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Abstract Modern transaction systems, consisting of an
application server tier and a database tier, offer several levels
of isolation providing a trade-off between performance and
consistency. While it is fairly well known how to identify
qualitatively the anomalies that are possible under a certain
isolation level, it is much more difficult to detect and quan-
tify such anomalies during run-time of a given application.
In this paper, we present a new approach to detect and quan-
tify consistency anomalies for arbitrary multi-tier application
running under any isolation levels ensuring at least read com-
mitted. In fact, the application can run even under a mixture
of isolation levels. Our detection approach can be online or
off-line and for each detected anomaly, we identify exactly
the transactions and data items involved. Furthermore, we
classify the detected anomalies into patterns showing the
business methods involved as well as analyzing the types of
cycles that occur. Our approach can help designers to either
choose an isolation level where the anomalies do not occur
or to change the transaction design to avoid the anomalies.
Furthermore, we provide an option in which the occurrence
of anomalies can be automatically reduced during run-time.
To test the effectiveness and efficiency of our approach, we
have conducted a set of experiments using a wide range of
benchmarks.
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1 Introduction

Information systems, such as online banking and shopping,
have become ubiquitous and part of our daily lives. As more
and more clients concurrently access a service, it becomes
increasingly difficult to provide users with a consistent view
of the data and to guarantee that the actions of different users
do not interfere with each other. This problem is aggravated
through the use of multi-tier architectures as execution is now
distributed and data are spread across several components.
Most common is a multi-tier architecture, where clients (e.g.,
web browser) first send requests to a Web server, which
processes the presentation logic or handles the interchange
with the external clients. Then, the requests are passed to a
middle-tier, usually an application server, which takes care of
the business logic (e.g., performing a purchase) and accesses
the database backend tier to manage persistent data. As many
requests can execute concurrently at both the middle-tier and
the database, some concurrency control is needed. Modern
middle-tier systems often implement their own concurrency
control mechanism on top of the one provided by the database
system. For instance, a variation of optimistic concurrency
control defined in java persistence API (JPA) has become
very popular which offers more isolation than read com-
mitted but less than serializability [18]. The choice between
these isolation levels depends on performance and consis-
tency needs. Selecting an isolation level with strict consis-
tency can result in a performance penalty or might have high
operational cost [19], while lower levels of isolation provide
more concurrency or might be cheaper, at the cost of potential
inconsistencies (e.g., overselling due to concurrent orders).

Several studies have analyzed the potential anomalies
associated with the existing isolation levels [2,4,5,9,12,13].
However, it is less clear whether a given application might
actually experience such anomalies when running, and if yes,
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to what degree. For example, well-known anomalies such
as lost update and unrepeatable read are generally allowed
under the isolation level read committed but the actual occur-
rence can vary widely depending on the application. Mecha-
nisms presented in [15,17] detect whether an application, if
run under snapshot isolation (SI), can potentially have anom-
alies and/or avoid such potential anomalies. However, their
approach requires a careful analysis of the application which
might not always be possible. And even if one can determine
the anomalies that are possible, it is not yet clear how often
they will actually happen in practice. Quantifying the amount
of anomalies as they occur in near real time is extremely use-
ful and desirable for practitioners [21] as it allows for early
diagnosis and for immediate intervention, such as adapting
the level of isolation.

In this paper, we propose a new approach for detect-
ing consistency anomalies and automatically reducing their
occurrence. Our approach is completely independent of the
underlying database system which we treat as a black box.
Instead, our system is (partially) embedded into the middle-
tier. Furthermore, our approach does not require any knowl-
edge about the studied application, and we do not need to
analyze or change the application code in any form. Finally,
our system detects anomalies independently of the isolation
level under which the application runs, as long as all trans-
actions run under an isolation level that is equal or higher to
read committed. In fact, the application can run individual
business methods under different isolation levels. Once the
system detects that certain anomalies occur frequently, it pro-
vides the option to automatically increase the isolation level
for some transaction types in order to avoid inconsistencies
in the further execution. More concretely, this paper makes
the following contributions.

1.1 Anomaly detection

We detect anomalies by using traditional serializability the-
ory [7], that is, we build the dependency graph of the execu-
tion and detect cycles in it as anomalies. While serializability
theory has been developed decades ago, dependency graphs
have barely been used in practice, as many challenges have
to be overcome.

First, detecting dependencies between transactions is not
trivial. In our case, this is even more complex since inter-
nal database information is generally not exposed to the
application layer at which our approach operates. We obtain
the necessary dependency information by transparently tag-
ging data items with additional information. Furthermore,
we take advantage of certain properties of the isolation lev-
els to derive dependency information. Section 3 discusses
information extraction and dependency detection in detail.

The second challenge is to efficiently build the graph (see
Sect. 4) and perform cycle detection for systems that process

hundreds and thousands of transactions per minute. Off-the-
shelf cycle detection algorithms have exponential run-time
cost and require huge memory space to hold the graph. To
make cycle detection feasible, we performed a thorough
analysis of the properties of cycles in dependency graphs
depending on the isolation level used. We then take advan-
tage of these properties to reduce the number of edges we
have to consider when looking for cycles. In fact, our algo-
rithms for cycle detection, discussed in Sect. 5, only need to
follow a fraction of edges in the graph. Furthermore, we show
in Sect. 6 that at any time, we only need a subset of the graph
in memory to be able to detect all cycles. This means, we can
load the graph incrementally and remove nodes dynamically
when we are sure that we have detected all cycles in which
they might be involved.

1.2 Anomaly classification and reduction

For each cycle that we detect, we generate detailed informa-
tion about the individual transactions involved and the data
items that are affected. But this is only the core information.
We also categorize cycles according to the type of anomaly
they cause, such as lost update or unrepeatable reads. Further-
more, we determine the business methods that are involved
in the cycle which tell exactly which parts in the applica-
tion are responsible for generating such cycles. These two
classification mechanisms are presented in Sect. 7.

If certain types of cycles occur frequently, then one option
is to run the related business methods with a higher level
of isolation reducing the amount of cycles that can occur.
Thus, in Sect. 8, we present an option to transparently and
dynamically increase the isolation level of business methods
that lead to common cycles.

1.3 Deployment, implementation, and evaluation

We have deployed to modes for cycle detection: off-line and
online. In the off-line processing mode, we let the applica-
tion run for a given time interval, collect all the information,
and then perform consistency analysis on the committed set
of transactions. Off-line processing can be used for a peri-
odic analysis of the execution or in the testing phase of a
new application. In the online mode, we stream dependency
information of a running application as we collect it, build,
and extend the graph as new transactions commit and detect
cycles in near real time. Online processing is useful if we want
to continuously observe an application in order to intervene
quickly if an inconsistency is found.

We have implemented our approach within two com-
ponents. A collector agent colAgent observes the execu-
tion and keeps track of the data items accessed by transac-
tions and their execution order. colAgent is designed to
work with java enterprise edition (JavaEE) compliant appli-
cation servers and is completely independent of the underly-
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ing database system. We have integrated it into Hibernate,1

a default persistence layer for the open-source application
server JBoss.2 colAgent works both for single server as
well as clustered configurations that consist of several appli-
cation server instances. colAgent sends the logs it creates to
detAgent, the agent that builds the dependency graph, and
detects cycles. detAgent is completely independent from
the multi-tier architecture and can run on any machine.

These implementation aspects are described in Sect. 9.
We have tested the feasibility of our approach in Sect. 10,

by using three benchmarks, RUBiS [3], SPECjEnterprise
2010 [26], and TPC-C [28] using various mixes of isolation
levels: read committed, SI, and an optimistic concurrency
control mechanism common in many middle-tier servers. We
provide a detailed analysis of the number of anomalies that
occur under these benchmarks, their classification, and how
our prevention works. Furthermore, our analysis shows that
colAgent’s overhead during run-time is very low and cycle
detection is efficient. To stress-test detAgent, we have emu-
lated large graphs with hundreds of thousands of transactions
and many large cycles, and can show that graph creation and
cycle detection are efficient even with such huge graphs.

This paper is based on [31] where we presented an
approach for online anomaly detection and classification
along business methods and showed results based on the
RUBiS benchmark. We have extended this work to include
efficient cycle detection in a complete graph, to provide off-
line detection, to support mixture of isolation levels, to handle
limited memory, to classify along traditional anomaly types,
and to offer anomaly prevention. Furthermore, we conducted
experiments with the SPECjEnterprise and TPC-C bench-
marks and evaluated the efficiency of our cycle detection.

2 Background and preliminaries

In this section, we present our transaction model and give
an overview of the current middle-tier technology and the
concurrency control mechanisms they implement.

2.1 Transactions and isolation levels

A transaction Ti is a logical unit of read and write operations
on data items. Ti runs atomically, i.e., either all operations
succeed and Ti commits, or none of its operations succeed
and it aborts. Two transactions are concurrent if neither termi-
nates (commit/abort) before the other starts. We denote with
si the start time and with ci the commit time of transaction Ti .
Following [1], we assume that each writes operation wi (x)

of transaction Ti on data item x generates a new version xi of
x which is installed when Ti commits. If both transactions Ti

1 http://www.hibernate.org/.
2 http://www.jboss.org/.

and Tj update the same data item x , we require the commits
of Ti and Tj to be ordered and this commit order defines an
order on the created versions. For each read operation r j (xi )

of transaction Tj on data item x , we indicate the version xi

that is read.
Concurrent transactions must be isolated from each other.

The main correctness criterion in the research community is
serializability. It requires an interleaved execution of trans-
actions to be conflict equivalent to a serial execution over the
same set of transactions, where transactions execute serially
one after the other and read operations always read the latest
committed version. Equivalence means that in both execu-
tions transactions that update the same data items commit
in the same order (i.e, both executions create versions in the
same order), and in both executions, the read operation on
data item x of a transaction Ti reads the same version x j of
x . In short, pairs of conflicting operations (i.e., operations on
the same data item where at least one is a write operation)
are ordered in the same way in both executions.

A dependency graph is a directed graph where nodes are
the committed transactions of an execution and edges repre-
sent conflicts between them. There is a wr -edge Ti −wr →
Tj from Ti to Tj if Ti creates version xi of x and Tj reads this
version. There is a ww-edge Ti − ww → Tj from Ti to Tj

if both Ti and Tj write x , and Tj is the first to commit after
Ti and write x , that is, Ti and Tj install consecutive versions
of x . At last, there is a rw-edge Ti − rw → Tj from Ti to
Tj if there is an item x for which Ti has read the version x p

(created by another transaction Tp) and later Tj creates the
immediate successor x j of x p. The edges wr, ww, and rw

are known, respectively, as read dependencies, write depen-
dencies, and anti-dependencies. An execution is serializable
if and only if its dependency graph is acyclic [7].

Commercial database systems do not use this formal
definition of serializability but use concurrency control
mechanisms that offer lower levels of isolation, each of them
avoiding a set of specific anomalies. In [4], such anomalies
are more formally defined as undesirable behavior during the
concurrent execution of two transactions T1 and T2. Here, we
discuss the most common ones.

With dirty writes, T1 writes an entity x and then T2 writes
x before T1 has committed. If dirty writes are allowed, unse-
rializable schedules can occur where T1 writes x , then T2

writes x and y, and finally, T1 writes y, leading to cycle with
two ww-dependency edges in the dependency graph. Basi-
cally, all concurrency control mechanisms implemented in
commercial systems avoid dirty writes, and we assume this
for this paper.

With dirty reads, transaction T2 can perform a read r2(x1)

before T1 has committed. This can lead to problems when T1

actually aborts and certain cycles. Most isolation levels avoid
dirty reads. In this paper, we only look at isolation levels that
avoid dirty reads.
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(a) (b)

Fig. 1 Multi-tier architecture. a Stand-alone middle-tier server. b Clustered middle-tier

With read skew, a transaction T1 reads x then a transaction
T2 writes x and y, and then T1 reads y. Thus, T1 reads x’s
version before T2’s update, and y after T2’s update. If x and
y are related, the reads are inconsistent. Unrepeatable read
is a degenerate case of read skew where x = y (Fig. 1).

In lost update (Fig. 2a), T1 performs first a read and then
later a write on the same entity x , while T2 updates x between
T1’s read and write operations.

In write skew (Fig. 2b), T1 and T2 read some entities x and
y, then T1 writes entity x and T2 entity y, leading potentially
to inconsistent data if x and y are related.

Note that there also exist phantom anomalies that can
occur with predicate reads. Dependency graphs are not well
suited to find such anomalies, and we do not further consider
them in this paper.

