
Kamal Zellag  and Bettina Kemme

ConsAD : A Real-Time Consistency Anomalies Detector

4.  Architecture

10.  Selected References

SIGMOD 2012

Transactional applications often choose lower 
levels of isolation than serializability to improve 
performance.
But how do lower levels affect consistency?

ConsAD detects consistency anomalies in a 
quantitative and qualitative manner and it:

1.  Introduction

is developed for multi-tier architectures.
is transparently plugged into the application 
server tier. 
observes the application while it is running.
detects anomalies (= cycles in the dependency 
graph) shortly after they occur.
provides information about transactions and 
data items involved in anomalies.
determines the culprit business methods and 
describes how they cause cycles.
is independent of the database system.
is independent of the application program 
under observation.

•

•

•

•

•

•

•
•

Application Server
Instances

Database
Server

Collector
Agent

Requests

Detector
Agent

Visual
Agent

Detection of 
Anomalies

Collector
Agent

3.   Approach
we observe transactions and the data items they 
access (at the application server layer).
based on observations, we build the serialization 
graph incrementally and detect cycles as soon as 
the last transaction in each cycle has committed 
and is added to the graph.

•

•

Serialization graph
nodes are committed transactions.

•
•

i

i

i

i

ii

jj

j

jj

j

- T         T : T  writes a data item x and T  writes the next version.

- T         T : T  reads what T  has written.

- T         T : T  reads a data item x and T  writes the next version.

three types of edges:
ww

wr

rw

5.  The Collector Agent

observes transaction start, commit, reads and writes.
sends transaction information immediately after its commit.
no modification of application or application server needed.•

attached to application server instances.
current implementation based on Java EE.
adds an extra field txnInfo to each database 
table (transparent).
when a transaction T with an identifier T.id 
updates a data item x, x.txninfo is set to T.id.

•

•

•

•
•

•

6.  The Detector Agent
for each transaction information received 
from Collector:
   - adds transaction and edges to the graph.
   - detects new cycles.

highly optimized Depth First Search.

extracts business methods creating cycles.

•

•

•

7.  The Visual Agent
displays summary information:
    - total amount of cycles sorted
      by their length.
    - information about patterns
      (see next section).

shows details on individual cycles:
   - transactions identifiers.
   - edges and their types.
   - business methods.
   - data items identifiers.

uses Topological Sort for time-based visualization.

•

•

•

Real Cycles for the Benchmark
SPECjEnterprise2010

9.  Future Work
extension to cloud platforms.

extension to non-transactional 
consistency criteria.

•

•

8.  Patterns Classification

•

•

• Typically each transaction is called within the borders 
of a business method.

The Detector maps each cycle of transactions to:
   - a cycle C   (ordered pattern) of their respective
     methods  (in the same order).
   - a set C     (unordered pattern) of unique methods
    in C   (no order / no duplication).

The detection of patterns helps designers to locate the 
origin of anomalies in their application.

m

set

m

Cycles for an Emulated
High Conflict Application

[1] A. Adya, B. Liskov, and P. E. O'Neil. Generalized 
isolation level definitions. In ICDE, pages 67-78, 2000.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, 
and P. O'Neil. A critique of ANSI SQL isolation levels.
In ACM SIGMOD Conf., 1995.

[3] A. Bernstein, P. Lewis, and S. Lu. Semantic conditions 
for correctness at different isolation levels.
In Proceedings of IEEE ICDE, pages 57-66, 2000.

[4] K. Zellag and B. Kemme. Real-time quantification and 
classification of consistency anomalies in multi-tier 
architectures. In ICDE, pages 613-624, 2011.

2.  Example of an Anomaly

T1

( availTickets = 1 )read

T2

availTickets-- 

write ( availTickets = 0 )

( availTickets = 1 )read

availTickets-- 

write ( availTickets = 0 )

both transactions read the same value of 
available tickets.
each transaction performs an update based 
on the read value.
final value of available tickets does not reflect 
the amount of sold tickets.

Lost-Update

•

•

•

the execution leads to the following cycle:

the isolation level read-committed allows this 
anomaly.
the isolation levels snapshot-isolation and 
serializability avoid this anomaly.

•

•

T1 T2

rw

ww

•


