
Information Processing Letters 25 (1987) 153-158 29 May 1987
North-HoUand

ON DISTRIBUTED SNAPSHOTS

Ten H. LAI and Tao H. YANG

Department of Computer and Information Sciences, The Ohio State University, 2036 Neil Avenue Mall, Columbus, OH 43210,
U.S.A.

Communicated by David Giles
Received 15 July 1986
Revised 5 November 1986

We develop an efficient snapshot algorithm that needs no control messages and does not require channels to be
first-in-first-out. We also show that several stable properties (e.g., termination, deadlock) can be detected with uncoordinated
distributed snapshots. For such properties, our algorithm can be further simplified.

Keywords: Distributed system, stable property, snapshot algorithm, deadlock detection, termination detection

1. Introduction

Chandy and Lamport [1] proposed an elegant
technique, called distributed snapshots, for detect-
ing stability in a distributed system:

(1) Every process takes a local snapshot by
recording its own state as well as the staies of all
channels incident upon it.

(2) The local snapshots are collected and as-
sembled to form a global snapshot of the system,
from which it can be decided whether the system
has reached a stable state.

To ensure that the scheme works correctly,
Chandy and Lamport proposed that processes be
somewhat coordinated in taking local snapshots
so that the resulting global snapshot is 'meaning-
ful'. They described a distributed algorithm for
taking a meaningful global snapshot. The al-
gorithm relies on channels being first-in-first-out
(i.e., messages being delivered in the order sent),
and it requires O(IC I) control messages, where C
is the set of channels in the system.

This paper presents a message-efficient al-
gorithm for processes to take local snapshots. The
algorithm does not require channels t o be first-in-

first-out, and it requires no control messages at
all.

As mentioned, (=handy and Lamport suggested
'meaningful' global snapshots for detecting stabil-
ity in a system. A natural question then arises:
Can an 'uncoordinated' gobal snapshot, in which
processes take local snapshots without any coordi,
nation among them, be useful for stability detec-
tion? We answer it in the affirmative by showing
that several stable properties (e.g., termination,
deadlock) can be detected with uncoordinated
snapshots.

This paper is concerned only with the problem
of taking local snapshots. The issue of forming a
global snapshot is discussed in [9]. Interesting
derivatives of the Chandy-Lamport algorithm can
be found in [4,8].

2. Model of a distributed system

We adopt the model of [1] with two modifica-
tions: (i) interprocess communications are not
necessarily first-in-first-out, and (ii) a computa-
tion of a system is defined as a function of time.

0020-0190/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 153

Volume 25, Number 3 INFORMATION PROCESSING.LETTERS 29 May 1987

(Throughout this paper, whenever time is used, it
denotes global time, and this is for purpose of
presentation on ly - - the distributed system itself
does not have global time.) Below we give a brief
description of the model; the reader is referred to
[1] for more information.

A distributed system is a strongly-connected
directed graph, where nodes represent processes
and arcs represent unidirectional channels.
Processes communicate with one another exclu-
sively by sending and receiving messages. Mes-
sages sent along a channel are assumed to be
delivered correctly, with arbitrary but finite delay,
but not necessarily in the order being sent.

Each channel is associated with a set of mes-
sages, called its state, that may grow and shrink.
When a message is sent (received) along a channel,
the message is added to (removed from) the set
associated with the channel. A process consists of
a set of states, an initial state in the set, and a set
of events. An event of a process p is a 5-tuple
(p, s, s', ~t, c), meaning that process p changes its
state from s to s' and sends (receives) message ~t
along outgoing (incoming) channel c which is inci-
dent upon p; ~ and c are null symbols if no
message is involved in the event. A global state of
a distributed system is a set of process and chan-
nel s tates--one state per process/channel. The
initial global state is one in which each process
state is an initial state and each channel is empty.
An event (p, s, s', ~t, c) can occur in global state
S iff (a) the state of p in S is s, and (b) if c is an
incoming channel, then ~t is contained in the state
of c in global state S. If event e can occur in global
state S, then next(S, e) denotes the global state
immediately after the occurrence of e in global
state S.