2.2 Multi-tier architectures

Many Web-based information systems follow a multi-tier
architecture as depicted in Fig. 1. The Web server (WS)
tier handles the communication with external clients, pro-
vides static and dynamic web-pages, and calls the application
server tier (in this paper referred to as middle-tier) for more
complex requests. In turn, the middle-tier calls the database
system when it has to access persistent data. Figure 1a shows
a stand-alone middle-tier configuration with one application
server while in Fig. 1b, the middle-tier is clustered which is
often used when scalability is required. In this paper, we focus
on application servers that are conform to the java enterprise
edition (JavaEE) standard as many of the major industrial

(a) (b)

Fig. 2 Some consistency anomalies. a Lost update. b Write skew

application servers and several popular open-source prod-
ucts, such as Sun GlassFish3 and JBoss,4 follow this stan-
dard. In JavaEE, the middle-tier consists of two layers. The
first implements the business logic and takes care of starting
and committing transactions. The second layer is the persis-
tence layer which takes care of the mission-critical data that
need to be persisted in a database system.

In JavaEE, persistence is managed by the JPA [18]. JBoss
Hibernate5 and Oracle TopLink6 are two popular JPA imple-
mentations. This layer provides a high-level object-oriented
abstraction of the database layer. Each record of a database
table is represented as an entity in the persistence layer. An
entity can be considered a cached version of the correspond-
ing database record. Entities are accessed through a set of
methods provided by an entity manager (EM). Entities can be
read, inserted, and deleted through corresponding EM meth-
ods. To update an entity, it must be first read (loaded), then
updated via setter methods, and then flushed back to the data-
base. Thus, updates require more than one EM method call.
In this paper, we will use the terms persistence layer and JPA
interchangeably.

2.3 Middle-tier concurrency control

Transactions are started at the middle-tier which is also the
client for the database tier. In principle, a transaction is split
into a middle-tier transaction TMT which accesses entities
and performs some computation, and a database transaction
TDB executing at the database. A first call to an entity x by
TMT loads x via TDB from the database into a local copy locx

visible only within TMT. Subsequent calls of TMT to x are
served by locx which reduces database interaction. Due to
these local caches, the middle-tier requires some form of con-
currency control to provide the appropriate isolation level. In
this paper, we look at three isolation levels commonly imple-

3 http://glassfish.dev.java.net/.
4 http://www.jboss.org/.
5 http://www.hibernate.org/.
6 http://www.oracle.com/technology/products/ias/toplink/.
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mented. Read committed (RC) and SI are two well-known
isolation levels that are also frequently offered by database
systems. Furthermore, we present JOCC, an isolation level
provided by a special form of optimistic concurrency control
offered by JPA implementations.

2.3.1 Read committed (RC)

This isolation level is widely used in database systems so
it is not surprising that it is also offered at the middle-tier.
Most database systems implement it via locking: a read on x
requires a shared lock on x which is released after the oper-
ation; write operations acquire exclusive locks that are only
released at the end of the transaction. Thus, a read opera-
tion accesses the latest committed version. RC avoids dirty
writes because exclusive locks are kept until the end of the
transaction; it avoids dirty reads because it acquired shared
locks albeit short ones. But generally, RC allows the other
anomalies.

One possible implementation of RC at the middle-tier runs
the database transaction TDB under the RC level guarantee-
ing that whenever TMT loads an entity x into the middle-tier,
the last committed version of x as of start of the load is
returned. Then, the middle-tier transaction TMT cashes the
value as locx . Updates are always done first on this local
copy locx . At the end of TMT, if x was updated, the new ver-
sion stored in locx is sent to the database in the form of an
update operation. Once all writes have been successfully exe-
cuted at the database, both TMT and TDB commit. Interesting
to note that whenever the middle-tier transaction TMT reads
an entity several times, it always accesses the cached version
locx . Thus, in most cases, a transaction does not perform mul-
tiple reads of the same entity at the database avoiding most
cases of unrepeatable reads. However, they might still occur.
Complex queries (such as SQL select statements with com-
plex WHERE clauses) cannot be served by cached copies.
As the database transaction runs under RC, submitting twice
the same query can lead to different results if other transac-
tions performed changes in between. Furthermore, general
read skew caused by two different entities, lost update and
write skew are possible.

2.3.2 JPA OCC (JOCC)

As described in [18], JPA implementations provide an opti-
mistic concurrency control which we denote as JPA OCC
(JOCC). It is different to traditional textbook optimistic con-
currency control [20] in that it does not provide serializabil-
ity. The reason is that it only detects conflicts between write
operations. JOCC assumes that the database transaction TDB

runs under the RC isolation level. In order to detect conflicts
between writers, it enforces a transaction TMT (and its cor-
responding database transaction TDB) to abort if any entity

x that TMT changed was updated since TMT read it into its
local copy locx . This conflict detection is often implemented
via automatic versioning. It adds a new attribute (version) to
each entity class and also adds a new column for it to the
database table representing this entity. This version is man-
aged automatically and does not require any involvement of
the developer. When an entity is modified by TMT, its version
is increased and at commit time of TMT, JOCC checks the
current version of x at the database and compares it with the
version when the entity was first read by TMT. If they are
the same, the current value of x is written to the database. If
they are different, another transaction has changed the entity
in between and TMT is aborted. To get a closer look on how
this works under Hibernate (a JPA implementation), here is
a concrete example. Assume that a transaction TMT loads a
Product from the database with a productId equal to 100 and
objVersion equal to 1. It then modifies the product’s price to
the value 75.0. At the commit time of TMT, Hibernate sends
an UPDATE query to the database as follows:

UPDATE Product
SET price = 75.0, objVersion = 2

WHERE productID=100 AND objVersion = 1

If a concurrent transaction updated and committed this entity,
then the objVersion column no longer contains the value 1,
the update statement does not update any record, and returns
an error message upon which TMT aborts. Like RC, JOCC
only reads committed data and generally avoids unrepeatable
reads as it always reads the cached version. It also avoids lost
updates because the version checks abort transactions if the
entities they write have been updated since the read operation.
However, read and write skew can occur.

2.3.3 Snapshot isolation (SI)

Snapshot isolation (SI) has been a popular isolation level wi-
thin database systems for many years. The Snapshot Read
property of SI requires that a transaction reads data from a
snapshot that reflects the committed data as of its start time,
that is, a transaction Ti reads a data version x j created by
a transaction Tj which was the last to update x and com-
mit before Ti started. The Snapshot Write property disallows
concurrent transactions to update the same data item, that
is, if there are two concurrent transactions and both update
the same data item x , one of them must abort. As readers
and writers do not interfere, SI provides good concurrency.
SI avoids read skew and lost update but allows write skew.
Recent implementations [22,23,29] extended SI to serializ-
able SI where such types of anomalies are not allowed. SI is
simple to achieve at the middle-tier if the underlying data-
base system provides SI: the database transaction simply has
to run under SI instead of RC. In contrast to JOCC, no ver-
sioning system is needed. Starting the DB transaction under
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SI isolation level guarantees that all reads will read from
a snapshot as of the first database access. This also holds
for complex SQL queries that cannot be served from local
copies. When changes are written back to the database at
commit time, the database will guarantee that the Snapshot
Write rule is enforced, i.e., it will abort transactions if there
were concurrent writes.

2.3.4 Serializability

The serializability isolation level avoids all anomalies and no
cycles occur in the dependency graph. This can be enforced,
for example, by a strict 2-phase-locking protocol. In this case,
our detection approach is not needed. Thus, we do not con-
sider applications in which all transactions run under the seri-
alizability isolation level.

2.3.5 Isolation level mixes

We will see later that different isolation levels have certain
properties that can be exploited when determining depen-
dencies and detecting cycles. Thus, in the following, we dis-
tinguish applications in which transactions run under vari-
ous types of isolation levels that are related to each other as
depicted in Fig. 3.

RC+: An application runs under RC+ if all of its trans-
actions run under an isolation level, or a mixture of isolation
levels, that read(s) only committed versions of data items
(and has no dirty writes). For instance, if all transactions run
under RC, JOCC, or SI, or if the transactions run under any
mixture of RC, JOCC, SI, and serializability, then the appli-
cation is considered to run under RC+.

NOLOSTUPD: An application runs under NoLostUpd if
all of its transactions run under an isolation level, or a mix-
ture of isolation levels, that read(s) only committed versions
and avoid(s) lost updates. For instance, if all transactions run
under JOCC or SI, or if the transactions run under any mix-
ture of JOCC, SI, and serializability, then the application is
considered to run under NoLostUpd. Applications that run
under NoLostUpd are a subset of the applications that run
under RC+.

LOSTUPD: An application runs under LostUpd if all
of its transactions run under isolation levels that read only
committed versions and at least one transaction type within
the application runs under an isolation level that allows lost

Fig. 3 Isolation levels higher than or equal to RC

updates. For instance, if all transactions run under RC, or
some transactions run under RC while others run under
JOCC, SI, or serializability, then the application is consid-
ered to run under LostUpd. Applications that run under
LostUpd are a subset of the applications that run under RC+

and build the complement to the applications that run under
NoLostUpd.

3 Detecting inter-dependencies

Detecting anomalies in transactional executions requires sev-
eral steps. First, we have to detect when dependencies occur,
that is, we must know when there are wr, ww, and rw edges
between transactions. For that, we have to make observations
during the execution of transactions. Given these dependen-
cies, we have to build the graph and then detect cycles. In this
section, we discuss how we can detect dependencies at the
middle-tier layer of the transactional system. We only focus
on the more theoretical concepts and delay the description of
the concrete implementation to Sect. 9.

3.1 Read dependencies

When a transaction Tj reads an entity x , the middle-tier gen-
erally does not have any means to know the transaction Ti

that created the version of x that Tj reads. In order for us to
extract this information, we tag an entity with the identifier of
the transaction that updated the entity, respectively, created
that particular entity version. Tags become part of the entity
and thus are made persistent together with the entity, when
the entity is written back to the database. In the following,
we denote with x .t xn I n f o the transaction identifier tag of
an entity x . When a transaction Tj loads an entity x from the
database, then x .t xn I n f o reveals the transaction Ti that has
written this version of the entity. With this, we can establish
a wr -dependency Ti −wr → Tj from Ti to Tj . How exactly
we implement tags transparently to the application within a
JavaEE-server is discussed in Sect. 9.

3.2 Write dependencies

ww-edges are built between transactions that install consec-
utive versions of an entity. The question now is how to deter-
mine the exact order in which transactions write the entities.

Interestingly, we can easily determine ww-dependencies
in case of applications running under NoLostUpd taking
advantage of the fact that applications developed for JavaEE
JPA do not perform blind writes, i.e., they always read an
entity before they write it.7

7 The property of no blind writes holds for many middle-tier based
applications. It includes that we do not support blind-updates caused by
triggers.
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Proposition 3.1 Under NoLostUpd, if a transaction Tj

reads a version xi created by Ti , creates a new version x j

and commits, then x j is the immediate successor of xi and
there is a ww-dependency edge Ti − ww → Tj from Ti

to Tj .

Proof By definition, under isolation levels that avoid lost
updates, Tj ’s update can only succeed and Tj commit if no
transaction Tk updated x and committed after Ti and before
Tj . Therefore, x j is the immediate successor of xi . ��

Thus, as we can easily determine the transaction Ti that
created the version of x loaded by Tj through the t xn I n f o
tag, determining ww-edges is simple.

However, if the isolation level allows lost updates, such as
possible under LostUpd, Proposition 3.1 is not valid. Other
transactions are allowed to write an entity between a read and
a consecutive write. In this case, what is needed is to deter-
mine exactly in which order the database commits transac-
tions (at least for those transactions that conflict). However,
this is not possible at the middle-tier layer, at least not for
commit operations that are submitted concurrently, unless
we have access to database internal logs [10]. Therefore, our
approach enforces a commit order for update transactions in
order to be able to deduce ww-edges. Enforcing a commit
order has been a common technique in the past [11,16], and
in the implementation Sect. 9, we propose two solutions that
work in stand-alone and clustered configurations. Our tech-
niques only serialize the commits themselves while all read
and write operations continue to execute concurrently. Our
performance analysis shows that this serialization has very
little impact on performance.

Given this commit serialization, we assume that under
LostUpd, each update transaction T has a unique commit
time ci that we use to derive ww-edges by means of the
following proposition.

Proposition 3.2 Given two transactions Ti and Tj such that
(i) Ti creates version xi and Tj version x j of an entity x, (ii)
ci < c j , and (iii) not ∃Tk such that Tk creates version xk

and ci < ck < c j . Then, x j is the immediate successor of
xi , and there is a ww-dependency edge Ti −ww→ Tj from
Ti to Tj .

