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We develop an efficient snapshot algorithm that needs no control messages and does not require channels to be 
first-in-first-out. We also show that several stable properties (e.g., termination, deadlock) can be detected with uncoordinated 
distributed snapshots. For such properties, our algorithm can be further simplified. 
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1. Introduction 

Chandy and Lamport [1] proposed an elegant 
technique, called distributed snapshots, for detect- 
ing stability in a distributed system: 

(1) Every process takes a local snapshot by 
recording its own state as well as the staies of all 
channels incident upon it. 

(2) The local snapshots are collected and as- 
sembled to form a global snapshot of the system, 
from which it can be decided whether the system 
has reached a stable state. 

To ensure that the scheme works correctly, 
Chandy and Lamport proposed that processes be 
somewhat coordinated in taking local snapshots 
so that the resulting global snapshot is 'meaning- 
ful'. They described a distributed algorithm for 
taking a meaningful global snapshot. The al- 
gorithm relies on channels being first-in-first-out 
(i.e., messages being delivered in the order sent), 
and it requires O(IC I) control messages, where C 
is the set of channels in the system. 

This paper presents a message-efficient al- 
gorithm for processes to take local snapshots. The 
algorithm does not require channels t o  be first-in- 

first-out, and it requires no control messages at 
all. 

As mentioned, (=handy and Lamport suggested 
'meaningful' global snapshots for detecting stabil- 
ity in a system. A natural question then arises: 
Can an 'uncoordinated' gobal snapshot, in which 
processes take local snapshots without any coordi, 
nation among them, be useful for stability detec- 
tion? We answer it in the affirmative by showing 
that several stable properties (e.g., termination, 
deadlock) can be detected with uncoordinated 
snapshots. 

This paper is concerned only with the problem 
of taking local snapshots. The issue of forming a 
global snapshot is discussed in [9]. Interesting 
derivatives of the Chandy-Lamport algorithm can 
be found in [4,8]. 

2. Model of a distributed system 

We adopt the model of [1] with two modifica- 
tions: (i) interprocess communications are not 
necessarily first-in-first-out, and (ii) a computa- 
tion of a system is defined as a function of time. 
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(Throughout this paper, whenever time is used, it 
denotes global time, and this is for purpose of 
presentation on ly - - the  distributed system itself 
does not have global time.) Below we give a brief 
description of the model; the reader is referred to 
[1] for more information. 

A distributed system is a strongly-connected 
directed graph, where nodes represent processes 
and arcs represent unidirectional channels. 
Processes communicate with one another exclu- 
sively by sending and receiving messages. Mes- 
sages sent along a channel are assumed to be 
delivered correctly, with arbitrary but finite delay, 
but not necessarily in the order being sent. 

Each channel is associated with a set of mes- 
sages, called its state, that may grow and shrink. 
When a message is sent (received) along a channel, 
the message is added to (removed from) the set 
associated with the channel. A process consists of 
a set of states, an initial state in the set, and a set 
of events. An event of a process p is a 5-tuple 
(p, s, s', ~t, c),  meaning that process p changes its 
state from s to s' and sends (receives) message ~t 
along outgoing (incoming) channel c which is inci- 
dent upon p; ~ and c are null symbols if no 
message is involved in the event. A global state of 
a distributed system is a set of process and chan- 
nel s tates--one state per process/channel.  The 
initial global state is one in which each process 
state is an initial state and each channel is empty. 
An event (p, s, s', ~t, c) can occur in global state 
S iff (a) the state of p in S is s, and (b) if c is an 
incoming channel, then ~t is contained in the state 
of c in global state S. If  event e can occur in global 
state S, then next(S, e) denotes the global state 
immediately after the occurrence of e in global 
state S. 

Let E be the union of all event sets in the 
system. Let f be a function mapping the time-line 
(0, o0) to E t3 { A } such that f(0 = A for all but a 
finite number of t, where A is a special symbol 
not in E denoting 'no  event'. Let t i, 1 ~< i ~< n, be 
all t such that f(t) ~ A. Assume 0 = t o < t 1 < • • • 
< t~ < t n+ 1 = oo. We say that f is a computation 
of the system iff event f(ti) can occur in gobal state 
Si-1, where S o is the initial global state and S i = 
next(Si_l, f(ti)), 1 ~< i < n. We occasionally write 
a computation as {Si : 0 ~< i ~< n}. 

Global state S' is reachable from global state S 
(denoted as S--, S')  iff there is a computation 
{Si:O<i-<<n} such that S = S j  and S ' = S k  for 
some j, k, O < j  ~<k~<n. 

Let y be a predicate function on the set of all 
global states of a distributed system. The predi- 
cate is said to be a stable property of the system iff 
y(S) implies y(S')  whenever S O ~ S ---, S'. 