Let E be the union of all event sets in the
system. Let f be a function mapping the time-line
(0, o0) to E t3 { A } such that f(0 = A for all but a
finite number of t, where A is a special symbol
not in E denoting 'no event'. Let t i, 1 ~< i ~< n, be
all t such that f(t) ~ A. Assume 0 = t o < t 1 < • • •
< t~ < t n+ 1 = oo. We say that f is a computation
of the system iff event f(ti) can occur in gobal state
Si-1, where S o is the initial global state and S i =
next(Si_l, f(ti)), 1 ~< i < n. We occasionally write
a computation as {Si : 0 ~< i ~< n}.

Global state S' is reachable from global state S
(denoted as S--, S') iff there is a computation
{Si:O<i-<<n} such that S = S j and S ' = S k for
some j, k, O < j ~<k~<n.

Let y be a predicate function on the set of all
global states of a distributed system. The predi-
cate is said to be a stable property of the system iff
y(S) implies y(S') whenever S O ~ S ---, S'.

3. Snapshots

Consider a fixed computation f of a distributed
system with process set P and channel set C. Let
t o , . . . , t n+ 1 and So, . . . , Sn be as before. All defini-
tions below are made relative to computation f.

For t ~ (ti, t i+l), 0 ~ i ~< n, define

GS(t) = S i (i.e., S i is the global state of the

system at time t),

state (p, t) = the state of p in global state S i,

sent (c, t) = the set of all messages sent along

channel c by time t,

received(c, t) = the set of all messages received

along channel c by time t.

A local snapshot of process p taken at time t
consists of:

• state(p, t),
• sent(c, t), for every outgoing channel c inci-

dent upon p,
• received(c, t), for every incoming channel c

incident upon p.
A distributed snapshot of a system taken at times
{tp :p ~ P) is a set of local snapshots with p's
snapshot taken at time tp; that is, the following
set:

{state(p, t p) : p ~ P }

t3 { sent (c, tp), received (c, t q)" c = (p, q) ~ C }.

A global snapshot of a system taken at times
{tp : p E P} is the following set:

{state(p, t p) ' p E P }

U (sent(c, tp) -received(c, tq) :C = (p, q) E C}.

154

Volume 25, Number 3 INFORMATION PROCESSING LETTERS 29 May 1987

Note that a global snapshot is an 'assembled'
distributed snapshot, and is always a global state.

A global snapshot GSN (respectively, distrib-
uted snapshot DSN) is occasionally written as
GSN(tp: p ~ P) (respectively, DSN(tp: p ~ P)) to
emphasize the timing of local snapshots.

A global snapshot GSN(tp: p ~ P) taken be-
tween times ,q and 'r 2 (i.e., "q < t p < "r 2 Vp ~ P) is
meaning[ul iff GSN is reachablfffrom global state
GS(,rl) and global state GS('r2) is reachable from
GSN. It is feasible iff received(c, t q) _ sent(c, to)
for every channel c = (p, q) ~ C.

The following theorem was established in [1].
We give a simpler proof here.

3.1. Theorem ([1]). All feasible global snapshots are
meaningful.

'f(t)

f ' (t) = f (t - B)

,A

Proof. Let GSN(tp :p e P) be a feasible global
snapshot taken between times "r I and 'r 2, during
computation f. Let 8 = ,r 2 - ":1. Construct compu-
tation f ' from f as follows: f ' is the same as f
except that every post-snapshotting event in f is
now postponed for 8 units of time. That is,

if f(t) is an event at p e P

and t ~< tp,

if f(t -- 8) is an event at p e P

and tp < t - 8,

otherwise.

Fig. 1 displays an example of f ' . Since GSN is
feasible, f ' is easily seen to be a computation of
the system. One may readily check that

GS('q, f) - GS('q , f ') ,

rl r2

p l i .. t i T i m e

"-. i ":::::':":"J

p3 "~ I ~'~

GS{rt , . f) GSN GS(r~, f)

rt r2 r~ + ~i

"., ~ ,..

-'...,. ~ .~. ""

..." I

• '"'""' i

GS(rb 1')

Tim., e

ill

a,

as(T~,l') cs(, , + ~,I')
.~.. .--w : global snapshot or g lobal state
.'.- : message passing

Fig. 1. Left: computation f. Right: computation f'.