In summary, we consider two cases for detecting the ver-
sion order of entities:

1. If an application runs under NoLostUpd, then Proposi-
tion 3.1 is enough to detect the order of entities versions.

2. If an application does not run under NoLostUpd but is
still conform to RC+, i.e., it runs under LostUpd, then
we assume that for any update transaction T , we can
determine the unique commit time ci and Proposition 3.2
is enough to detect the order of entities versions.

3.3 Anti-dependencies

There is a rw-edge Ti − rw → Tj from Ti to Tj if there
is an entity x for which Ti has read the version xk (created
by another transaction Tk) and later Tj creates the imme-
diate successor x j of xk . This means there is a triangle of
dependency edges: Tk − ww → Tj , Tk − wr → Ti and
Ti −rw→ Tj . Thus, once we have determined Tk−ww→
Tj and Tk − wr → Ti through the mechanisms described
above, we can immediately conclude Ti − rw→ Tj .

3.4 Collection

It is the task of the collector agent colAgent, installed at
the middle-tier layer, to collect all necessary information to
determine dependencies among transactions. First, it creates
transaction identifiers for all transactions. At commit time
of a transaction Ti , colAgent overwrites t xn I n f o of each
entity updated by Ti with Ti ’s identifier. In case of LostUpd,
it also guarantees a commit order for update transactions
and labels each transaction with the commit time stamp ci .
Finally, for each transaction T , colAgent collects all neces-
sary information to determine dependencies with other trans-
actions. For each entity x read by T , it logs its primary key
x .key, the identifier of the transaction that created the version
that was loaded (x .t xn I n f o) and a flag x . f lag, indicating
whether the entity was also updated (recall that the entities
written is a subset of the entities read). Our implementation
does not require any access to the source code of the studied
application, thanks to several JPA features that allow us to
access dynamically the primary key of any entity as well as
its t xn I n f o information. Our stress tests have shown that
activities of colAgent impose very little overhead at the
middle-tier. colAgent then sends the collected information
to the detector agent detAgent who determines the depen-
dencies, builds the graph, and detects cycles. These tasks are
described in the next two sections.

4 Building the dependency graph

detAgent processes the transaction information it receives
from colAgent, one transaction at a time, adding the trans-
action to the dependency graph and determining the depen-
dency edges this transaction has with transactions that were
processed before. Processing a transaction is done by method
processTx as shown in Algorithm 1. processTx is nearly
the same for all isolation levels with some subtle differ-
ences, as for NoLostUpd, we use Proposition 3.1 to derive
ww-edges while under LostUpd, we use Proposition 3.2 to
extract such edges.

Furthermore, detAgent ensures that under LostUpd,
update transactions are processed in their ascending com-
mit order in order to correctly derive the ww-dependencies
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based on Proposition 3.2. It is able to correctly order trans-
actions as it is provided with the commit time stamps ci .
The details of how to do so are discussed in Sect. 9. In all
other cases (read-only transactions or any transaction type for
NoLostUpd), no such requirement exists and transactions
can be processed in any order. For any dependency edge
Ti → Tj , processTx builds the edge when the second of
the two transactions arrives. In the case of ww-dependenices
under LostUpd, Tj will always be processed the second,
otherwise it might be Ti or Tj .

4.1 General data structures

All the algorithms that we show in this section assume some
global data structures: (a) a dependency graph G(V, E)

where V is the set of transactions that have already been
processed and E the set of dependency edges that have
already been determined; (b) readersO f keeps track for
each entity x and transaction T that wrote x , the transactions
that read the version created by T ; (c) successors keeps
track for each entity x and transaction T that wrote x , the
transaction that wrote the consecutive version of x ; (d) Last
is a table that maintains for each entity x the identifier of the
last transaction that was added to the graph and updated x .

Furthermore, the transaction information T detAgent

uses to build the graph is as follows: T _id is the identifier
and T .enti ties is the set of entities accessed by T . Each
x ∈ T .enti ties records a key x .key, stores in x .t xn I n f o
the identifier of the transaction that wrote the version that T
read, and x . f lag is true if T wrote x .

PROCESSTX (ALGORITHM 1).
processTx takes the information of a transaction Tc as input
and adds Tc and its edges to the graph. First, processTx

processes each entity read by Tc by calling process-

ReadEntity (see Algorithm 2). Then, it processes each
entity updated by Tc by calling processUpdatedEntity

(see Algorithm 3). While processReadEntity looks for
T − wr → Tc and Tc − rw → T edges, processUpdat-

edEntity checks for all types of edges involving Tc. In the
following, we describe each of these steps in more detail.

detAgent includes an edge whenever the second trans-
action involved in an edge is processed. Figure 4 shows all
possible edges for a transaction Tc currently processed.

1. For any xc created by Tc

• There is an incoming Tp−ww→ Tc edge from pre-
decessor transaction Tp that created the predecessor
version x p of x (unless Tc creates the entity).
• There is an outgoing Tc−ww→ Ts edge to successor

transaction Ts that creates the successor version xs of
xc (unless Tc deletes x or there is no more update).
• There are zero or more Tprw − rw→ Tc edges from

transaction Tprw that reads the predecessor x p of x .

Fig. 4 Incoming and outgoing edges for transaction Tc

Algorithm 1 processTx ( Tc )

Input: Tc : a committed transaction.

Output: builds edges involving Tc

1: add Tc to G.V

2: for x in Tc.Enti ties do
3: processReadEntity(x, Tc)

4: for x in Tc.Enti ties where x . f lag = T RU E do
5: processUpdatedEntity(x, Tc)

• There are zero or more Tc − wr → Tswr to a trans-
action Tswr that reads the version xc created by Tc.

2. For any entity version x f read by Tc

• There is an incoming T f −wr → Tc from transaction
T f that created x f .
• There is an outgoing Tc − rw → Tt to transaction

Tt that creates the successor of x f (unless there is no
further update on x).

PROCESSREADENTITY (ALGORITHM 2).
This algorithm aims in building the incoming wr -edge and
the outgoing rw-edge for Tc in regard to an entity x . It
first extracts the identifier of T f from the field x .t xn I n f o
(line 1). T f might have been processed by detAgent

before or after Tc. If T f was processed before Tc, then
the T f − wr → Tc edge can be immediately added to
the graph (lines 2–3). If T f was not yet processed, then
the edge will only be added once T f is processed. In
order to detect this dependency when T f is processed, Tc

is added to a list that contains all readers of version x f

(lines 4–5).
In order to create Tc − rw → Tt , the algorithm calls

get Successor O f which tries to extract the identifier of the
successor Tt of T f in regard to x (if there is any) by using the
structure successors which is populated after the creation
of each new version of x in processUpdatedEntity (see
line 3). Again, Tt might have been processed by detAgent

before or after Tc. If it was processed before Tc, then the
Tc − rw→ Tt can be immediately added to the graph (lines
7–8). If Tt was not yet processed, then the edge will only be
added once Tt is processed. For this to happen, we have to
keep track that Tc read version x f (lines 9–10).

123



Consistency anomalies in multi-tier architectures

Algorithm 2 processReadEntity (x , Tc)

Input:
x : an entity.
Tc : a transaction that has read the entity x .

Output: builds additional wr - and rw-edges for Tc

1: T f _id = x .t xn I n f o

2: if T f ∈ G.V then
3: add an wr -edge : T f − wr → Tc to G.E
4: else
5: add Tc to readersO f (x .key, T f _id) // edge will be created once

T f is processed as an update transaction, (line 3 in Algorithm 3)

6: Tt _id = get Successor O f (x .key, T f _id)

7: if Tt _id valid identifier (Tt was already added to G.V ) then
8: add a new rw-edge : Tc − rw→ Tt to G.E
9: else
10: add Tc to readersO f (x .key, T f _id) // edge will be created once

Tt is processed as an update transaction, (line 3 in Algorithm 3)

PROCESSUPDATEDENTITY (ALGORITHM 3).
This algorithm is called for each update on entity x performed
by update transaction Tc. Under LostUpd, it is called only
if all update transactions with commit time smaller than ci

have been processed. This condition does not apply under
NoLostUpd. This algorithm aims to build one incoming
ww-edge, one outgoing ww-edge, zero or more incoming
rw-edges, and zero or more outgoing wr -edges for Tc.

First, it starts by extracting the identifier of transaction Tp

that was the last to update x (lines 1–5). Under NoLostUpd,
this information can be found in the t xn I n f o of the entity x ,
as Tc also reads every entity that it writes, and Proposition 3.1
guarantees that there is no other version in between. In case of
LostUpd, this algorithm keeps track for each entity x of the
last processed transaction that updates x (line 3). As update
transactions are processed in commit order under LostUpd

and Proposition 3.2 holds, this guarantees to capture the pre-
decessor Tp of Tc in regard to x .

If Tp had been processed before Tc (which is always true
under LostUpd), a Tp − ww → Tc edge is immediately
built. If Tp has not yet been processed, this edge will only
be created once processUpdatedEntity is called for x and
Tp. After that, this algorithm checks whether the successor
Ts of Tc was already processed before Tc (lines 10–14). This
is only possible for NoLostUpd. In this case, Tc − ww →
Ts is created. Also, the successor structure is updated as it
is needed if any transaction T with T − ww/rw → Tc

dependency has not yet been processed (line 15).
From line 3 to line 3, missing wr - and rw-edges are built.

These are edges where the reading transaction was processed
before the writing transaction and thus could not be built
during processReadEntity.

In “Appendix 13”, we show the correctness of this
approach, i.e., for any type of dependency between two trans-

Algorithm 3 processUpdatedEntity(x , Tc)

Input:
x : an entity.
Tc : a transaction that has created the entity x .

Output: builds additional ww-, wr - and rw-edges for Tc

// find the last transaction to update x
1: if isolation level NoLostUpd then
2: Tp_id = x .t xn I n f o
3: else
4: Tp_id = get Last (x .key)

5: set Last (x .key, Tc_id)

6: if Tp ∈ G.V (always true under RC+) then
7: add ww-edge : Tp − ww→ Tc to G.E
8: else
9: do nothing, edge will be created once Tp is processed (line 3)

10: Ts_id = get Successor O f (x .key, Tc_id)

11: if Ts_id valid identifier (Ts was already added to G.V which never
occurs under RC+) then

12: add ww-edge : Tc − ww→ Ts to G.E
13: else
14: do nothing, edge will be created once Tp is processed (line 3)

15: add [(x .key, Tp_id), Tc_id] to successors

// add missing rw-edges where Tc is the writer and the reader was
processed before Tc

16: for each Tprw ∈ readersO f (x .key, Tp_id) do
17: add rw-edge : Tprw − rw→ Tc to G.E

// add missing wr -edges where Tc is the writer and the reader was
processed before Tc

18: for each Tswr ∈ readersO f (x .key, Tc_id) do
19: add wr -edge : Tc − wr → Tswr

actions Ti and Tj , processTx adds the corresponding depen-
dency edge to the dependency graph exactly at the time the
second of the two transactions is processed.

All data structures maintained by our approach can be
implemented with simple hash functions. Thus, building the
dependency graph is linear with the number of operations.

5 Detecting cycles

The most common mechanism to detect cycles in directed
graphs is DFS [27] (Depth First Search). In its basic version,
the algorithm simply indicates whether a given graph con-
tains cycles or not. With this, execution can stop once the first
cycle is detected. We, however, want to find all cycles that
exist and also determine the nodes involved. A straightfor-
ward extension of DFS, denoted as extDfs, allows us to do
so. For each node T in the graph, extDfs starts a recursive
routine extDfsT, shown in Algorithm 4, with initial input
(T, T,∅, outgoing/ incoming,∅) visiting all nodes reach-
able from T . For simplicity, we again assume that the graph
G is globally accessible. The search can either follow out-
going edges (T is the source) or incoming edges (T is the
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Algorithm 4 extDfsT(...)

Input:
currentT : the start transaction of the search
f inalT : the searched transaction
visi tedT : a list of transactions already visited
direction : search along outgoing or incoming edges
paths : a list of paths, initially empty

Output: all found paths to f inalT are added to paths

1: if (currentT == f inalT and visi tedT �= ∅ then
2: add visi tedT to paths

3: if (direction == outgoing) then
4: T oFollow = {T |T → currentT ∈ G.E}
5: else
6: T oFollow = {T |currentT → T ∈ G.E}
7: for t ∈ T oFollow do
8: if (t /∈ visi tedT ) then
9: newV isi ted = visi tedT + t

10: EXTDFST (t, f inalT, newV isi ted, direction, paths)

sink). extDfsT returns all paths of G ending with T and
each returned path indicates the presence of cycles. A search
starting from node T only stops if there are no more edges to
follow. The problem is that this approach is extremely costly,
and with thousands of transactions in the graph, running times
quickly become prohibitive.

