
ConsAD : A Real-Time Consistency Anomalies Detector

Kamal Zellag
School of Computer Science

McGill University
Montreal, Canada

zkamal@cs.mcgill.ca

Bettina Kemme
School of Computer Science

McGill University
Montreal, Canada

kemme@cs.mcgill.ca

ABSTRACT
In this demonstration, we present ConsAD, a tool that de-
tects consistency anomalies for arbitrary multi-tier applica-
tions that use lower levels of isolation than serializability. As
the application is running, ConsAD detects and quantifies
anomalies indicating exactly the transactions and data items
involved. Furthermore, it classifies the detected anomalies
into patterns showing the business methods involved as well
as their occurrence frequency. ConsAD can guide designers
to either choose an isolation level for which their application
shows few anomalies or change their transaction design to
avoid the anomalies. Its graphical interface shows detailed
information about detected anomalies as they occur and an-
alyzes their patterns as well as their distribution.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Concurrency

Keywords
Multi-tier Architectures, Consistency, Serializability

1. INTRODUCTION
Modern information systems are based on a multi-tier ar-

chitecture, where the application server tier takes care of
the business logic, and the database tier manages persis-
tent data. The application server coordinates transactions
across both tiers, and typically both application server and
database system implement some form of concurrency con-
trol providing various levels of isolations. Stricter isolation
levels provide stronger consistency guarantees while lower
levels expose the applications to various types of consistency
anomalies such as lost updates, unrepeatable reads, etc. As
a trade-off, lower isolation levels typically have better re-
sponse times and throughput.

Deciding on the right level of isolation is not trivial. As
data is spread and replicated across tiers and even within

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

a tier (application servers are often replicated), it is ex-
tremely difficult to predict the anomalies that might oc-
cur during runtime. While there exist standard measures
to evaluate the performance of an application on a partic-
ular multi-tier platform, there do not exist any tools that
provide a quantitative measure of the consistency anomalies
that occur during the runtime of a given multi-tier applica-
tion. Several studies provide a qualitative analysis of the po-
tential anomalies associated with the existing isolation levels
[1, 2, 3]. However, it is less clear whether a given application
might actually experience such anomalies during its runtime
[5] and if yes, to what degree. For example, lost-updates are
allowed under the isolation level Read Committed, but the
actual occurrences can vary widely depending on the appli-
cation.

We address this issue and propose ConsAD, a consistency
anomalies detector that detects and quantifies consistency
anomalies for arbitrary multi-tier applications during run-
time. We characterize an anomaly by the presence of a cycle
in the serialization graph formed by committed transactions
as nodes and dependencies between these transactions as
edges. Thus, in the remainder of this demonstration, we use
the words anomaly and cycle interchangeably. ConsAD re-
quires limited adjustments in the application server tier but
is completely independent from the database system.

As shown in Figure 1, ConsAD consists of three agents:
the collector agent colAgent, the detector agent detA-
gent and the visual agent visAgent. The colAgent is
integrated into the application server. It collects informa-
tion about transactions and their accessed data items and
forwards them to detAgent. detAgent implements a set
of algorithms that extract all dependencies between transac-
tions and detects cycles (anomalies). detAgent supports
any isolation level higher than or equal to Read Commit-

ted which is the case for the most industrial isolation lev-
els. Moreover, detAgent classifies the detected anomalies
into patterns of anomalies that show exactly which business
methods are involved in each type of anomaly. Any detected
anomaly or pattern is visualized in real time in the visual
agent visAgent. Moreover, visAgent shows graphically all
detected patterns sorted by their occurrence frequency.

The use of ConsAD is manyfold. Developers can analyze
ahead of deployment time whether their applications lead to
anomalies if run under a certain isolation level. If anomalies
occur frequently the pattern recognition helps designers to
find the culprit methods and why their interleaving leads to
inconsistencies. This can serve as guidance to rewrite some
methods of the application and avoid such anomalies. De-

signers might also consider that the number of anomalies
that occur during runtime is acceptable. In this case, Con-
sAD can be used in the production system as a near real-
time monitoring tool, allowing the system administrator to
intervene immediately after anomalies occur and manually
correct the affected data items should an anomaly occur.

