backtracking, and what was learned from the mistakes. Backtracking
is not described here in the interests of brevity.

ACKNOWLEDGMENTS

Our ideas about anthropomorphism and operational reasoning were sharpened
by discussions and arguments with E. W. Dijkstra. We also owe him a debt of
gratitude for his detailed criticism of earlier drafts. Comments from Hank Korth
and Shmuel Katz are appreciated. Discussions at IFIP W.G. 2.3 helped in
clarifying our ideas. We are especially grateful to the Austin Tuesday Afternoon
Club for a careful reading of the manuscript, and to the referees for insightful
comments on the first draft.

REFERENCES

1. BEERI, C., AND OBERMARCK, R. A resource class independent deadlock detection algorithm.
Res. Rep. RJ3077, IBM Research Laboratory, San Jose, Calif., May 1981.

2. BRACHA, G., AND TOUEG, S. A distributed algorithm for generalized deadlock detection. Tech.
Rep. TR 83-558, Cornell Univ., Ithaca, June 1983.

3. CHANDY, K. M., AND MISRA, J. A distributed algorithm for detecting resource deadlocks in
distributed systems. In ACM SZGACT-SZGOPS Symposium on Principles of Distributed Comput-
ing (Ottawa, Can., Aug. 1982), ACM, New York.

4. CHANDY, K. M., MISRA, J., AND HAAS, L. Distributed deadlock detection. ACM Trans. Comput.
Syst. 1, 2 (May 1983), 144-156.

5. CHANDY, K. M., AND LAMPORT, L. Distributed snapshots: Determining global states of distrib-
uted systems. ACM Trans. Comput. Syst. 3, 1 (Feb. 1985), 63-75.

6. CHANG, E. Echo algorithms: Depth parallel operations on general graphs. IEEE Trans. Softw.
Eng. SE-8,4 (July 1982), 391-401.

7. COHEN, S., AND LEHMANN, D. Dynamic systems and their distributed termination. ACM
SZGACT-SZGOPS Symposium on Principles of Distributed Computing (Ottawa, Can., Aug., 1982),
ACM, New York, 29-33.

8. DIJKSTRA, E. W., AND SCHOLTEN, C. S. Termination detection for diffusing computations. Znf.
Process. Lett. II, 1 (Aug. 1980).

9. DIJKSTRA, E. W. Distributed termination detection revisited. EWD 828, Plataanstraat 5, 5671
AL Nuenen, The Netherlands.

10. DIJKSTRA, E. W., FEIJEN, W. H. J., AND VAN GASTEREN, A. J. M. Derivation of a termination
detection algorithm for distributed computations. Znf. Process. L&t. 16 (1983), 217-219.

11. DIJKSTRA, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.
12. FRANCEZ, N. Distributed termination. ACM Trans. Program. Lang. Syst. 2, 1 (Jan. 1980),

42-55.
13. FRANCEZ, N., RODEH, M., AND SINTZOFF, M. Distributed termination with interval assertions.

In the Proceedings of Formalization of Programming Concepts (Peninsula, Spain, Apr. 1981),
Lecture Notes in Computer Science 107, Springer Verlag, New York.

14. FRANCEZ, N., AND RODEH, M. Achieving distributed termination without freezing. IEEE Trans.
Softw. Eng. SE-8, 3 (May 1982), 287-292.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Stepwise Refinement of Distributed Programs l 343

15. GLIGOR, V., AND SHATTUCK, S. On deadlock detection in distributed databases. IEEE Trans.
Softw. Eng. SE-& 5 (Sept. 1980).

16. GOUDA, M. Distributed state exploration for protocol validation. TR-185. Dept. of Computer
Sciences, Univ. of Texas, Austin, Oct. 1981.

17. HAAS, L., AND MOHAN, C. A distributed deadlock detection algorithm for a resource-based
system. Res. Rep. RJ3765, IBM Research Laboratory, San Jose, Calif., Jan. 1983.

18. HERMAN, T., AND CHANDY, K. M. A distributed procedure to detect AND/OR deadlock. Dept.
of Computer Sciences, Univ. of Texas, Austin, Feb. 1983.

19. LAMPORT, L. An assertional correctness proof of a distributed algorithm. In Science of Computer
Programming, 2, North-Holland, Amsterdam, 1982, 175-206.

20. MANNA, Z., AND PNUELI, A. How to cook a temporal proof system for your pet language. In
Symposium on Principles of Programming Languages (Austin, Tex., 1983).

21. MENASCE, D., AND MUNTZ, R. Locking and deadlock detection in distributed databases. IEEE
Trans. Softw. Eng. SE-5, 3 (May 1979).

22. MISRA, J., AND CHANDY, K. M. Termination detection of diffusing computations in communi-
cating sequential processes. ACM Trans. Program. Lang. Syst. 4, 1 (Jan. 1982), 37-43.

23. MISRA, J. Detecting termination of distributed computations using markers. In Proceedings of

the ACM SZGACT-SZGOPS Symposium of Principles of Distributed Computing (Montreal, Can.,
Aug. 17-19, 1983), ACM, New York.

24. OBERMARCK, R. Deadlock detection for all resource classes. Res. Rep. RJ2955, IBM Research
Laboratory, San Jose, Calif., Oct. 1980.

25. OBERMARCK, R. Distributed deadlock detection algorithm. ACM Trans. Database Syst. 7, 2,
(June 1982), 187-208.

Received January 1985; revised November 1985; accepted November 1985

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