Therefore, this section explores two approaches that are
able to detect cycles much more efficiently by exploiting
the specific structures and properties of dependency graphs
and their cycles, depending on the isolation level. In our first
approach, we take a set of transactions, build the dependency
graph, and then perform cycle detection on the graph. By
exploiting the fact that all cycles have a certain structure in
terms of the types of edges and the commit order of transac-
tions, we can dramatically reduce the number of edges that
we have to traverse to find cycles to only a small fraction of
the overall number of edges. In the second approach, we inter-
weave graph construction and cycle detection. Whenever a
transaction is added to the graph via processTx, we detect
whether the transaction is part of any cycle. We guarantee
that we detect a cycle when the last transaction involved in
the cycle has been added to the graph. Again, by being care-
ful in which order we add transactions to the graph and how
we traverse the graph to detect cycles, we can dramatically
reduce the number of edges to be followed.

The principle idea in both approaches is that while there
are many edges in the graph, few are related to cycles. Ideally,
we do not look at edges that are not involved in cycles but
only traverse edges that are likely to be part of a cycle. In this
section, we demonstrate how we can achieve this.

5.1 Detection in the overall graph

The first approach is the more natural to think of. We first
build the entire graph as described in the previous section

and then perform cycle detection on that graph by checking
for each node in the graph, whether it is involved in a cycle.

5.1.1 Cycle properties

In our cycle detection, we take advantage of the fact that the
edges in our graph are labeled, and that, depending on the
isolation level used, the cycle can only contain certain types
of edges. Fekete et al. [15] showed that all cycles that can
be produced under the isolation level SI have a very specific
property as indicated in Theorem 5.1.

Theorem 5.1 (SI) [15] Given an execution possible under
the SI isolation level, any possible cycle C in its dependency
graph has at least two consecutive rw-edges T1 − rw →
T2 − rw→ T3 such that:

• T3 is the first committing transaction in C
• T2 ‖ T1 and T2 ‖ T3 (‖ means concurrent)
• T1 can be equal to T3

Motivated by this quite strong restriction on the type of
cycles, we analyzed whether other isolation levels have sim-
ilar restrictions. In fact, we determined that a very similar
property, slightly less restrictive, holds for any execution
under RC+.

Theorem 5.2 (RC+) Given an execution possible under
RC+, any possible cycle C in its dependency graph has at
least two consecutive edges T1−wr/ww/rw→ T2−rw→
T3 such that the edge from T2 to T3 is a rw-edge while the
edge from T1 to T2 can be of any type (wr, ww or rw). Fur-
thermore, the following holds:

• T3 is the first committing transaction in C
• T2 ‖ T1 and T2 ‖ T3

• T1 can be equal to T3

Proof see “Appendix 14.1” ��
Theorem 5.2 is less specific than Theorem 5.1 as it allows

any kind of edge from T1 to T2, that is, the cycles allowed
under SI are a subset of the cycles allowed under isolation
levels that are RC+. Figure 2a shows an execution possible
under RC which produces a cyclic dependency graph with
T1 = T3, ww-edge from T1 to T2, and an rw-edge from T2

to T3/T1. Note that such an execution is not possible under SI
as both transactions are concurrent and write the same entity.
Thus, SI aborts one of them.

In summary, Theorems 5.1 and 5.2 show that the cycles
possible under the most common isolation levels have a very
specific structure (Fig. 5). And we exploit this structure to
speed up the cycle detection process.
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Fig. 5 SI and RC+ cycles

Algorithm 5 condExtDfs( )

Output: returns cycles in the complete and globally accessible graph
G

1: for T in G.V do

2: T2 = T

3: for T3 ∈ {T |(T2 − rw→ T ∈ G.E} do
4: if ( ( T2.start < T3.start < T2.commit

or T3.start < T2.start < T3.commit )
and T3.commit < T2.commit then

5: for T1 ∈ {T |T → T2 ∈ G.E} do
6: if ( T1 == T3 ) then
7: cycle(T2, T3) detected
8: else if ( (T2.start < T1.start < T2.commit

or T1.start < T2.start < T1.commit )
and T3.commit < T1.commit )

9: and T1 − rw→ T2 ∈ V .E ) (only for SI) then
10: segment = {T1, T2, T3}
11: f ound Paths = {}
12: CONDEXTDFST (T3, T1, T2, {}, incoming ,

T3.commit, f ound Paths)

13: for path in f ound Paths do
14: add segment to path
15: return f ound Paths

5.1.2 Cycle detection process

Algorithm 5 describes the cycle detection process. Based on
Theorem 5.2, each cycle C has a section T1−rw/ww/wr →
T2−rw→ T3, where T2 is concurrent to both T1 and T3, and
T3 is the first transaction to commit in C . We take this property
to scan through each transaction node T and check whether
T could play the role of T2 in a cycle C . Thus, for each can-
didate transaction T , considered as T2, we check whether
it has at least one outgoing rw-edge to concurrent T3 that
committed before T and one incoming edge from concurrent
transaction T1 (in case of SI, a rw-edge) such that T3 commit-
ted before T1. We can determine whether two transactions Ti

and Tj are concurrent if Ti .start < Tj .start < Ti .commit
or Tj .start < Ti .start < Tj .commit . Only if this is true,
T1 → T2 → T3 is a potential segment of a cycle. If T1 is
equal to T3, then we have a cycle of size 2; otherwise, we run
an algorithm CONDEXTDFST which is similar to extDfsT

with some additional conditions. More specifically, con-

Algorithm 6 condExtDfsT(...)

Input:

currentT : the start transaction of the search
f inalT : the searched transaction
excludedT : a transaction to exclude in the search
visi tedT : a list of transactions already visited
direction : search follows outgoing or incoming edges
smallestC : first commit time in the cycle
paths : a list of paths, initially empty

Output: all found paths to f inalT are added to paths

1: if (currentT == f inalT ) then
2: add visi tedT to paths

3: if (direction == outgoing) then
4: T oFollow = {T |T → currentT ∈ G.E}
5: else
6: T oFollow = {T |currentT → T ∈ G.E}
7: for t ∈ T oFollow do
8: if (t /∈ visi tedT and t != excludedT ) then
9: // First Committer Condition
10: if (t .commit > smallestC) then
11: newV isi ted = visi tedT ∪ t

12: CONDEXTDFS (G, t, f inalT, excludedT,

newV isi ted, direction, smallestC, paths)

dExtDfsT starts its search from T3 and targets T1. It adds a
new transaction T to its search path, only if T commits after
T3, as T3 is the first committer in the cycles we are looking
for. Given a segment T1(−rw) → T2 − rw → T3, con-

dExtDfsT returns all paths starting from T3 and ending with
T1. Each of these paths is concatenated with segment to form
a detected cycle.

5.1.3 Search direction

DFS can be performed both in the direction of outgoing
edges, and reverse, along the direction of incoming edges.
The question is which direction is more efficient? It turns
out it is much more efficient to follow incoming edges, i.e.,
following the cycle in reverse order.

To better understand why this is the case, Fig. 6 shows
a cycle with the transactions sorted by their commit order.
T3 must be the first committed, and we denote with TL the
last committer. T3 has one incoming rw-edge coming from
T2 which commits after T3. In general, we group edges into
two categories. An edge from Ti to Tj is a forward edge if
Ti commits before Tj . Forward edges are prefixed with an
f and shown below the commit line in the figure. An edge
from Ti to Tj is called a backward edge if Tj commits before
Ti . They are prefixed with a b and shown above the commit
line in the figure. Lemma 5.1 provides us with an interesting
property for backward and forward edges.

Lemma 5.1 If there is an edge from transaction Ti to trans-
action Tj in the dependency graph of an execution under
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Fig. 6 The dependency graph
based on the commit time line

RC+ and Ti commits after Tj , then (1) this edge can only be
of type rw and (2) Ti is concurrent to Tj .

Proof see “Appendix 14.2” ��

Basically, as only committed data are read and written,
ww- and wr -edges are always forward edges, following the
commit order of transactions. Only for rw-edges can the
commit order be reversed. And if this is the case, the trans-
actions must be concurrent. This limits the number of b-rw

edges comparatively to the number of forward edges in the
graph. In fact, in all our experiments, b-rw edges formed less
than 4 % of all edges in the dependency graph.

We take advantage of this property and use condExtDfsT

by following incoming edges starting from T1 and trying
to reach T3. In this case, condExtDfsT is limited in its
search by two criteria. First, incoming edges above the com-
mit time line are limited by the existence of only few b-rw

edges in the graph. Second, if we follow incoming edges
below the commit time line, we push condExtDfsT to
explore nodes (transactions) in the direction of the First-
Committer -Border (as shown in Fig. 6) imposed by T3 as
the first committer. Once one of these incoming edges leads
to a transaction that commits before T3, our algorithm does
not follow it.

In contrast, if condExtDfsT follows outgoing edges
starting from T3, then the First-Committer -Border will
not stop the search from exploring long paths following
f -rw/ f -wr/ f -ww edges that never will lead back to T1.
In Sect. 10.5, we analyze the performance of search both
following outgoing and incoming edges in detail.

5.1.4 Start and commit orders

In Algorithm 5, we check in lines 4 and 8 whether two trans-
actions are concurrent. To do so, we need both the start and
commit time stamps of these transactions. More details on
extraction of the start and commit time stamps of transactions
will be provided in the implementation Sect. 9. Note that
under some databases, it might not be possible to extract the
exact start time stamp. In this case, the concurrency check in
lines 4 and 8 can simply be skipped. However, it is important
to know in which order transactions commit and we indicate
how we can achieve this in Sect. 9.

5.2 Detection in the incremental graph

In this section, we propose an approach where we combine
graph creation and cycle detection in a single process. While
this might not appear obvious at first view, it has an attrac-
tive advantage. If we are able to do so in an efficient manner,
then we can detect cycles, as we will later outline as our
online approach, in near real time. Whenever new transac-
tions commit, their information can be sent to detAgent.
Then, detAgent adds one transaction at a time and imme-
diately checks whether it is involved in a cycle. The problem
is that at the time of cycle detection, the graph is not complete
(as further transactions will commit and add new dependen-
cies). Thus, it is not clear whether we can take advantage
of the same cycle properties as in the previous section and
whether we would be able to find all cycles at all.

In a first step, we analyze whether we can exploit the
fact that each cycle contains a pair of edges T1 → T2 −
rw → T3 where T3 is the first committer in the cycle. In
our previous algorithm, we checked for each transaction T
whether it could take the role of T2 by first checking whether
T has an outgoing rw-edge to a transaction that committed
before T . If this is the case, we would start the search. Now
assume, we do cycle detection incrementally and assume a
transaction T in fact plays the role of T2 in a cycle. When
we add T to the graph, however, not all other transactions
in the cycle might yet have been added to the graph. It is
even possible that T3 was not yet added to the graph. Thus,
we would miss the cycle. Therefore, we cannot exploit the
pruning options we had taken in the last section.

Nevertheless, if we apply the original extDfs, we can be
sure that we find all cycles. More precisely, whenever a new
transaction T and all its dependency edges to already existing
transactions are added to the graph in Algorithm 1, we look
for cycles by calling extDfsT(T, T,∅, outgoing,∅). With
a little bit of reasoning, it becomes clear that we will indeed
find all cycles. Assume a cycle C = T1 → T2 . . . Tn → T1

involving n transactions and n edges in the dependency
graph G. For any edge in the graph, the edge is created when
the second of the two transactions involved in the edge is
processed shown in “Appendix 13”. Thus, once all n trans-
actions are processed, all edges in the cycle have been con-
structed. Without the loss of generality, assume that Tn is
the last transaction that is processed, adding the final edges

123



Consistency anomalies in multi-tier architectures

Tn−1 → Tn and Tn → T1. When we now call extDfsT

on Tn , the cycle C will be detected since all edges of C are
already present in the current graph.

The question now arises whether extDfsT will be effi-
cient enough. Quite surprisingly, it is, when we are smart
enough about it. As a first step, detAgent will try to add
transactions to the graph and process them as close to their
commit order as possible. It has to do so anyways for update
transactions in case of LostUpd. In the other cases, it does
not need to be exactly the commit order but the closer the
processing order is to the commit order, the more efficient
the search will be. For simplicity, the following discussion
will assume that transactions are added exactly in commit
order. As a second step and opposite to before, our extDfsT

will follow outgoing edges and not incoming edges.
From there, we consider again Fig. 6 with TL being the

last committer. At the time TL is added, the only outgoing
edges that can be added to the graph are to transactions that
committed before TL . As indicated in Lemma 5.1, these can
only be rw-edges to transactions that were concurrent to TL .
Very few such edges exist. Thus, we explore very few edges
in the first step of the search. And if there is such an edge,
and we continue to follow the path of outgoing edges, any
f -rw/ f -wr/ f -ww edge will quickly push the search again
into the direction of the Last-Committer -Border where
the search will stop as the edges beyond that border were not
yet created. This will force the search to stop in a few steps
and not follow long paths that are not related to cycles. If
transactions are not processed in exactly the commit order,
then the search might follow some extra f -rw/ f -wr/ f -ww

edges until the Last-Committer -Border is reached. Thus,
the more the processing order follows the commit order, the
less edges we need to investigate.