In the following we only shortly describe colAgent and
detAgent as they were presented in [6]. In contrast, vis-
Agent will be presented for the first time in this demon-
stration. Adding visAgent to colAgent and detAgent,
makes ConsAD a complete consistency anomalies detector
tool with an easy-to-use dynamic graphical interface.

2. THE CONSAD SYSTEM
In order to detect anomalies (cycles), ConsAD has to de-

tect all dependencies between transactions, build the serial-
ization graph then detects all cycles in it. There is a wr-edge
from Ti to Tj in the graph if Ti performs a write operation on
a data item x, and Tj reads the version that Ti has written.
There is a ww-edge from Ti to Tj if both Ti and Tj write a
data item x and no other committed transaction writes x in
between. Finally, there is a rw-edge from Ti to Tj if Ti reads
a data item x and Tj is the next to write it. The task of
colAgent is to collect enough information during runtime
that detAgent can detect these dependencies and create
the graph. colAgent and detAgent take advantage of
the fact that the application server runs under a certain iso-
lation level as it helps them to determine dependencies and
speed up cycle detection. The minimum isolation level that
is required by ConsAD is Read Committed, denoted in the
following as RC. It requires a transaction to only read com-
mitted data. Furthermore, ConsAD can speed up execution
if the isolation level avoids lost-updates. We denote such
isolation levels as NoLostUpd.

2.1 The Collector Agent
This agent collects information about committed trans-

actions and their accessed data items. In order to do so,
it adds an extra field txnInfo to each database table. At
commit time of transaction T , colAgent stores the unique
identifier of T into x.txnInfo for each data item x updated
by T . colAgent sends information to detAgent about
each committed transaction T immediately after T commits
using TCP/IP channels. If an application is running un-
der NoLostUpd, information stored in the field txnInfo
is enough for detAgent to detect all wr/ww/rw depen-
dencies between transactions. However, if the isolation level
RC is used, the field txnInfo is not enough to detect ww-
edges. In this case, colAgent enforces a sequential com-
mit order for update transactions. In the case of a single
application server instance, a simple memory-based counter
serializes commit operations. If several application server in-
stances exist, each transaction accesses a database counter in
an exclusive way using the SELECT FOR UPDATE state-
ment. With this, only the commit operations are sequen-
tially, transaction execution itself can occur concurrently.
As shown in [6], the overhead in response time created by
colAgent, including the sequential commit order for RC,
was less than 3% for all our experiments.

2.2 The Detector Agent
When detAgent receives information from colAgent

about a newly committed transaction T , it adds it to its

Replicated

Application Server

Database

Server

COLAGENT

COLAGENT

DETAGENT VISAGENT

Requests

Figure 1: Agents of ConsAD

current graph and determines wr/ww/rw-edges involving
T . Then it starts a cycle detection algorithm extDLS that
is based on Depth Limited Search. Starting from T it ex-
plores recursively all outgoing edges until it returns back to
T or reaches a parametrized depth limit. Based on our ex-
periments, the size of most cycles ranges from 2 to 4. We
have proven in [6], that all wr/ww/rw edges are detected
and each cycle C smaller than the depth limit is detected
when the last transaction in C is processed. Cycle detection
is fast because at the time T is included in the graph, it
typically has few outgoing edges. Thus, outgoing edges are
typically only explored when there is indeed a cycle.

In typical applications each transaction is called within
the boundaries of a business method. Thus, whenever de-
tAgent detects a cycle, it maps each transaction in the
cycle to the business method that created the transaction.
The resulting cycle of business methods is called an ordered
pattern. Many transaction cycles can belong to the same
ordered pattern. Additionally, detAgent extracts the set
of different business methods that are involved in the cycle,
not considering how often or in which order they occur in
the cycle. This set is called an unordered pattern. Many
ordered patterns can belong to the same unordered pattern.
For each ordered and unordered pattern detAgent keeps
track of how many transaction cycles belong to this pat-
tern. Looking at the collected pattern statistics, allows de-
signers to locate sequences or sets of business methods that
frequently create anomalies. Thus, they might be able to
rewrite these business methods, possibly reordering the ex-
ecution of some operations, in order to avoid many cycles.
Concrete examples of both patterns will be presented in the
next section.

