
A Content-Based Load-Balancing Router System ∗

Michael Batchelder and Kacper Wysocki

Abstract

This paper outlines the implementation of a content-based
load-balancing service-attached router. The content that
special routing is performed on is HTTP traffic. A unique
routing protocol is implemented on top of IP which allows
for querying and sharing of content-based routing informa-
tion among a network of such routers. Each router that re-
ceives a new HTTP request lookups the web servers avail-
able for the given URL embedded in the HTTP request and
load-balances this traffic by choosing the web server with
the least number of active sessions. In addition, each router
supports a bandwidth query service. This service allows a
network administrator to request the bandwidth usage (both
incoming and outgoing) for a given router.

1 Introduction

As the Internet matures and more services are required
and expected of computer networks new technologies
must be explored in order to find the best solutions
possible. Three such technologies are exposed here in
chronological significance.

1.1 Load-balancing

One technology, load-balancing routers, can offer im-
proved efficiency, security, and scalability. In a typical
setup, this router is the only machine exposed on the
public Internet and all real web servers are behind the
router in a private network. When requests for service
arrive from the Internet they must be routed through the
load-balancer; the router can then choose which server
the request will be forwarded to. The algorithm used to
select which server is chosen may be as simple as pick-
ing the server with the lowest load or it may be more
complex. In some cases the load-balancer must inspect
the packets in order to know what kind of service is be-
ing requested before it can select an appropriate server
- this is called packet splicing and leads us to our next
technology, content-based routing.

∗McGill University COMP-535 Computer Networks

1.2 Content-based Routing

Content-based routing is another technology that can be
used to enhance a network’s features. In the above ex-
ample, the load-balancing router simply distributed net-
work traffic evenly across a list of servers. In the case
of content-based routing, the server selection is reliant
upon what content the client is requesting. In the im-
plementation of the router explained in this paper, the
content in question is HTTP traffic. When a client con-
tacts the router to request a web page the router splices
open the request and chooses a web server which has
the specific HTTP content it is looking for. The router
then forwards the request to the chosen web server and
acts as a middleman thereafter, passing packets from
the client to the server and from the server to the client
in a forwarding mode.

1.3 Router-attached Services

Finally, router-attached services can add extra features
and tools to a network. A service is router-attached if
the router is responsible for providing the service. His-
torically, routers simply did what their name implies:
routed traffic. Now, however, there is a view that routers
could do more. For example they could report traffic
demographics or collect usage statistics. In the router
explained in this paper a service is available which al-
lows an administrator of the router to view the band-
width usage through the router. This information could
be very useful in diagnosing a flaky network or for con-
sidering where new upgrades or expansions are needed.

2 Related Work

2.1 Load-Balancing

Many large content providers, such as www.cnn.com,
www.ebay.com, and www.nytimes.com, must handle
thousands of requests or more a second. Since this
sort of load could quickly cripple a single server the
solution is to balance the load across multiple servers.

1

One common approach to this end is through manipu-
lation of DNS tables. By listing a single web address
that maps to multiple server IPs, one can automatically
load-balance in a primitive way. The DNS server sim-
ply cycles through the list of IPs such that request1
would receive a IP1, request2 would receive IP2, and
so on. When the list of IPs is exhausted, the DNS server
simply starts from IP1 at the top of the list.

An alternative DNS load-balancing scheme is described
in RFC 1749 [McCloghrie et al. 1994] but it relies on
modifications to the original design of the DNS system
and is not particularly efficient nor easy to set up or
maintain.

Another approach to load-balancing is to place the bur-
den of balancing on the routers themselves. This is a
logical approach since the routers are already perform-
ing some direction on the traffic. By adding a table to
the router which holds the available server IPs, a router
can make decisions in a more efficient way than the
simple DNS load-balancing approach - the router can
keep track of how many requests have been sent to a
given server and thereby route the latest request to the
server with the least requests thus far. If the router is ca-
pable of maintaining state awareness of TCP and other
stateful protocols, a session table can be kept which
records which server has the least open connections -
arguably a better choice to route the next request to.