3. Snapshots 

Consider a fixed computation f of a distributed 
system with process set P and channel set C. Let 
t o , . . . ,  t n+ 1 and So, . . . ,  Sn be as before. All defini- 
tions below are made relative to computation f. 

For t ~ (ti, t i+l),  0 ~ i ~< n, define 

GS(t) = S i (i.e., S i is the global state of the 

system at time t), 

state (p, t) = the state of p in global state S i, 

sent (c, t) = the set of all messages sent along 

channel c by time t, 

received(c, t) = the set of all messages received 

along channel c by time t. 

A local snapshot of process p taken at time t 
consists of: 

• state(p, t), 
• sent(c, t), for every outgoing channel  c inci- 

dent upon p, 
• received(c, t), for every incoming channel c 

incident upon p. 
A distributed snapshot of a system taken at times 
{tp :p ~ P) is a set of local snapshots with p's 
snapshot taken at time tp; that is, the following 
set: 

{state(p, t p ) : p ~ P }  

t3 { sent (c, tp ), received (c, t q )" c = (p, q) ~ C }. 

A global snapshot of a system taken at times 
{tp : p E P} is the following set: 

{state(p, t p ) ' p E P }  

U ( sent(c, tp) -received(c, tq ) :C = (p, q) E C}. 
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Note that a global snapshot is an 'assembled' 
distributed snapshot, and is always a global state. 

A global snapshot GSN (respectively, distrib- 
uted snapshot DSN) is occasionally written as 
GSN(tp: p ~ P) (respectively, DSN(tp: p ~ P)) to 
emphasize the timing of local snapshots. 

A global snapshot GSN(tp: p ~ P) taken be- 
tween times ,q and 'r 2 (i.e., "q < t p < "r 2 Vp ~ P) is 
meaning[ul iff GSN is reachablfffrom global state 
GS(,rl) and global state GS('r2) is reachable from 
GSN. It is feasible iff received(c, t q ) _  sent(c, to) 
for every channel c = (p, q) ~ C. 

The following theorem was established in [1]. 
We give a simpler proof here. 

3.1. Theorem ([1]). All feasible global snapshots are 
meaningful. 

'f(t) 

f ' ( t )  = f ( t -  B) 

,A 

Proof. Let GSN( tp :p  e P) be a feasible global 
snapshot taken between times "r I and 'r 2, during 
computation f. Let 8 = ,r 2 - ":1. Construct compu- 
tation f '  from f as follows: f '  is the same as f 
except that every post-snapshotting event in f is 
now postponed for 8 units of time. That is, 

if f(t) is an event at p e P 

and t ~< tp, 

if f(t -- 8) is an event at p e P 

and tp < t - 8, 

otherwise. 

Fig. 1 displays an example of f ' .  Since GSN is 
feasible, f '  is easily seen to be a computation of 
the system. One may readily check that 

GS('q,  f) - GS( 'q ,  f ' ) ,  

rl  r2 

p l  i .. t i T i m e  

"-. i ":::::':":"J 

p3 "~ I ~'~ 

GS{rt , . f )  GSN GS(r~, f )  

rt r2 r~ + ~i 

"., .. . . . . . . . . . . .  ~ ,.. 

-'...,. ~ .~. "" 

..." I 

• '"'""' i 

GS(rb 1') 

Tim., e 

ill 

a, 

as(T~,l') cs( , ,  + ~,I') 
.~.. .--w : global snapshot or g lobal  state 
. . . . . . . .  .'.- : message  passing 

Fig. 1. Left: computation f. Right: computation f'. 

GSN = GS( ~'2, f ' ) ,  

GS('r 2, f) = GS( t" 2 + 8, f ' ) ,  

where GS(-r, g) denotes the global state of the 
system at time ,r during computation g. So, global 
snapshot GSN is meaningful. [] 

4. An efficient snapshot algorithm 

The snapshot algorithm of [1] not only takes a 
distributed snapshot, but further distributively re- 
fines it to a global snapshot. It works basically as 
below. 

Step 1. Every process takes a local snapshot 
and immediately sends a marker along every out- 
going channel; this must be done before or upon 
receiving the first arriving marker; let tp denote 
the time this is done at node p. 

Step 2. Upon receiving a marker along channel 
c = (p, q) ~ C, process q computes M(c) = 
sent(c, tp) - received(c, tq). 

Step 3. The set (state(p, tp) :p ~ P} U {M(c) : 
c ~ C) is a meaningful global snapshot. 

Note that a marker sent along channel 
c = (p, q) serves two purposes: (i) to ensure that tp 
and tq are such that received(c, tq)__, sent(c, tp), 
and (ii) for process p to implicitly inform process 
q of the value of sent(c, tp). (If channel c is FIFO 

p 
and q receives p's marker at time tq, then re- 
ceived(c, t q ) =  sent(c, tp).) 