2.3 The Visual Agent
After detAgent detects any cycle or pattern, it passes

its information immediately to the visual agent visAgent.
Figure 2 shows a snapshot of the graphical interface provided
by visAgent. In this section, we will see how visAgent
presents details about detected cycles and patterns.

2.3.1 Cycles
In the example of Figure 2, there are fifty six detected

cycles. Each cycle, presented by its identifier, is inserted
in a list sorted by cycle size. For example, cycle C45 with
length 3 is added to this list as C45/3. Besides the list
of cycles, there is a pie chart that shows the distribution
of cycles. This chart is divided into three sectors, showing
the percentage of cycles of size 2, 3 and 4+, respectively.
By moving the mouse on one section, a tool tip shows the

Figure 2: The Visual Agent Interface

number of cycles for this section (for example, 25 cycles with
size 2 in the Figure).

Details on any selected cycle are shown in the bottom
part of the graphical interface. Figure 2 shows details for
cycle C45. First, it shows that C45 follows the ordered pat-
tern Ord4 and the unordered pattern Unord2. The involved
business methods are also depicted. Below, the serialization
graph is shown. C45 involves three transactions Tx 4204,
Tx 4314 and Tx 4313. Tx 4204 and Tx 4313 are update-
transactions triggered by business method deals.buyOneItem
while Tx 4314 is read-only, triggered by the business method
deals.browseItems. The lower part of the interface shows
a more detailed graph as it exactly presents the operations of
the transactions. All methods access data items Product.Phone
and Product.Charger. The value of field txnInfo, added
by colAgent to each table (see Section 2.1), is shown at the
end of each read operation. For example, Charger.txnInfo
is updated by Tx 4313 with the value 4313, and is extracted
later by the read operation in Tx 4314. This detailed rep-
resentation also depicts which read/write-operation pairs
cause the wr/ww/rw-edges in the graph. For example, there
is a wr-edge from Tx 4313 to Tx 4314 because Tx 4314 has
read the Charger item with txnInfo equal to 4313, a ver-
sion that was previously created by Tx 4313.

Representing the detailed transactions and their execution
order in a top-down time-line is not trivial as we do not know
the exact execution times of the operations. To be able
to provide a precedence order we exploit some properties
between these operations. First, within the same transaction
a read of a data item x (load from database) must precede
the write of x. This generates the precedence read(x) <
write(x). Second, the commit operation of a transaction
T is always after all other operations of T . Third, since
we are dealing with isolation levels that provide at least
Read Committed, we know that whenever there is a wr-edge
from a transaction T1 to a transaction T2 involving a data
item x, then we have write1(x) < commit1 < read2(x).
Similar precedence orders are extracted for ww- and rw-
edges. These precedence orders provide us with a partial
order of operations. From there, we use the topological-sort
algorithm [4], which generates a possible global logical order
between all operations based on partial orders between some
of them.

2.3.2 Ordered Patterns
The middle chart at the top of Figure 2 shows five de-

tected ordered patterns: Ord1 to Ord5. Each pattern is
presented by its identifier, the size of the cycle, and the
number of cycles that belong to this pattern. Under each

ordered pattern, the cycles that follow this pattern are listed.
For example, the four cycles C18, C20, C30 and C45 belong
to the pattern Ord4, which involves the business methods
deals.browseItems, deals.buyOneItem then deals.buyOne-
Item. Business methods can appear many times in such
patterns, as ordered patterns depict the sequence in which
methods are involved in the cycle. To avoid cycles follow-
ing the pattern Ord4, the application designer can ana-
lyze the source code of the methods deals.browseItems and
deals.buyOneItem and check why such combination of calls
creates this type of cycles. If this is not enough, a closer
analysis of the individual cycles can locate which items are
involved in this pattern.

Ordered patterns are sorted in descending order based on
the number of cycles following each pattern. In Figure 2,
Ord1 has the highest number of cycles and it is recom-
mended for designers to start analyzing methods involved
in Ord1. The pie chart for ordered patterns is composed
of three sections. While the first two sections show ordered
patterns with the highest number of cycles, the third section
shows the percentage of the rest of ordered patterns.