GSN = GS(~'2, f ') ,

GS('r 2, f) = GS(t" 2 + 8, f ') ,

where GS(-r, g) denotes the global state of the
system at time ,r during computation g. So, global
snapshot GSN is meaningful. []

4. An efficient snapshot algorithm

The snapshot algorithm of [1] not only takes a
distributed snapshot, but further distributively re-
fines it to a global snapshot. It works basically as
below.

Step 1. Every process takes a local snapshot
and immediately sends a marker along every out-
going channel; this must be done before or upon
receiving the first arriving marker; let tp denote
the time this is done at node p.

Step 2. Upon receiving a marker along channel
c = (p, q) ~ C, process q computes M(c) =
sent(c, tp) - received(c, tq).

Step 3. The set (state(p, tp) :p ~ P} U {M(c) :
c ~ C) is a meaningful global snapshot.

Note that a marker sent along channel
c = (p, q) serves two purposes: (i) to ensure that tp
and tq are such that received(c, tq)__, sent(c, tp),
and (ii) for process p to implicitly inform process
q of the value of sent(c, tp). (If channel c is FIFO

p
and q receives p's marker at time tq, then re-
ceived(c, t q) = sent(c, tp).)

We now derive an algorithm that uses no
markers and that does not require channels to be
FIFO. The idea is simple: let the distributed
snapshot be transformed into a global snapshot at
one node (i.e., nondistributively), thereby releasing
a marker from the duty of (ii). Then achieve (i)
without markers as follows. Consider any channel
c = (p, q). If after time tp process p will never
send messages to process q, then clearly
received(c, tq) _ sent(c, tp) and no marker is nec-
essary for channel c. Otherwise, let the marker
'piggyback' on every outgoing post-snapshotting
message. These ideas lead to the snapshot al-
gorithm below.

Snapshot Algorithm. The processes operate ac-
cording to the following rules.

155

Volume 25, Number 3 INFORMATION PROCESSING. LETTERS 29 May 1987

Ru/e 1. Every process is initially white and
turns red while taking a local snapshot.

gu/e 2. Every message sent by a white (red)
process is colored white (red).

gu/e 3. Every white process takes a snapshot at
its convenience--but no later than a red message
is possible received. (Thus, the arrival of a red
message at a white process will invoke the process
to take a snapshot before receiving the message.)

After the local snapshots are collected to a
node, they are combined to form a global snapshot,
which is readily seen, by Theorem 3.1, to be
meaningful.

Our algorithm needs no control messages at all
in taking local snapshots and does not require
channels to be FIFO. It requires more space,
however, in sending local snapshots to other nodes;
for they now each contain the complete message
history of a node instead of, as in the algorithm of
[1], just messages in transit. Fortunately, this
drawback can be overcome in important applica-
tions such as termination and deadlock detection
(see Section 6), where the number of messages in
sent(c, tp) (received(c, tq)) rather than the set it-
self is of concern.

Note that our algorithm heavily relies on every
process being able to spontaneously take a local
snapshot even if no red messages ever a r r iveq this
would not be a problem if the system is weakly
fair in the sense that every node eventually executes
the snapshot algorithm. (In contrast, in [1], only
one process is required to have this 'spontaneity'
nature.) If only one process can spontaneously
initiate the algorithm~ a signal may be passed
along a spanning tree to ask every process to take
a snapshot [6,10]; in that case, our algorithm
requires O(IPI) control messages.

In applications, a system usually has to re-
peatedly take global snapshots until the stable
property in concern occurs and is detected. It is a
straightforward exercise to modify the above al-
gorithm so that it can take a series of distributed
snapshots. Besides, one may reduce the size of a
local snapshot by resetting sent() and received()
to ~ after a local snapshot is taken, assuming that
the latest global snapshot is still available at the
node responsible for forming global snapshots.

5. Strongly stable properties

We now consider the question raised in Section
1: Is there any stable property that can be de-
tected with uncoordinated distributed snapshots?
And, more interestingly: It there any stable prop-
erty that can be detected by a nonmeaningful
global snapshot?