In contrast, if our search goes in the reverse direction
along incoming edges, we may easily follow a long list of
f -rw/ f -wr/ f -ww edges (involving transactions that com-
mitted before T ) since most of them exist at the time when
T is processed.

6 Memory management

In order to perform cycle detection, the data structures that
represent the dependency graph need to be in main memory.
If the graph is too large, memory restrictions can become a
problem. The following theorem helps us to limit the parts of
the graph that need to be kept in memory while at the same
time guaranteeing that we do not miss any cycles.

Theorem 6.1 Let C = T1, . . . , Tn (n ≥ 2) be a cycle gen-
erated by an execution running under RC+. Recall that si

(ci ) denotes the time transaction Ti starts (commits). Fur-
thermore, let

• smin = min(si ), 1 ≤ i ≤ n

Fig. 7 Cycle duration under RC+

• cmax = max(ci ), 1 ≤ i ≤ n
• �max = max(ci − si ), 1 ≤ i ≤ n

We claim that: cmax − smin ≤ n ∗�max

Proof see [30] ��
This means that the duration of a cycle C involving n

transactions, calculated as the time from the first start of any
transaction in C to the commit of the last committing trans-
action in C is at most n times as long as the longest running
transaction in the cycle. This is depicted in Fig. 7.

We can use this property as follows to restrict the part
of the graph that we have to keep in main memory. Our
approach assumes an upper bound on the length of any cycle,
denoted as Cmax, and an upper bound on the run-time of any
transaction in the system, denoted as �max. In order to deter-
mine all cycles in which a transaction Ti is the last commit-
ter (with commit time ci ), detAgent has to have access to
all transactions (and their dependencies) that started at time
ci −Cmax ∗�max or later and committed before Ti . All trans-
actions that started earlier cannot be involved in a cycle with
Ti . For example, if Cmax is set to 20 and �max is equal to 30 s
(both values chosen very conservatively), the transactions
executing within a window of 10 min of Ti must be hold in
main memory in order to find all cycles. Even at a through-
put of 100,000 transactions per minute, this is easily possible.
Note that for this to work, we have to perform cycle detection
close to the commit order of transactions, which we do.

7 Classification of cycles

So far, our cycle detection mechanism provides information
about the exact transactions involved in a cycle, such as the
transaction identifiers, the types of dependencies, and the
affected entities. However, if there are many different cycles,
it is difficult to check what in the application actually caused
these cycles and whether these cycles are problematic from
an application and data consistency point of view. Therefore,
we also classify cycles according to the anomaly type they
cause as well as the business methods involved.

In particular, we classify the detected cycles into two types
of patterns. The first classification determines the kind of
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anomaly that is caused by the cycle, such as lost update or
read skew. In the second classification, we categorize cycles
by their corresponding business methods linking cycles to
the responsible parts in the applications.

7.1 Anomaly classification

While many practitioners are not familiar with serializability
theory and dependency graphs, many know anomalies such
as unrepeatable reads or lost updates. Therefore, we classify,
whenever possible, the cycles according to the anomaly they
cause. In Sect. 2.1, we have listed the most well known. For
isolation levels RC+, these are read skew, unrepeatable read,
lost update, and write skew. All of them are defined in terms
of two conflicting transactions. It is quite straightforward
which cycle of length represents which anomaly.

Read skew causes a cycle T1 − rw → T2 − wr → T1

where the edges are due to different entities.
Unrepeatable read has the same cycle as read skew but
both edges are caused by the same entity.
Lost update leads to a cycle T1− rw→ T2−ww→ T1

and both edges are caused by the same entity.
Write skew results in a cycle T1− rw→ T2− rw→ T1

where the edges are caused by different entities.

Thus, in our system, whenever a cycle of length two is
detected, we can easily determine whether the cycle belongs
to one of these anomalies.

The question arises whether cycles of larger size reflect
conceptually similar anomalies. In fact, by analyzing the
cycles that were produced in our test runs, we determined two
frequently occurring sequences of dependencies in cycles of
length three. They are shown in Figs. 8a, b. Both cycles (in
green) have the form T1−rw→ T2−rw→ T3−wr → T1.
However, in the first, the dependencies are caused by two dif-
ferent entities, while in the latter case by only one entity.

The cycle of the type shown in Fig. 8a is conceptually sim-
ilar to a read skew with the difference that T1 reads the version
of x before T2 writes it and the version of y after T3 writes
it. T2 and T3 are ordered due to a rw-dependency resulting
overall in a cycle. Thus, we call this anomaly transitive read
skew or t-read skew for short.

If a cycle of the type shown in Fig. 8b occurs, then there is
also a related cycle (in dashed red) of length two T2− rw→
T3 − ww→ T2, indicating a lost update. A lost update in
this case means conceptually that T3’s update is lost as T2’s
read was based on a stale read and not on the latest version
written by T3. The read r1(x3) of T1 indicates that this lost
update was visible to the outside before it was overwritten.
Thus, we call it a visible lost update or v-lost update for short.
Note that if T1 later writes x , leading to another lost-update
cycle T1−rw→T2−ww→T1, the inconsistencies become
highly intertwined.

(a) (b)

Fig. 8 New consistency anomalies. a t-read skew. b v-lost update
(color figure online)

Although we did not observe it in our test runs, transitive
unrepeatable reads can just as easily be determined by finding
cycles of the form T1− rw→ T2−ww→ T3−wr → T1,
where all edges are caused by the same entity.

Note that we might categorize a cycle as, e.g., a read skew,
while it might actually not be an anomaly for the application
because the read entities are not related. However, this can
only be analyzed by an expert, and our tool gives him/her all
the information needed to make this analysis.

7.2 Business methods classification

In order to better link to the application, we extract for each
detected cycle the business methods involved. More con-
crete, each cycle can be assigned to an ordered and an
unor − dered pattern of business methods.

Ordered Patterns. Ordered patterns are a straightforward
mapping of a cycle C = T1 → T2 → · · · → Tn → T1

of transactions in the dependency graph to an ordered cycle
pattern ordC P = bm1 → bm2 → · · · → bmn → bm1 of
business methods where each transaction Ti in C is replaced
by the business method bmi in which Ti was embedded. Note
that this is a many-to-one mapping, as many transactions
map to the same business method. ordC is called an ordered
pattern, as the order in which the business methods appear in
the cycle matters. For instance, the patterns

ordC P1 = bm1 → bm2 → bm3 → bm1 and

ordC P2 = bm1 → bm3 → bm2 → bm1

are different, since the order of methods is different: bm1’s
predecessor is bm3 in ordC P1, and bm2 in ordC P2.

7.2.1 Unordered patterns

Ordered patterns give detailed information about the order in
which business methods are interleaved but there might be
many ordered patterns and they might be difficult to be parsed
at first. Therefore, unordered patterns provide a more coarse-
grade view on the cycles that occur, only indicating the set of
business methods that cause the cycle but ignoring their order
and how often each of them appears in the cycle. Continuing
with the example above, the two different ordered patterns
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ordC P1 and ordC P2 both map to the same unordered pattern

unordC P = {bm1, bm2, bm3}.
Similarly, a transaction cycle that maps to the ordered pattern
ordC P3 = bm1 → bm3 → bm2 → bm2 → bm1 has
the same unordered pattern unordC P = {bm1, bm2, bm3}
since duplications are not taken in consideration.

In summary, every cycle of transactions C maps to a
ordered list of business methods where each transaction is
replaced by the business method it calls, and an unordered
set of business methods that reflect the set of business meth-
ods involved in the cycle.

Furthermore, our system keeps track for each pattern how
often it has actually occurred in the test run. Thus, in order to
track down what problems incur in the system, the adminis-
trator might first start checking unordered business method
patterns that occur frequently to find the culprit business
methods, and if needed, continue checking ordered patterns
as well as some concrete transaction cycles to find the exact
dependencies that cause the cycles.

For example, the SEPECjEnterprise2010 benchmark has
a method completeW orkOrder that reads a work order
entity, an assembly entity, and an inventory entity and then
updates both the work order and inventory entities. Under
RC, cycles of length two, where two transactions concur-
rently execute this same method, can occur leading to a
lost update. Such a cycle is mapped to one ordered pat-
tern completeW orkOrder → completeW orkOrder →
completeW orkOrder and one unordered pattern complete
W orkOrder .

8 Cycle reduction

Our solution is mainly a diagnostic approach providing the
system administrator or developer with information about the
amount and the kind of inconsistencies that occur in a running
application. How it is used depends on the circumstances. If
no or few anomalies occur that are deemed to be acceptable,
nothing needs to be done. For instance, if the cycles tagged as
read skew involve unrelated entities, then there is no concern.
However, if the number of cycles is high, countermeasures
will likely need to be taken. There are mainly three options:

• The application itself remains unchanged but whenever
inconsistencies occur that violate the integrity of the
data, individual data entities can be manually changed
to consistent values. As we provide information about
the affected data entities, this is, in principle, possible.
Some resolution mechanisms could be developed for this
purpose. Such approach is highly application dependent.
• If a limited number of business methods cause a large

number of cycles that actually reflect true anomalies for
the application (e.g., a true write skew), it might be an

option to rewrite these business methods, e.g., by reorder-
ing the way they read and write entities or by rewriting
SELECT statements to SELECT FOR UPDATE state-
ments (via JPA equivalent methods). Such a rewrite might
lead to less anomalies. Again, this is very application
dependent, requires a manual analysis of the code, and a
semantically equivalent rewrite that avoids the problems
might not always be possible.
• The isolation level of the application or some of its busi-

ness methods is increased. Running in a higher isolation
level will likely decrease the number of cycles observed
during execution.

While the first two options require manual intervention
and very good knowledge of the application domain to deter-
mine what are truly anomalies from an application point of
view, the third option is much more general and requires
much less understanding of the application. Furthermore,
it can also be applied in an automatic and dynamic way
by exploiting the pattern information that is collected. The
idea is to assign stricter isolation levels to business meth-
ods that frequently cause cycles. Business methods that are
not involved in cycles will continue to run with lower lev-
els of isolation. For instance, whenever an unordered pattern
passes a threshold of, e.g., 20 associated cycles, our system
automatically increases the isolation levels of the business
methods that occur in this pattern. Section 9.3 discusses how
this is implemented by the detAgent and colAgent.

This mechanism is a generic preventive measure that auto-
matically kicks in without the need of a detailed analysis of
the cycles that occur. As an example of its usefulness, assume
that a set of new methods is added to a running application
and their dependencies are not well understood. If the new
methods cause frequent cycles in a short amount of time after
being added, quickly and dynamically increasing the isola-
tion level will be the safest thing to do. If after an analysis of
the cycles an expert determines that the cycles do not actually
reflect true anomalies for the application, the isolation level
can again be reduced. However, in the meantime, no severe
harm is done to the database.

9 Deployment and implementation details

9.1 Off-line versus online deployment

As already hinted on, our approach can be deployed in two
modes: off-line and online. In the off-line mode, the collector
agent colAgent collects all necessary information during
run-time, but the detector agent detAgent is only initiated
periodically, e.g., when a certain time period has passed,
a certain number of transaction has been executed or once
every day such as after peak hour. Such off-line processing
allows to delay the task of cycle detection to off-peak hours
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or to a time where the system administrator or analyst has
actually time to investigate in the cycles that occurred. It is
also useful when a new/modified application is executed in
a test phase in order to evaluate its performance and cor-
rectness before deployment. Then, consistency is only one
issue to be analyzed which then can be done comfortably
after the test run. In the offline mode, detAgent is assigned
a complete set of transactions at start of the agent and can
perform analysis on the entire graph as discussed in Sect. 5.1
or incrementally as outlined in Sect. 5.2.

In contrast, in the online mode, the colAgents on the
application servers and the detAgent (on any machine) are
started at the same time. The colAgents stream the col-
lected information in near real time to the detAgent who
uses the incremental graph creation and cycle detection strat-
egy as outlined in Sect. 5.2. The online mode is useful if an
application should be monitored in a continuous fashion, for
example, in order to be able to intervene as soon as possible
after inconsistencies have occurred.