We now derive an algorithm that uses no 
markers and that does not require channels to be 
FIFO. The idea is simple: let the distributed 
snapshot be transformed into a global snapshot at 
one node (i.e., nondistributively), thereby releasing 
a marker from the duty of (ii). Then achieve (i) 
without markers as follows. Consider any channel 
c = (p, q). If after time tp process p will never 
send messages to process q, then clearly 
received(c, tq) _ sent(c, tp) and no marker is nec- 
essary for channel c. Otherwise, let the marker 
'piggyback' on every outgoing post-snapshotting 
message. These ideas lead to the snapshot al- 
gorithm below. 

Snapshot Algorithm. The processes operate ac- 
cording to the following rules. 
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Ru/e 1. Every process is initially white and 
turns red while taking a local snapshot. 

gu/e 2. Every message sent by a white (red) 
process is colored white (red). 

gu/e 3. Every white process takes a snapshot at 
its convenience--but  no later than a red message 
is possible received. (Thus, the arrival of a red 
message at a white process will invoke the process 
to take a snapshot before receiving the message.) 

After the local snapshots are collected to a 
node, they are combined to form a global snapshot, 
which is readily seen, by Theorem 3.1, to be 
meaningful. 

Our algorithm needs no control messages at all 
in taking local snapshots and does not require 
channels to be FIFO. It requires more space, 
however, in sending local snapshots to other nodes; 
for they now each contain the complete message 
history of a node instead of, as in the algorithm of 
[1], just messages in transit. Fortunately, this 
drawback can be overcome in important applica- 
tions such as termination and deadlock detection 
(see Section 6), where the number of messages in 
sent(c, tp) (received(c, tq)) rather than the set it- 
self is of concern. 

Note that our algorithm heavily relies on every 
process being able to spontaneously take a local 
snapshot even if no red messages ever a r r iveq  this 
would not be a problem if the system is weakly 
fair in the sense that every node eventually executes 
the snapshot algorithm. (In contrast, in [1], only 
one process is required to have this 'spontaneity' 
nature.) If only one process can spontaneously 
initiate the algorithm~ a signal may be passed 
along a spanning tree to ask every process to take 
a snapshot [6,10]; in that case, our algorithm 
requires O(IPI )  control messages. 

In applications, a system usually has to re- 
peatedly take global snapshots until the stable 
property in concern occurs and is detected. It is a 
straightforward exercise to modify the above al- 
gorithm so that it can take a series of distributed 
snapshots. Besides, one may reduce the size of a 
local snapshot by resetting sent( ) and received( ) 
to ~ after a local snapshot is taken, assuming that 
the latest global snapshot is still available at the 
node responsible for forming global snapshots. 

5. Strongly stable properties 

We now consider the question raised in Section 
1: Is there any stable property that can be de- 
tected with uncoordinated distributed snapshots? 
And, more interestingly: It there any stable prop- 
erty that can be detected by a nonmeaningful 
global snapshot? 

A property y of system D = (P, C) is strongly 
stable iff y(GS('q)) implies y(GSN) and y(GSN) 
implies y(GS('r2) ) for all global snapshots GSN 
taken between times ,q and "r 2 during all computa- 
tions of D. 

A strongly stable property is obviously a stable 
property. The converse is in general not true. For 
instance, the property "Dijkstra's self-stabilization 
system has reached a stable state" [3,5] is stable, 
but not strongly stable. 

If a stable property in concern is known to be 
strongly stable, then it can be detected with unco- 
ordinated snapshots; as a result, our snapshot 
algorithm becomes tremendously simple: 

Every process takes a snapshot at its convenience. 

Note that a strongly stable property y may or 
may not be detected by a nonmeaningful global 
state. The latter can happen if, for example, 
y(GSN) = false for all nonmeaningful GSNs. 

In what follows we show that the property 
'local-deadlock' as defined in [2] is a strongly 
stable property that can be detected even with a 
nonmeaningful global snapshot. 

Consider a distributed system D = (P, C) in 
which every process is either active or idle, and 
every process is associated with a set of processes 
called its dependent set. The active/idle status of a 
process together with its dependent set constitutes 
the state of the process. An idle process becomes 
active upon receiving a message from any process 
in its dependent set; otherwise, it stays idle without 
changing its dependent set. An active process is 
free to send or receive messages, and may become 
idle at any moment. 

The system is said to be locally deadlocked in 
global state S if there is a nonempty set Q _  P 
such that the following are true in S: 

(i) All processes in Q are idle. 
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(ii) The dependent set of every process in Q is 
a subset of Q. 

(iii) Every channel between processes in Q is 
empty. 
In that case, Q is said to be deadlocked. 