A property y of system D = (P, C) is strongly
stable iff y(GS('q)) implies y(GSN) and y(GSN)
implies y(GS('r2)) for all global snapshots GSN
taken between times ,q and "r 2 during all computa-
tions of D.

A strongly stable property is obviously a stable
property. The converse is in general not true. For
instance, the property "Dijkstra's self-stabilization
system has reached a stable state" [3,5] is stable,
but not strongly stable.

If a stable property in concern is known to be
strongly stable, then it can be detected with unco-
ordinated snapshots; as a result, our snapshot
algorithm becomes tremendously simple:

Every process takes a snapshot at its convenience.

Note that a strongly stable property y may or
may not be detected by a nonmeaningful global
state. The latter can happen if, for example,
y(GSN) = false for all nonmeaningful GSNs.

In what follows we show that the property
'local-deadlock' as defined in [2] is a strongly
stable property that can be detected even with a
nonmeaningful global snapshot.

Consider a distributed system D = (P, C) in
which every process is either active or idle, and
every process is associated with a set of processes
called its dependent set. The active/idle status of a
process together with its dependent set constitutes
the state of the process. An idle process becomes
active upon receiving a message from any process
in its dependent set; otherwise, it stays idle without
changing its dependent set. An active process is
free to send or receive messages, and may become
idle at any moment.

The system is said to be locally deadlocked in
global state S if there is a nonempty set Q _ P
such that the following are true in S:

(i) All processes in Q are idle.

156

Volume 25, Number 3 I N F O R M A T I O N PROCESSING LETTERS 29 May 1987

(ii) The dependent set of every process in Q is
a subset of Q.

(iii) Every channel between processes in Q is
empty.
In that case, Q is said to be deadlocked.

5.1. Lemma. During a computation, if Q ~ P is
deadlocked in global snapshot GSN(t p ". p ~ P), then
no process q ~ Q may resume active after time t q.

Proof. Otherwise, let R = {r ~ Q : r ever resumes
active after time t r }, and let q be the process in R
that resume active earliest. The message that makes
q active was sent by some process p ~ Q before
time tp, or else the 'earliest' nature of q would be
contradicted. But then the channel from p to q is
nonempty in GSN, contradicting the 'deadlock'
nature of Q. []

5.2. Theorem. That a distributed system is locally
deadlocked is a strongly stable property and may be
detected even by a nonmeaningful global snapshot.

Proof. Let GSN(tp : p ~ P) be any global snapshot
taken between ,q and 'r 2. Assume the system to be
locally deadlocked at time ,q. By definition, there
is a set of processes Q that is deadlocked at time
~-~. It is clear that no processes in Q, and no
channels between processes of Q, may change
their states after time "q. Hence, the system is
locally deadlocked in GSN.

Conversely, assume the system to be locally
deadlocked in GSN. Then there exists a
deadlocked subset Q (relative to GSN). For con-
tradiction, assume the system is not locally
deadlocked at time %. In particular, Q is not
deadlocked at "r 2. By definition, at least one of the
following holds at time %: (i) some process in Q is
still active, (ii) the dependent set of some process
in Q is not contained in Q, and (iii) some mes-
sages are still in transit between processes of Q. In
all cases, there must be a process in Q that re-
sumes active after taking its local snapshot, in
contradiction to Lemma 5.1. So, the system must
be locally deadlocked at time "r 2. By definition, the
property in concern is strongly stable.

We now show that a local deadlock may be
detected by a nonmeaningful global snapshot. Fig.

p l

p2. ,

p3,,,

p4

Fig. 2.

. ,.x

t

[

i t ".

t

i '

: global snapshot
: message pass ing

T i m e

2 displays a system of four processes and a non-
feasible global snapshot GSN. It is not hard to
actually define the system so that GSN is also
nonmeaningful. Let {P3, P4 } be deadlocked at time
t. This fact evidently can be detected by GSN. So,
the theorem is proved. []

Besides local-deadlock, " the entire system is
deadlocked" and " the system is terminated" [6]
are also strongly stable properties.