9.2 Agents

Both colAgent and detAgent are written in standard Java.
While detAgent is independent of the middle-tier technol-
ogy, our current implementation of colAgent can work with
any application server supporting the JavaEE standard. We
have integrated it into the persistence layer Hibernate which
follows the JPA standard. To support additional non-JavaEE
platforms, only colAgent has to be changed, while detA-

gent remains the same.
colAgent. This agent has to capture dependency infor-

mation and send it to detAgent. By default, colAgent is
disabled. It can be enabled by a special request sent from the
detAgent console.

In our JavaEE implementation, we track entity versions by
adding an extra txnInfo attribute to each entity class (using
the ALTER command for each entity class). This is similar in
spirit to the version attribute used by JOCC and completely
transparent to the application developer. The attribute has 4
bytes which makes it lightweight. Before an entity is written
to the database, colAget sets x .t xn I n f o to the identifier of
the writing transaction. Note that t xn I n f o is updated at the
middle-tier like any other attribute of x ; the persistence layer
transparently maps its value to the corresponding table with-
out the need for any additional update operations at the data-
base. Thus, when a transaction Tj loads an entity x , colA-

gent can extract the creator through the x .t xn I n f o attribute
and determine the wr -dependency. JPA provides annotations
that help extract dynamically the primary key (simple or com-
posed) from an entity class. Therefore, there is no need to
check manually the source code of each entity class.

In the off-line mode, colAgent queues information on
transactions in memory and flushes it asynchronously to the

hard drive as XML files. Information is logged in ascend-
ing commit order. In the online mode, colAgent forwards
information on each committed transaction T to detAgent

after T commits. This is currently done via TCP/IP sockets.
detAgent. It receives the transaction information from

colAgent, builds the graph, and detects cycles.
In the off-line mode, detAgent loads transaction infor-

mation from the log files created by colAgent. If there are
multiple colAgents, detAgent merges the files to get a
globally sorted list of committed transactions and processes
them in commit order.

In the online mode, detAgent receives information on
transactions in near real time immediately after their com-
mit. Each colAgent sends information in ascending commit
order using FIFO channels. If there is only a single colA-

gent, then detAgent can process information on any trans-
action as soon as it receives it. If there are many colAgents,
detAgent queues the received information based on ascend-
ing commit time and processes an update transaction Ti only
if ci is the smallest commit time stamp of all transactions
it has not yet processed and it satisfies ci ≤ min(ck) for
all k, where ck is the commit time stamp of the last update
transaction received from colAgentk .

detAgent outputs cycles as they are detected. For each
cycle, it generates a sub-history of the transactions involved,
as well as the entities involved in the cycle. Each entity is pre-
sented by its class name and its primary key. Furthermore,
the ordered and unordered patterns as well as the anomaly
pattern to which the cycle belongs are determined. This infor-
mation can be visualized graphically as shown in Fig. 9. The
figure shows one of the cycles that occurred when running
the SPECjEnterprise2010 benchmark under the RC isola-
tion level. The cycle is of size 2, represents a lost update,
and is between two transactions both calling the method
completeW orkOrder , which belongs to the ordered pat-
tern Ord2 and the unordered pattern Unord2. The rw and
ww edges of this cycle involve an entity of type I nventor y.
The t xn I n f o is shown at the end of each read.

detAgent also continuously produces statistics such as
the total number of cycles, their distribution grouped by
size as well as the number of occurrences for each business
method pattern and anomaly type.

9.3 Anomaly reduction

As mentioned in Sect. 8, we offer a generic anomaly reduc-
tion mechanism by dynamically increasing the isolation level
of business methods that are frequently involved in cycles.
For that, a threshold variable has to be set in advance,
and whenever a certain pattern (e.g., an unordered business
method pattern) occurs more often than the threshold value,
the isolation levels of the involved methods are increased.
More specifically, detAgent determines when the thresh-
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Fig. 9 Detected cycle under read committed

old is reached and informs all colAgents about the business
methods. In their turn, each colAgent assigns dynamically
a stricter isolation level to any transaction calling any of these
methods. In our implementation, no restart of the application
is needed. This approach allows anomalies to occur at the
beginning of execution, but reduces them dynamically if too
many of them occur.

9.4 Start and commit times

9.4.1 Commit times

In order to provide update transactions running under
LostUpd with a commit order, we have implemented two
solutions. The first is memory-based, while the second is
database-based. Note that we only serialize the commit
requests of update transactions, otherwise transactions run
concurrently.

Our first solution uses a COUNTER variable that resides
in the main memory of the application server. Before the com-
mit request of an update transaction Ti , an exclusive lock on
COUNTER is requested and the current value is assigned
as commit time Ti .commit for Ti . Once the transaction has
committed at the database, the COUNTER is increased and
the lock released. However, this solution works only in a
stand-alone application server. In a clustered configuration,
colAgent acquires an exclusive lock on a data-
base record using the SELECT FOR UPDATE query, then
issues one SELECT query that extracts the current time at the
database considered as the commit time Ti .commit . In both
implementations, due to the exclusive lock and the monotony
of the COUNTER, respectively, the current time at the data-
base server, if Ti .commit < Tj .commit , then Ti has com-
mitted before Tj in the database.

9.4.2 Start times

We need the start times of transactions in order to check
whether two transactions are concurrent in Algorithm 5. In
case of the use of the COUNTER variable, we can determine
the start time si of a transaction Ti by reading the current
COUNTER value. This does not require to set a lock as the
current value is always guaranteed to be from a committed
transaction.

In case of clustered configuration, we need to read the
start time from the database server. Both PostgreSQL and
Oracle provide SQL functions that return the start time of
the current transaction. If this is not available, we can add a
SELECT query at the begin of transaction that extracts the
current time. No locks need to be set for that query. Note
that the start and commit times we extract from the database
are not the exact times. In particular, the actual commit time
of a transaction is later than the time we extract through the
SELECT statement. In order to compensate that when we
compare for concurrent transactions, we add to the measured
commit time a constant that ensures that the assigned commit
time is at least as high as the true commit time at the database.
Adding a too high value may lead to false comparisons of T1 ‖
T2 or T2 ‖ T3. However, this does not lead to the detection of
incorrect cycles but might simply let condExtDFS explore
some edges in the graph unnecessarily.

9.5 Fault tolerance

For fault tolerance, we have to distinguish between the online
and off-line mode. In the off-line mode, the colAgents write
the information to stable storage in any case. The interval
in which the information is flushed from the main memory
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buffer to disk determines the amount of information that
might be lost in case a colAgent fails and can be a tun-
able parameter. Completely avoiding the loss of any infor-
mation would require logging within the response time of the
transaction—something we believe is too costly. In case the
detAgent fails, it can be simply restarted.

In the online mode, colAgent sends transactional infor-
mation shortly after commit time. If it fails, information about
the most recently committed transactions might be lost. A
failure of detAgent will lead to the loss of all transaction
information so far sent to it. This can be avoided if either
the colAgents or detAgent log the information on stable
storage. Then, only the information in transfer is lost.

9.6 Inserted and deleted entities

Insertions and deletions are handled just like normal updates.
When an entity x is created by transaction Ti , then colA-

gent keeps track of this fact and detAgent will not attempt
to build an incoming ww-edge for Ti . If Ti deletes x , then the
entity disappears from the database and no subsequent trans-
action will load x anymore. detAgent handles the delete as
an update but will never create an outgoing ww- or wr -edge
from Ti to any other transaction.

9.7 Applications

Our approach works with arbitrary applications without put-
ting any specific conditions on the studied application. Appli-
cations remain unaltered. Only an extra t xn I n f o field is
transparently added to each entity class. The approach also
supports multiple applications running at the same time over
the same database. In particular, it is possible to have two
applications app1 and app2 where none of them experiences
any cycle if it is running alone, but if they are running con-
currently, some cycles may occur. Such cycles may appear if
both app1 and app2 are accessing some shared entities in the
database. This case is hardly detectable in real environments,
since applications are generally developed and maintained by
different teams. Our approach will detect cycles even if they
involve transactions from different applications. Our pattern
detection mechanism discussed in the previous section can
tell exactly if a certain cycle has transactions triggered by
methods of app1 and/or app2.

Note, however, that we require that all access to the data
is through the middle-tier servers in which we have injected
the colAgent. Otherwise, we would not be able to observe
all transactions and dependencies.

10 Experiments

In this section, we present the experiments that we conducted
to illustrate the various aspects of our detection approach: (a)

a general analysis of the cycles that we were able to detect
for three well-known benchmarks under the isolation levels
RC, JOCC and SI, and for clustered and non-clustered con-
figurations; (b) a detailed analysis of the anomaly types and
business patterns that we were able to find for some of the
applications; (c) an illustration of how our dynamic adjust-
ment of isolation levels can help to reduce the number of
cycles observed; (d) and finally, an evaluation of the over-
head of the interception performed by colAgent and the
efficiency of the two cycle detection mechanisms.

10.1 Benchmarks

Before we discuss the individual experiments, we shortly
describe the different benchmarks that we have used.

RUBiS. RUBiS is a popular benchmark emulating an auc-
tion house similar to eBay.8 RUBiS provides two workloads:
Browsing-mix consists only of read-only transactions while
bidding-mix has both read-only and update transactions. In
order to provide more variation and create higher conflict
rates, we have added a further workload type to RUBiS,
called DailyDeal, which is an option that can also be found in
real auction sites. In this option, there are a few items every
day that are on special but only for this one day. Checking
these deals and purchasing them generally generates many
conflicts as there are few items. Our DailyDeal implementa-
tion has some transactions that read and write only one data
item, while others read two data items and later write one
of them. Thus, DailyDeal methods are prone to write skew
which leads to unserializable executions under RC, JOCC,
and SI. If the data items are related, which is often the case,
this is a real write skew from the application point of view.
Adding this transaction type allowed us to use RUBiS some-
what as a micro-benchmark as we could easily influence the
conflict rate.

SPECjEnterprise2010. SPECjEnterprise2010 has been
developed for JavaEE and models an automobile manufac-
turer. It has three domains: order, manufacturing, and supply.
Within the ordering domain, a car dealer may browse (50 %)
the catalog of cars, purchase cars (25 %), or manage (25 %)
his inventory. Browse requests trigger read-only transactions,
while purchase and manage requests trigger update transac-
tions.

TPC-C. TPC-C is an industry standard benchmark for eval-
uating the performance of OLTP systems. It consists of nine
tables and five procedures that simulate a warehouse-centric
order processing application. Under the default settings, the
transactions of TPC-C are write heavy and 96 % of them
modify tables.

8 http://www.ebay.com/.
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10.2 Cycle analysis

In this section, we present basic results about the cycles we
found when running the three benchmarks under different
loads and configurations. For all experiments, we used Post-
greSQL8.4 as database server and JBoss5.1 as application
server with its persistence layer Hibernate3.5.0. The experi-
ments were conducted at different times where we had access
to different sets of machines; therefore, the machine config-
uration is described for each of the tests individually.9

10.2.1 RUBiS

Configuration. We deployed both a stand-alone configu-
ration stand-conf and a clustered configuration clust-conf.
In both, database server and RUBiS clients are on separate
machines. In stand-conf, the application server is on a third
machine, while clust-conf has three machines running appli-
cation server instances and one extra machine for the load
balancer (IP Virtual Server) that distributes RUBiS onto the
three application servers. Each machine has 1 GB of RAM,
an Intel Pentium D 2.8 processor, and runs Ubuntu 10.04.
The tests were conducted by varying the number of remote
clients (achieving up to 2,500 transactions per minute) and
by using one of the middle-tier isolation levels RC, JOCC,
or SI. For each test, we collected data during a steady state
of 20 min after a warm-up period of 10 minutes.

RUBiS without DailyDeal. In a first test, we ran RUBiS with
80% browsing-mix and 20% bidding-mix and without any
calls to DailyDeal. With this setting, we were unable to see
any cycle under any isolation level for all evaluated through-
put levels; therefore, we are not showing any figures. Thus, at
least for the tested configuration, none of the isolation levels
leads to any anomalies and any of them can be used, that is,
with this application type, the isolation level with the best
performance can be chosen.

RUBiS with DailyDeal. In a second setting, we ran RUBiS
with 50 % browsing-mix, 20 % bidding-mix and 30 % Dai-
lyDeal. For the DailyDeal, we have selected 4 items. This
configuration leads to cycles under all three isolation levels.

Response Time and Aborts. Not shown in any figure, the
response time in clust-conf is almost five times faster than
in stand-conf. This is due to the use of multiple applica-
tion servers, so the load on each application server is lower,
which leads to a quick processing time. However, for any
of the two configurations, there is actually no response time
differences between the different isolation levels. Of course,
given a different database system, a different application, or

9 As we do not compare the actual performance nor compare the bench-
marks with each other, we believe that having different machine con-
figurations is not a problem.

any other differences in configuration parameters, the per-
formance of the different isolation levels might vary much
more. The amount of aborted transactions was ranging for
RC from 1 to 90, for JOCC from 3 to 290, and for SI from 2
to 259 and this from 100 clients to 500 clients.