5.1. Lemma. During a computation, if  Q ~ P is 
deadlocked in global snapshot GSN(t p ". p ~ P), then 
no process q ~ Q may resume active after time t q. 

Proof. Otherwise, let R = {r ~ Q : r  ever resumes 
active after time t r }, and let q be the process in R 
that resume active earliest. The message that makes 
q active was sent by some process p ~ Q before 
time tp, or else the 'earliest' nature of q would be 
contradicted. But then the channel from p to q is 
nonempty in GSN, contradicting the 'deadlock' 
nature of Q. [] 

5.2. Theorem. That a distributed system is locally 
deadlocked is a strongly stable property and may be 
detected even by a nonmeaningful global snapshot. 

Proof. Let GSN(tp : p ~ P) be any global snapshot 
taken between ,q and 'r 2. Assume the system to be 
locally deadlocked at time ,q. By definition, there 
is a set of processes Q that is deadlocked at time 
~-~. It is clear that no processes in Q, and no 
channels between processes of Q, may change 
their states after time "q. Hence, the system is 
locally deadlocked in GSN. 

Conversely, assume the system to be locally 
deadlocked in GSN. Then there exists a 
deadlocked subset Q (relative to GSN). For con- 
tradiction, assume the system is not locally 
deadlocked at time %. In particular, Q is not 
deadlocked at "r 2. By definition, at least one of the 
following holds at time %: (i) some process in Q is 
still active, (ii) the dependent set of some process 
in Q is not contained in Q, and (iii) some mes- 
sages are still in transit between processes of Q. In 
all cases, there must be a process in Q that re- 
sumes active after taking its local snapshot, in 
contradiction to Lemma 5.1. So, the system must 
be locally deadlocked at time "r 2. By definition, the 
property in concern is strongly stable. 

We now show that a local deadlock may be 
detected by a nonmeaningful global snapshot. Fig. 

p l  
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p4 .... 

Fig. 2. 
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T i m e  

2 displays a system of four processes and a non- 
feasible global snapshot GSN. It is not hard to 
actually define the system so that GSN is also 
nonmeaningful. Let {P3, P4 } be deadlocked at time 
t. This fact evidently can be detected by GSN. So, 
the theorem is proved. [] 

Besides local-deadlock, " the  entire system is 
deadlocked" and " the  system is terminated" [6] 
are also strongly stable properties. 

6. Remarks on deadlock and termination detection 

This section justifies our claim that several 
applications (e.g., deadlock and termination detec- 
tion) need only message counters (instead of com- 
plete message histories) for each channel. 

6.1. Theorem. Let GSN( tp :p  ~ P) be any global 
snapshot. A nonempty set Q c_C_ P is deadlocked in 
GSN iff  the following are true in GSN: (i) every 
process in Q is idle, (ii) the dependent set of  every 
process in Q is a subset of Q, and (iJJ) 
I sent(c, tp) [ = I received( c, tq) I for every channel 
c = ( p ,  q ) ~ Q  × Q. 

Proof. Consider any distributed snapshot 
GSN(tp : p ~ P) and nonempty set Q __c P. 

("=* "): Assume Q deadlocked in GSN. By 
definition, (i) and (ii) hold and, for every channel 
c = (p, q) E Q x Q, sent(c, tp) _.c received(c, tq). If 
sent(c, tp) = received(c, tq) for every c --- (p, q) 
Q × Q, we are done. So, assume sent(c, t p ) *  
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received(c, tq) for some c = (p, q) ~ Q × Q. That 
is, at least one message in received(c, tq) is sent by 
p after time tp, contradicting Lemma 5.1. 

(" ¢= "): Now assume that (i), (ii), and (iii) hold 
in GSN. For contradiction, assume Q is not  
deadlocked in GSN. That is, assume sent(c, tp) - 
received(c, tq)~:~J for some channel  c = ( p ,  q). 
Since I sent(c, tp) I = I received(c, tq) I, it follows 
that received(c, t q ) -  sent(c, tp)~:~[ and hence p 
sends at least one message after tp. So, the set 
R = {r ~ Q : r  ever resumes active after time tr} is 
not empty. Let q '  be the process in R that re- 
sumes active earliest, and p' be the sender of the 
message, say IX, that makes q '  active. If message IX 
is sent after time t p,, then p' resumes active earlier 
than q'. If ix is sent before t ime tp, then since 
I sent(c', tp,) I = I received(c', tq,) I, where c '  = 
(p', q ' ) ,  q '  must receive before tq, a message that 
is sent by p' after time t p,. In both  cases, the 
'earliest' nature of q '  is contradicted. [] 

Thus, in local-deadlock detection, instead of 
recording the 'set '  of messages sent (received) 
along a channel, it suffices to count the 'number '  
of messages sent (received). 

For  termination detection, it is even possible to 
use only one message counter without  distinguish- 
ing between channels [7]. 
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