2.3.3 Unordered Patterns
The right chart at the top of Figure 2 provides informa-

tion about unordered patterns which only indicate the set
of business methods involved in cycles but not their order
or occurrence frequency. Unord1 reflects cycles that have a
single business method involved, three ordered patterns and
a total of 50 cycles belong to this unordered pattern (de-
picted as 1/3/50). Unord2 reflects cycles that have two dif-
ferent business methods involved, two ordered patterns and
six cycles belong to Unord2. For each unordered pattern we
can retrieve information about the ordered patterns and cy-
cles that follow this pattern. For instance, the two ordered
patterns Ord4 and Ord5 belong to the unordered pattern
Unord2, and under Ord4 there are four cycles (C18, C20,
C30, C45).

Note that there are fifty cycles under Unord1 represent-
ing 89% of all cycles, while Unord2 has only six cycles rep-
resenting 11%. In this case, we strongly recommend to the
application designer to start by analyzing the single method
involved in Unord1. If needed, further analysis could be
done for ordered patterns under Unord1 (Ord1, Ord2 and
Ord3), and deep analysis could be conducted for each cycle
under these ordered patterns.

2.4 System Setup
In order to use ConsAD, one instance of colAgent must

be allocated at each application server instance. In contrast,
only one instance of detAgent and visAgent are required.
They can run together on any machine supporting the Java
virtual machine. Our current implementation of colAgent
supports any application server following the Java Enter-
prise Edition (Java-EE) standard which is widely supported
by many open-source and commercial application servers
such as JBoss1 and GlassFish2. Extending colAgent to
support additional platforms does not require any changes
to detAgent or visAgent. A set of configuration param-
eters can be set in ConsAD using the menu Parameters
provided by visAgent or by using a configuration file.

1http://www.jboss.org/
2http://glassfish.dev.java.net/

3. DEMONSTRATION
In our demonstration, we propose two scenarios. While

in scenario1 we run a complete multi-tier benchmark appli-
cation, in scenario2 we use emulated transactions. We will
use two laptops running under the Linux operating system
Ubuntu, and supporting the Java virtual machine.

3.1 Scenario 1
Under this scenario, the first laptop will be hosting the

database server PostgreSQL and the application server JBoss
with one instance of colAgent, while the second laptop will
be dedicated for both detAgent and visAgent. Most of
our discussion with the audience will focus on the graphical
interface showed by visAgent. The tests will be conducted
using an extension of the RUBiS3 benchmark that generates
a reasonable number of cycles and patterns. After starting
the database and application servers, we will start the RU-
BiS client with a large number of requests. Any detected
cycle or pattern will be shown and explored on the graph-
ical interface of visAgent. We are planning to run tests
under two isolation levels provided under JBoss: Read Com-

mitted and a variant of optimistic concurrency control that
does not provide serializability but disallows lost updates.

3.2 Scenario 2
As the real application of scenario1 only shows some op-

tions provided by ConsAD, we propose a second scenario
under which colAgent collects information on emulated
transactions. In contrast to scenario1, we can quickly restart
all agents, change configuration and run many tests using
several transactions types. We can also easily change the
isolation level and execute a configured number of concur-
rent and conflicting transactions in a short amount of time.
For this scenario, we use one laptop where several instances
of colAgent collect information about emulated transac-
tions, while a second laptop will be used for both detAgent
and visAgent as in scenario1. The number and types of
emulated transactions will be passed as parameters to the
transaction emulator. The transaction mix contains read-
only transactions and transactions that read and write sev-
eral data items.

4. REFERENCES
[1] A. Adya, B. Liskov, and P. E. O’Neil. Generalized

isolation level definitions. In ICDE, pages 67–78, 2000.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In ACM SIGMOD Conf., 1995.

[3] A. Bernstein, P. Lewis, and S. Lu. Semantic conditions
for correctness at different isolation levels. In
Proceedings of IEEE International Conference on Data
Engineering, pages 57–66. IEEE, 2000.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
2nd edition, 2001.

[5] A. Fekete, D. Liarokapis, E. J. O’Neil, P. E. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2):492–528, 2005.

[6] K. Zellag and B. Kemme. Real-time quantification and
classification of consistency anomalies in multi-tier
architectures. In ICDE, pages 613–624, 2011.

3http://rubis.ow2.org/