Cycles. Figure 10a shows the number of cycles with
increasing number of clients for each isolation level To put
this into perspective, during the run-time of the experience,
between 10,000 transactions (for 100 clients) and 55,000
transactions (for 500 clients) are executed in total. For each
isolation level, the column is divided into two parts. The bot-
tom part reflects the number of cycles of size 2 and 3 while
the top part reflects the remaining number of cycles.

We can observe that RC has generally a much higher num-
ber of cycles than JOCC and SI and quickly experiences a
large number of cycles when it reaches the saturation point.
This can be expected that RC has more unserializable exe-
cutions since it is a lower level of isolation than JOCC and
SI. Furthermore, a high proportion of cycles is either of size
2 or size 3. This confirms the assumption that cycles involve
generally a few number of transactions.

Although the number of cycles given the total number of
transactions executed is small, if they reflect true anomalies,
inconsistencies can slowly creep into the database. Thus,
given that the response times are almost the same for all
isolation levels and the abort rates for JOCC and SI are com-
parable, the obvious choice is to use the isolation level with
the lowest number of cycles, which is SI.

Figure 10b is for clust-conf and shows the same relative
behavior as stand-conf. The main difference is that the total
number of cycles is less for all tests and isolation levels. Fur-
thermore (not shown in the figures), the number of aborts
was also lower by about 40–45 %. The reason for this better
behavior is that response times are shorter under clust-conf
than under stand-conf. Thus, given a certain load, each trans-
action is concurrent with fewer other transactions reducing
the chance of conflicts.

10.2.2 SPECjEnterprise2010 and TPC-C

For the two other benchmarks, we show simplified results as
they are conceptually similar to the results under RUBiS.
SPECjEnterprise2010. We only show results for a clustered
configuration with similar setup as under RUBiS just that
each machine has an Intel Core2 2.66 GHz processor with
8 GB of memory and uses Fedora Core 13. Moreover, we
have used the Apache Load Balancer since we require a load
balancer that allows for sticky sessions.

SPECjEnterprise2010 controls the load submitted to the
system via the injection rate (IR). For our experiments, we
varied the IR from 15 to 35 and the number of generated trans-
actions ranged, respectively, from around 45,000 to 100,000.
Under JOCC and SI, we could not detect any cycle, while
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Fig. 10 Distribution of cycles for RC, JOCC, and SI. a Stand-alone. b Cluster

Table 1 Detected cycles for SPECjEnterprise2010

Isolation level Injection rate IR

25 30 35 40 45

RC 2 4 7 23 43

Table 2 Detected cycles for TPC-C

Isolation level Number of terminals

25 30 35 40 45

RC 750 3,202 4,863 5,635 5,696

under RC we have detected a few cycles whose number
becomes higher for higher values of IR (see Table 1).

TPC-C. We only show results for a stand-alone configura-
tion. In fact, all components are run on one powerful machine
(Intel i7-2640 2.80 GHz dual-core processor, 8GB of mem-
ory running Ubuntu 12.04) for fast evaluation.

We chose TPC-C’s write heavy workload where 96 % of
transactions modify tables. We varied the number of termi-
nals (clients) from 25 to 45 and this under RC, JOCC, and
SI generating around 20,000 transactions. Under both JOCC
and SI, we could not detect any cycles (for SI, [15] showed
formally that TPC-C provides only serializable executions),
while under RC we were able to detect many cycles that again
increased with the load submitted to the system (see Table 2).
The large number of cycles is due to the fact that TPC-C has
many conflicting transactions that are not well isolated under
RC.

10.3 Anomaly classification and patterns

In this section, we have a closer look at the anomaly types
and the business method patterns that can be observed. We

show results for TPC-C and RUBiS both run in a stand-alone
configuration where all components are run on one powerful
machine (Intel i7-2640 2.80 GHz dual-core processor, 8GB
of memory running Ubuntu 12.04).

10.3.1 Anomaly classification

TPC-C. In this part, we analyze the results of the experiments
under TPC-C shown earlier in Table 2. Figure 11 shows the
detected anomalies for TPC-C running under RC. The x-
axis shows the number of terminals while the y-axis shows
the number of detected anomalies. For each load (number of
terminals), there are three histograms: number of cycles rep-
resenting lost updates, number of cycles representing v-lost
updates, and other cycle types with size higher than or equal
to 4. As we see from the figure, most anomalies reflect some
form of lost update. The number of v-lost updates is higher
than the number of lost updates and this for all loads. By
analyzing closely these cases, we found that each two trans-
actions involved in a cycle of size 2 under lost update are also
involved in a cycle of size 3 under v-lost update. As we dis-
cussed in Sect. 7, this shows how cycles and inconsistencies
can be heavily intertwined. In particular, Table 3 shows the
collocation of cycles among transactions. The first column
shows the load (number of terminals), and the second column
shows the total number of committed transactions for each
experiments. The third column (size 0) shows the number
of transactions not involved in any cycle, the fourth column
shows the number of transactions involved in one cycle, and
the fifth column shows the number of transactions involved
in two or more cycles. The last three columns also indicate
in parenthesis the percentage values over all transactions.

RUBiS. As RUBiS with DailyDeal shows cycles under all
isolation levels, we focus on the differences between these
isolation levels and show in Fig. 12 the number of detected
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Fig. 11 TPC-C: Anomalies under RC

Table 3 TPC-C: collocated cycles under RC

Load Comm. size 0 (%) size 1 (%) size 2+ (%)

25 19,844 19,206 (96.7) 173 (0.8) 465 (2.3)

30 19,339 16,480 (85.2) 900 (4.7) 1,959 (10.1)

35 20,027 15,347 (76.7) 1,687 (8.4) 2,993 (14.9)

40 19,446 14,077 (72.4) 1,979 (10.2) 3,390 (17.4)

45 19,797 13,854 (70.0) 2,458 (12.4) 3,485 (17.6)
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Fig. 12 RUBiS: anomalies under different isolation levels

anomalies for these three levels for an execution with 800
clients. For these experiments, we have detected not only
different types of lost update and v-lost update (for RC only)
but also write skew and t-write skew under all isolation levels.
For better visibility, for RC, we only show the true values for
write skew and limit the values to 100 for the other anomalies
(the true values are 777, 296, and 770). Generally, RC expe-
riences many more anomalies than the other two isolation
levels. Comparing SI and JOCC, write skew occurred nearly
the same for both SI and JOCC and t-write skew values were
higher under JOCC than SI.

Similarly to the TPC-C experiments, many transactions
were also involved in more than one cycle. The Table 4
shows the collocation of cycles among transactions under
the RUBiS experiments. The first column shows the isolation
level, whereas the second column shows the total number of

Table 4 RUBiS: collocated cycles under SI, JOCC, and RC

IsL Comm. size 0 (%) size 1 (%) size 2+ (%)

SI 69,794 69,711 (99.88) 76 (0.11) 7 (0.01)

JOCC 69,919 69,824 (99.86) 74 (0.11) 21 (0.03)

RC 69,780 69,146 (99.1) 337 (0.48) 297 (0.43)

Table 5 Business methods patterns in RUBiS

Isolation level Unordered business method patterns

SI DailyDeal.createBuyNow

DailyDeal.createBuyNow

DailyDeal.getDailyDealsItems

JOCC DailyDeal.createBuyNow

DailyDeal.createBuyNow

DailyDeal.getDailyDealsItems

DailyDeal.createBuyNow

DailyDeal.getItemDescription

RC DailyDeal.createBuyNow

DailyDeal.createBuyNow

DailyDeal.getDailyDealsItems

DailyDeal.createBuyNow

DailyDeal.getItemDescription

Bid.createBid

DailyDeal.createBuyNow

DailyDeal.getDailyDealsItems

DailyDeal.getItemDescription

committed transactions for each experiments. The third col-
umn (size 0) shows the number of transactions not involved
in any cycle, the fourth column shows the number of trans-
actions involved in one cycle, and the fifth column shows
the number of transactions involved in two or more cycles.
Again, percentages are also provided.

10.3.2 Patterns

To give the reader an idea on the business methods involved in
the cycles observed under TPC-C and RUBiS, Table 5 shows
the unordered business method patterns that caused all cycles
in RUBiS with 800 clients under RC, JOCC, and SI, and
Table 6 shows the unordered business method patterns caus-
ing cycles in TPC-C with 30 terminals under RC. It is easy to
see that in both cases, few methods cause the anomalies and
these are the ones that should be investigated. For instance,
by analyzing the code of the method createBu− yNow, we
found that it reads two items but updates only one of them.
Both items are related via a constraint on their remaining
quantities.
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Table 6 Business methods patterns in TPC-C (RC only)

Unordered business method patterns

Payment.paymentTransaction

NewOrder.newOrderTransaction

Payment.paymentTransaction

NewOrder.newOrderTransaction

10.4 Reduction of anomalies

We show the effectiveness of our anomaly reduction module
using the SPECjEnterprise2010 with the same configuration
discussed in Sect. 10.2. Figure 13 shows results for a test run
that uses RC and a test run where we started RC as default
isolation level, and increment it dynamically to SI for busi-
ness methods involved in frequent anomalies. In the second
run, colAgent sets the isolation level of a method from RC
to SI once detAgent detects an unordered pattern with at
least three cycles that contains this method. We denote the
second type of test run as RC+SI.

The Fig. 13a shows the number of detected cycles under
both RC and RC+SI for increasing IR. For low IR values,
RC and RC+SI have the same results. Very few cycles are
created; thus, no method is upgraded to use SI. However,
for high IR values, RC generates many cycles, while RC+SI
stabilizes the number of cycles to less than 10. These are the
cycles that occur before the prevention option is triggered
and elevates the isolation level for affected methods.

Figure 13b shows the response times for increasing IR.
For high IR values, response times under RC+SI are slightly
higher than under RC, although the penalty is nearly negli-
gible. This is due to the fact that a subset of transactions are
executed under SI, that is, while we have limited the num-
ber of generated cycles under RC+SI, we pay the price of
higher response times. While not shown in the figure for bet-
ter readability, the response times for both SI and JOCC were
slightly higher than RC+SI. This indicates the benefit of only
running those transactions with a stricter isolation level that
would cause anomalies otherwise.

Figure 13c shows the absolute number of aborted trans-
actions. Under RC+SI, there were more aborted transactions
than under RC as it aborts concurrent transactions if their
execution would lead to anomalies. The number of aborted
transactions is negligible in comparison with the total number
of committed transactions, but it is significant comparatively
to the number of detected/prevented cycles. In fact, the num-
ber of transactions that RC+SI aborts more than RC is very
similar in absolute terms to the number of cycles that RC+SI
avoids compared to RC.

Figure 13d shows the percentage of transaction that run
under SI using the RC+SI approach. The higher the workload,

the higher the percentage of transactions that are upgraded
to the higher isolation level.

10.5 Overhead and efficiency

10.5.1 colAgent

In order to check the overhead of colAgent on the perfor-
mance of applications, we have run colAgent interception
enabled and then disabled for RUBiS, SPECjEnterprise2010,
and TPC-C. The difference in response time was less than
3 % for all selected tests, even for the RC (conform to RC+)
tests where we had to execute commits serially. This confirms
that the impact of interception is very low.

10.5.2 detAgent

Most of the cycles in RUBiS and SPECjEnterprise2010 were
of size 2 or 3. These small size values did not allow us to
compare how efficient our cycle detection performs. In order
to get a clear understanding of the performance, we have
generated a large dependency graph with 300,000 nodes and
nearly 1,000,000 edges. The graph has more than 10,000
cycles with a maximum length of 15. Although this is quite
extreme, it allows us to better compare our different cycle
detection algorithms. In order to create such a large graph, we
have developed an emulator that emulates a set of concurrent
transactions accessing a limited set of entities under the RC
isolation level.

We test two scenarios: cycle detection on the overall graph
in the off-line mode and incremental cycle detection in the
online mode. For the first, detAgent has access to the entire
xml file created by colAgent, first builds the graph and
detects cycles using condExtDfs (Algorithm 5) that itself
calls condExtDfsT (Algorithm 6). For the second, colA-

gent streams the transactions to detAgent, who builds the
graph transaction by transaction and checks at each step for
new cycles using extDfsT (Algorithm 4).