A number of papers have been written to this end, both
in the hardware and software realms. Cardellini et
al [Cardellini et al. 1999] discuss a number of differ-
ent load-balancing schemes. They outline several cat-
egories of load-balancing based on where the balanc-
ing is performed. Solutions such as client-side proxy
routing and web-browser routing are performed at the
client side. Another category is dispatcher-based ap-
proaches, in which a centralized dispatcher machine
acts as the scheduler and balancing is achieved through
HTTP redirection (see [Berners-Lee et al. 1996]) or
packet rewriting.

A later paper by Cardellini, et al [Cardellini et al. 2000]
proposes a geographic-based load-balancing system in
which content-caching clusters are strategically placed
throughout the Internets so that users can connect to
servers that are very close by.

Finally, hardware-level solutions have been explored.
Apostolopoulos, et al [Apostolopoulos et al. 2000] pro-

pose a hardware-based content router implementation
which provides far better performance than software
solutions.

2.2 Content-based Routing

Historically the Internet has been a generic medium in
which very little high-level application-specific routing
is performed. Most common algorithms and protocols
in place at the routing level are designed on the lower
layers of the OSI Network Model - that is, from the
transport layer down. These protocols meet a wide
range of requirements and are not designed with any
one service or application in mind. Nevertheless, times
they are a changin’. As technology changes and the
Internet becomes more advanced, more and more re-
search is being done in the realm of content-based rout-
ing and there is good argue Ment to suggest that these
approaches could be useful in overcoming some of the
inherent limitations of the “best-effort” inter-networks
we deal with today.

Shin, et al [Shin et al.] explain a system of differ-
entiated services in which varying levels of quality
of service can be maintained. Their choice exam-
ple is that of streaming video content. Carzaniga, et
al [Carzaniga et al. 2003] present a combined broad-
cast and content-based routing scheme (CBCB). In this
scheme the content-based routing layer uses a “push-
pull” method for propagating routing information - the
“push” part comes when routers periodically advertise
themselves and the “pull” part comes when a router
sends requests to it’s neighbours in order to update it’s
routing table. Though their approach is much more
complex then ours, there are many similarities between
our approaches.

2.3 Higher-level Routing protocols

Without a distributed content-based routing algorithm,
the flexibility of the system is somewhat limited. There-
fore many content-based routing solutions come hand
in hand with some sort of higher-level routing pro-
tocol. These protocols may or may not have some
resemblance to lower level routing protocols such as
RIP (Routing Information Protocol) distance vector
[Hedrick 1988] and OSPF (Open Shortest Path First)

2

[Moy 1989]. A commonly shared feature is the ini-
tial setup of routing information which pertains to the
building of a “map” (at each router) of all the routers
which implement the protocol and which, therefore,
can answer content-based routing requests. The dif-
ferences arise when the actual content is considered
for final routing. Depending on the particular appli-
cation, the routing algorithm could be very complex.
It might even map single clients to multiple servers or
vice-versa. These sorts of features lead to routing that
is highly specialized but potentially more efficient.

Our particular content-based routing protocol, HRT
(HTTP Request Traffic), is fairly similar to BGP (Bor-
der Gateway Protocol) [Lougheed and Rekhter 1990],
in fact. BGP uses OPEN messages to create connec-
tions between peers. This connection is held open for a
set amount of time and it is expected that KEEPALIVE
messages will be generated before this timeout. Fur-
thermore, BGP makes use of a marker field to authenti-
cate incoming messages. Our HRT protocol broadcasts
messages to create and tear down peer connections in a
similar fashion to the BGP connections and also incor-
porates timeout and keep-alive mechanisms. HRT also
makes use of a unique message number sent in every
HRT packet to distinguish unique directives and avoid
cycles.

3 Implementation

The router explained in this paper has been built
as an extension to the GINI router [Maheswaran].
GINI (GINI Is Not the Internet) is an experimental
toolkit for constructing user-level micro Internet sim-
ulations. GINI provides tools to simulate arbitrary net-
work topologies complete with switches, routers and
wireless components. It is the ideal tool for testing net-
work code quickly under many different circumstances
before deployment. The ability to rapidly test code
without having to deal with hardware and physical net-
work infrastructure has opened up a whole avenue of
possibilities, and was key in making this work possible.