6. Remarks on deadlock and termination detection

This section justifies our claim that several
applications (e.g., deadlock and termination detec-
tion) need only message counters (instead of com-
plete message histories) for each channel.

6.1. Theorem. Let GSN(tp :p ~ P) be any global
snapshot. A nonempty set Q c_C_ P is deadlocked in
GSN iff the following are true in GSN: (i) every
process in Q is idle, (ii) the dependent set of every
process in Q is a subset of Q, and (iJJ)
I sent(c, tp) [= I received(c, tq) I for every channel
c = (p , q) ~ Q × Q.

Proof. Consider any distributed snapshot
GSN(tp : p ~ P) and nonempty set Q __c P.

("=* "): Assume Q deadlocked in GSN. By
definition, (i) and (ii) hold and, for every channel
c = (p, q) E Q x Q, sent(c, tp) _.c received(c, tq). If
sent(c, tp) = received(c, tq) for every c --- (p, q)
Q × Q, we are done. So, assume sent(c, t p) *

157

Volume 25, Number 3 INFORMATION PROCESSING LETTERS 29 May 1987

received(c, tq) for some c = (p, q) ~ Q × Q. That
is, at least one message in received(c, tq) is sent by
p after time tp, contradicting Lemma 5.1.

(" ¢= "): Now assume that (i), (ii), and (iii) hold
in GSN. For contradiction, assume Q is not
deadlocked in GSN. That is, assume sent(c, tp) -
received(c, tq)~:~J for some channel c = (p , q).
Since I sent(c, tp) I = I received(c, tq) I, it follows
that received(c, t q) - sent(c, tp)~:~[and hence p
sends at least one message after tp. So, the set
R = {r ~ Q : r ever resumes active after time tr} is
not empty. Let q ' be the process in R that re-
sumes active earliest, and p' be the sender of the
message, say IX, that makes q ' active. If message IX
is sent after time t p,, then p' resumes active earlier
than q'. If ix is sent before t ime tp, then since
I sent(c', tp,) I = I received(c', tq,) I, where c ' =
(p', q ') , q ' must receive before tq, a message that
is sent by p' after time t p,. In both cases, the
'earliest' nature of q ' is contradicted. []

Thus, in local-deadlock detection, instead of
recording the 'set ' of messages sent (received)
along a channel, it suffices to count the 'number '
of messages sent (received).

For termination detection, it is even possible to
use only one message counter without distinguish-
ing between channels [7].

Acknowledgment

The authors express their gratitude to an anon-
ymous referee for helpful comments and sug-
gestions.

References

[1] K.M. Chandy and L. Lamport, Distributed snapshots:
Determining global states of distributed systems, ACM
Trans. Comput. Syst. 3 (1) (1985) 63-75.

[2] K.M. Chandy, J. Misra and L.M. Haas, Distributed
deadlock detection, ACM Trans. Comput. Syst. 1 (2)
(1983) 144-156.

[3] E.W. Dijkstra, Self-stabilizing systems in spite of distrib-
uted control, Comm. ACM 17 (1974) 643-644.

[4] E.W. Dijkstra, The distributed snapshot of K.M. Chandy
and L. Lamport, Tech. Rept. EWD 864a, Univ. of Texas,
Austin, TX, 1983.

[5] E.W. Dijkstra, A belated proof of self-stabilization, Dis-
tributed Comput. 1 (1986) 5-6.

[6] N. Francez and M. Rodeh, Achieving distributed termina-
tion without freezing, IEEE Trans. Software Engrg. SE-8
(1982) 287-292.

[7] T.H. Lai, Termination detection for dynamically distrib-
uted systems with non-first-in-first-out communication, J.
Parallel & Distributed Computing 3 (1986) 577-599.

[8] C. Morgan, Global and logical time in distributed al-
gorithms, Inform. Process. Lett. 20 (1985) 189-194.

[9] M. Spezialetti and P. Kearns, Efficient distributed
snapshots, Proc. 6th Internat. Conf. on Distributed Com-
puting Systems (1986) 382-388.

[10] R. Topor, Termination detection for distributed computa-
tions, Inform. Process. Lett. 18 (1984) 33-36.

158