Tables 7 and 8 show the results for off-line evaluation on
the overall graph and for online evaluation with incremental
graph creation, respectively. As both approaches can traverse
the graph along outgoing edges or along incoming edges (i.e.,
in reverse order), we have two sets of results for both sce-
narios. The tables depict the time for building the graph, for
the time spent in condExtDfsT, respectively extDfsT, and
for the actual number of edges that are explored in the graph
traversal. The latter two values depend on whether the graph
traversal follows incoming or outgoing edges. Furthermore,
for the off-line approach, Table 7 shows the time spent in
Algorithm 5 to check whether a transaction can play the role
of T2 in Theorems 5.1/5.2 (denoted as overhead), that is, the
time needed to perform concurrency comparisons.
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Fig. 13 Results for SPECjEnterprise2010 under RC and RC+SI. a Detected cycles. b Response time. c Aborted transactions. d Percentage of SI
transactions

Table 7 Results for the overall graph/off-line

Building the graph 7,037 ms
Overhead 2,923 ms

outgoing −→ ←− incoming

Calls to condExtDfsT ∞ 163 ms

Number of explored edges ∞ 19,221

Table 8 Results for the incremental graph / on-line

Building the graph 7,213 ms
outgoing −→ ←− incoming

Calls to extDfsT 861 ms ∞
Number of explored edges 80,382 ∞

The time to create the graph is very similar for both with
the incremental approach taking slightly longer as it is created
in many mini-steps. Overall, the time is only a few seconds
for the 300,000 nodes and thus can easily be handled in real
time.

For the cycle detection in the overall graph, we can see
that finding cycles along incoming edges is extremely fast,
as only few transactions qualify as being transaction T2 in
Theorems 5.1/5.2, and after that, only few dependency need

to be followed as the First-Committer-Border shown in Fig. 6
eliminates many dependencies to be considered. In total, less
than 20,000 of the 1,000,000 edges are explored. In contrast,
following outgoing edges, the First-Committer-Border does
not help, as the transactions that are explored along the out-
going edges likely commit all later and thus have to explored.
We stopped the execution of the algorithm after a certain time
(thus, the notation of∞).

For cycle detection in the incremental graph, following
outgoing edges was very fast, due to the Last-Committer-
Border shown in Fig. 6. When cycles for a transaction are
explored, the transaction is the last committed one in the
graph and thus will have only few outgoing edges that have to
be explored, as outgoing edges to transactions that committed
earlier are rare. In contrast, when following incoming edges,
we had to follow more and more edges as the graph grew,
as we could not exploit a pruning mechanism, leading to
unacceptable execution times (denoted as∞).

In total, the cycle detection itself was shorter on the overall
graph than for the incremental graph. This is due because the
number of explored edges was smaller. Furthermore, con-

dExtDfsT is called less than extDfsT. It is only called
when a transaction qualifies as transaction T2 of Theorems
5.1/5.2, while extDfsT is called for every transaction. How-
ever, condExtDfsT has additional overhead to compare
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transactions which was not negligible in our case. Thus,
in total, incremental cycle detection was slightly faster than
cycle detection on the overall graph.

11 Related work

Most related to our work is [14]. The authors provide quanti-
tative information about the violations of integrity constraints
when a database system runs under SI or RC. The analysis is
performed over a microbenchmark consisting of two related
tables. The authors were able to show that in some situa-
tions, SI leads to more anomalies than read committed. Our
approach differs from this work in several aspects. First, it
is designed to work in a typical multi-tier architecture where
execution is spread across middle- and database-tiers. Sec-
ond, it is completely independent of any application addition-
ally to treating the database tier as a black box. Third, it is not
only able to detect the anomalies that occur under read com-
mitted and SI, but it supports any isolation level higher than
or equal to RC. It also classifies the detected anomalies into
patterns which can be used to dynamically prevent further
anomalies.

Fekete et al. [15] present an approach that characterizes
non-serializable executions for a given application when run
under SI. It is based on the manual analysis of the application
in order to find possible conflicting operations. Jorwekar et
al. [17] suggest a tool based on [15] which automates the
detection of possible conflicts between a set of operations
under SI. These operations are extracted by manually ana-
lyzing a given application and by automatically extracting
information from the SQL database logs. Both [15] and [17]
are dedicated to SI and require to some degree manual analy-
sis of the studied application. They also only give information
about possible conflicts and do not quantify how often such
conflicts actually occur during run-time.

In [8], Cahill et al. proposed an approach for preventing
anomalies under SI at the database layer. They abort some
transactions that may be part of cycles under snapshot iso-
lation, but their approach is conservative in that it causes
unnecessary aborts. Revilak et al. [23] extended this work by
aborting only transactions that are certain to be part of real
cycles. In their approach, they build the serialization graph at
the database engine, and at commit time of each transaction
T , they check whether T is part of any cycle. If this is the
case, then T is aborted at the database layer. This approach
stops any transaction T from committing until it adds addi-
tional edges to the graph where T is involved and checks if
T is part of any cycles.

In contrast, we build the dependency graph and detect
cycles after commit time at detector agent which has no
impact on any currently running transaction. Moreover, our
detector agent is independent of any database. Both works

in [8] and [23] are dedicated to SI only and implemented,
respectively, under Berkeley DB or MySQL InnoDB. In [22],
the authors presented an approach similar to [23] but imple-
mented it under PostgreSQL.

In [6], the authors propose a concurrency control proto-
col for a middle-tier cache that allows update transactions
to read out-of-date data items which satisfy some freshness
constraints. A freshness constraint specifies how fresh a copy
of a data item must be in order to be read. Similar ideas are
presented in [24,25]. Our approach does not present a new
concurrency control mechanism but measures the number of
unserializable executions. In principle, it could be used to
measure the number of unserializable executions produced
by these novel concurrency control mechanisms, although
the detector agent would require adjustments.

A preliminary version of the work presented in this paper
appeared in [31] where we presented only the online detec-
tion approach that we have integrated later into the consis-
tency anomaly detector tool ConsAD [32]. The present paper
extends the approach to (1) cover as well the off-line mode,
(2) support a mixture of isolation levels, (3) prevent dynam-
ically consistency anomalies, and (4) manage efficiently the
memory usage which allowed the detector agent to run for
long periods under the online mode without any memory
leaks. It allowed it as well to load and process, off-line, large
histories of transactions.

In [33], we detect consistency anomalies for cloud appli-
cations. As not all dependencies are observable in such envi-
ronment, we only provide an approximated graph which can
lead to false positives during cycle detection. Isolation levels
are not taken into account because many cloud applications
do not even provide the concept of transactions.

12 Conclusions

This paper presented a novel approach for detecting and
dynamically reducing consistency anomalies at the middle-
tier layer of a multi-tier architecture. The approach collects
enough information during normal transaction processing to
be able to create a dependency graph and perform cycle detec-
tion. Our system can detect any anomalies for transactional
workloads that run under any mix of isolation levels that is at
least read committed. Our approach is completely indepen-
dent of the application and treats the database as a black box.
It provides quantitative information about anomalies as well
as information about the business methods that cause them.
Finally, our approach supports an option where the isola-
tion level of some business methods is dynamically increased
should they be involved in too many cycles.

We integrated our approach into an open-source applica-
tion server and used it to analyze the types and number of
cycles that can occur in the RUBiS, SPECjEnterprise2010,
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and TPC-C benchmarks under various isolation levels. The
performance evaluation shows that the overhead of extract-
ing transactional information during run-time is very light-
weight and cycle detection extremely efficient. Although
cycle detection in general graphs is known to be exponen-
tial with the length of the cycle, we have developed pruning
mechanisms that allow us to detect all cycles in seconds in
graphs with millions of edges and thousands of cycles.

In our future work, we are planning to extend our approach
to isolation levels that allow their transactions to read
stale data items satisfying some freshness constraints. This
requires to extend the collector agent as well as to analyze
each isolation level provided in these environments in order
to understand what anomalies can occur and how to detect
and prevent them.

13 Correctness of algorithm 1

In this section, we show that for any type of dependency
between two transactions Ti and Tj , processTx adds the cor-
responding dependency edge to the dependency graph at the
time the second of the two transactions is processed. Assume
without loss of generality that there is an edge from Ti to Tj

due to entity x . We consider several cases:

1 Ti is processed before Tj

a If Ti − wr → Tj , then the edge is added when
processReadEntity, line 3, is executed for Tj .

b If Ti − rw→ Tj , processReadEntity for Ti adds
Ti to the readers of the predecessor of Tj (in regard
to x) in line 10, and processUpdateEntity for Tj

adds the proper rw-edge in lines 16–17.
c If Ti − ww → Tj , processUpdateEntity for Tj

adds the edge in lines 6–7.

2 Tj is processed before Ti

a If Ti −wr → Tj , processReadEntity for Tj adds
Tj to the readers of Ti (in regard to x) in line 5, and
processUpdateEntity for Ti adds the proper wr -
edge at lines 18–19.

b If Ti − rw → Tj , processUpdateEntity for Tj

adds [(x .key, Tp_id), Tj _id)] to successors in line
15, and processReadEntity for Ti retrieves Tj _id
in line 6 and adds the rw-edge in lines 7–8.

c If Ti − ww → Tj , processUpdateEntity for Tj

adds [(x .key, Ti _id), Tj _id)] to successors in line
15, and processUpdateEntity for Ti retrieves this
information in line 10, and adds the ww-edge in lines
11–12.

Each edge is added exactly once. Therefore, all data struc-
tures maintained by ProcessReadEntity and ProcessUp-

dateEntity can be implemented with simple hash func-
tions. Thus, building the dependency graph is linear with the
number of operations.

14 Proofs

For the following proofs, recall that si < c j if Ti starts before
Tj commits, and c j ≤ si if it starts after Tj committed.
Obviously, any read/write operation of Ti occurs between its
start and its commit, i.e., si < ri/wi < ci .

14.1 Proof of Theorem 5.2

Lemma 14.1 For any RC+ history, if there is a wr- or a
ww-edge from Ti to Tj , then ci < c j .

Proof For Ti − ww → Tj , this is true by definition of this
edge type. For Ti −wr → Tj , RC+ requires a read operation
r j to only read a committed value xi . Thus, ci < r j , and
hence ci < c j ��
Lemma 14.2 For any RC+ history, if there is a rw-edge from
Ti to Tj then si < c j .

Proof For Ti − rw → Tj , then there is a read operation ri

that reads a value written by committed transaction Tk and Tj

is the next transaction to write x and commit. As RC+ reads
the last committed version as of start of operation, this means
the read of Ti must be after the commit of Tk but before the
commit of Tj , i.e., ck < ri < c j . Therefore, si < c j . ��
Lemma 14.3 Under a RC+ history, if there is an edge (of
any type) between Ti and Tj then si < c j .

Proof It is a straightforward conclusion from Lemma 14.1
and Lemma 14.2. ��
Proof of Theorem 5.2 We denote by T3 the first committing
transaction in a given cycle C , and T2 the predecessor of T3

and T1 the predecessor of T2.
We first show that T2 ‖ T3 and T2 ‖ T1. Assume that

T2 �‖ T3 ( �‖ means not concurrent), then either (1) c2 < s3

or (2) c3 < s2. (1) is not possible, since c2 < s3 implies
c2 < s3 < c3, thus c2 < c3 which contradicts that T3 is the
first committer in C . Based on Lemma 14.3, since there is an
edge from T2 to T3, we have s2 < c3 and thus (2) is also not
possible. As neither (1) nor (2) is possible, T2 and T3 must
be concurrent. Now, assume that T2 �‖ T1, meaning either (3)
c2 < s1 or (4) c1 < s2. (3) is impossible as there is an edge
from T1 to T2 which requires s1 < c2 based on Lemma 14.3.
The edge from T2 to T3 requires s2 < c3. If we assume (4)
holds, then we have c1 < s2 < c3 which contradicts the fact
that T3 is the first committer in C . As neither (3) nor (4) are
possible, T1 and T2 must be concurrent. ��
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Finally, assume that the edge from T2 to T3 is not a rw-
edge but a wr - or ww-edge. Based on Lemma 14.1, this
requires c2 < c3. But this contradicts the fact that T3 is the
first committed in C .

14.2 Proof of Lemma 5.1

Given an edge from a transaction Ti to a transaction Tj in
a dependency graph generated under RC+, such as c j < ci

(Ti commits after Tj ). Let us assume that the edge from Ti

to Tj is a wr ow ww-edge. Based on Lemma 14.1, we will
have ci < c j which contradicts the fact that Ti commits after
Tj (c j < ci ). Therefore, the edge from Ti to Tj can only be
of type rw. Based on Lemma 14.2, Ti − rw → Tj implies
that si < c j . And since c j < ci , we get si < c j < ci which
means Ti is concurrent to Tj .
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