3.1 Load-Balancing

The load-balancing [1] portion of the router has been
implemented in tandem with the content-based routing

mechanism. We feel that our approach is more flexi-
ble than the initially suggested design of simply load
balancing across several servers. Instead, all incoming
sessions are matched against regular expressions from
a user-created table mapping regexes to IP addresses. If
a match is found, the incoming TCP session is spliced
to establish a connection between the requesting client
and the matching server. The regular expressions pro-
vide more flexibility in the deployment of the load bal-
ancer, without sacrificing too much performance. One
can still do straight load-balancing by using:

.*

(i.e. match everything) as the regular expression map-
ping to a list of IP addresses.

Each HTTP session that is initiated through the router is
recorded in a hash table with it’s hash key being formed
from it’s unique tuple 〈IP source, TCP source port, IP
destination, TCP destination port〉. The IP destination
in this tuple is the web server that the router chooses
to forward the HTTP request to. An additional table is
kept in the router which lists all web servers seen so
far and the number of currently active HTTP sessions
the router is forwarding to each web server. The load-
balancer simply spins through this table to find which
web server (of those allowed by the content-based rout-
ing mechanism) has the lowest number of active ses-
sions and then assigns the new HTTP request to this
web server, incrementing the active session count for
that server by one. The active session count for a server
is decremented when either an HTTP session is explic-
itly torn down by the client or server, or if a session
is timed out by the router. The state that is kept for
each spliced session is cleaned up only when the ses-
sion times out or when the session hash table is full.
Since our data structures are constant-sized hashes and
tables, this “lazy” cleanup technique suits us well.

TCP timeout is normally two times the maximum seg-
ment life (MSL). RFC 753[Postel 1979] defines the
MSL to be 120 seconds, however this makes for a
lengthy timeout of four minutes. RFC 753 was writ-
ten in 1979 and networks now behave very differently.
A design decision was therefore made to adopt the de-
fault MSL of the FreeBSD operating system, which is
30 seconds. We felt this was a more appropriate for our
router.

3

Figure 1: Load balancer state diagram showing the typical life of a packet traveling through the load balancer.

It should be noted that the load-balancing scheme that
has been implemented is effective even in the presence
of multiple load-balancing routers. In the worst case
scenario, two routers both initiate their web server ta-
bles to have zero active sessions for all servers. If iden-
tical requests come to both routers at the same instant,
they will both route the requests to the same (first-
matching) server. This is not so bad, though, when
the session counts reach into the hundreds and possibly
thousands - that is, the first-matching server will only
ever have, at most, n−1 extra active sessions across all
routers than any other server, where n is the (relatively
small) number of load-balancing routers in the network.

3.2 Content-Based Routing

Content-based routing is performed on HTTP traffic in
this router through the use of TCP splicing and forward-
ing as described in Spatscheck, et al [Spatscheck et al.
2000]. To accomplish this, all TCP packets that are sent
directly to the router are examined. The router then re-
sponds to clients who are trying to initiate a new ses-
sion using the the normal TCP three-way handshake as
described in RFC 753[Postel 1979].

Once a session is properly established, the router waits
for a client HTTP request packet as described in RFC
1945[Berners-Lee et al. 1996]. Specifically, the first
line of data in an HTTP request packet is a request
line. The request line starts with a method token (e.g.
GET or POST) followed by a uniform resource identi-
fier (URI) and ends with HTTP version. The line is ter-
minated with CRLF. All elements mentioned are sep-
arated by space characters (CR and LF not included).
This request is matched by using a regular expression
of the form:

\s*[A-Z]+\s+(.*)\s+HTTP/\d+\.\d+\s*

The content that is the basis for routing is the URI.
This URI may be something along the lines of http://
www.host.com/documentation/ or http://www.

host.com/cgi-bin/. Suppose a situation arises in
which the network administrator serves all documen-
tation from Server1 and all cgi scripts from Server2.
In this case, the administrator would add two content-
based routing entries at the router. In this router,
content-based routes are specified with regular expres-
sions. This allows for a very powerful and flexible set of
routing rules. In this particular example, the two routes

4

could possibly look like this:

• Server1

http://www\.host\.com/documentation.*

• Server2

http://www\.host\.com/cgi-bin.*

Each entry that the URI matches in the content-based
routing table specifies a list of valid server IPs for that
content. Note that, in the example above, each entry
specifies only one server but the implementation allows
for many.

Once a server has been chosen from the content-based
routing table the router initiates a three-way TCP hand-
shake with this server as if the router itself were the
client and all packets received on the existing TCP
stream from the client to the router are buffered at the
router. When the router-server TCP session is estab-
lished the router switches into forwarding mode and
sends all buffered client packets to the server. In for-
warding mode, the router simply patches client pack-
ets with the server IP and port as the new destination
and adjusts it’s sequence number to match that of the
server’s (always re-computing the checksum as well).
Server packets are patched to be forwarded to the client
in a similar way.

3.3 Distributed Routing Tables

In addition to simple content-based routing, the router
implements a unique protocol dubbed HRT (HTTP
Routing Table). This protocol, built on top of IP, is
used to distribute content-based routing information to
routers that may not know what the routing rules are
themselves. Unaware routers are called Edge routers
and those that do have content-based routing knowl-
edge are called Core routers (See Figure [2]). When
an Edge router receives a client HTTP request that it
cannot route itself, it sends a numbered HRT request to
all of it’s direct neighbours and buffers the packet. Note
that this buffering is different from the previously men-
tioned HTTP packet buffering - packets in this buffer
can only be cleared when an HRT response packet is
received from another router which delivers new rout-
ing information that resolves the HTTP packet’s URI.
In the case where a direct neighbour receives a HRT re-
quest which it cannot resolve it simply forwards the re-

quest on to it’s own direct neighbours (except the orig-
inal sender of the request). In this way HRT requests
will eventually reach all parts of the router network, en-
suring that if a content-based routing rule exists which
matches the request, it will eventually be reported. If
a router sees a HRT request or response packet which
it has processed recently (based on the HRT message
number) it does not re-process it. This ensures no infi-
nite cycle issues will arise. Manually written entries at
Core routers are never timed out and never superseded
by new HRT information.

Figure 3: HRT Packet Header.

Figure 4: Example HRT Response (POST) packet with
data.

The HRT protocol is very similar to the ARP protocol
as described in RFC 826[Plummer 1982] except that it
is meant to resolve URIs to IPs instead of IPs to MAC
Addresses. The main difference is that HRT requests
are sent directly to other routers instead of through a
broadcast mechanism. This is accomplished by main-
taining a table of HRT neighbours at each router. This
table is built by the HRT protocol itself. Routers which
implement the HRT protocol explicitly announce them-
selves with a Hello packet broadcast on each network
interface as it is created. These broadcasts are only

5

Figure 2: Typical load balancing topography.

for that direct physical connection and are not prop-
agated to other networks. All routers which hear a
Hello packet respond directly to the sender with an
Acknowledge packet and then add the sender to their
tables as a direct neighbour. When the original router
receives Acknowledge packets it adds the senders of
these packets to it’s own direct neighbour table. When-
ever a network interface is brought down on a router,
the router first broadcasts a Goodbye packet which tells
it’s neighbours to remove it from their tables. Since
the GINI framework does not yet provide an IP broad-
cast mechanism we had to implement a primitive mech-
anism ourselves. This primitive broadcast only works
on a single network and therefore multi-network broad-
casts are not properly propagated at this time.

Figure [3] shows the basic structure of an HRT packet.
Note that Hello, Flush, and Goodbye packets are sent
with a single flag byte only. Request (“R”) and Re-
sponse (“P”) packets contain a message number unique
within the given router and the original requesting
IP. Duplicate messages can be detected using their
{UniqueMessageNumber,OriginatingIP} tuple. Fig-
ure [4] shows an example Response packet. Note the
flag “P” and the use of terminating characters (\0) to
end each regular expression entry. The packet is re-
sponding to the original requesting router (192.168.1.1)
with the following HTTP routing table information:

• .*documentation.*

⇒ 192.168.2.1, 192.168.4.7, 192.168.2.3

• .*cgi-bin.*

⇒ 192.168.7.1, 192.168.7.2

As an upkeep routine, direct neighbours are sent peri-
odic Hello packets (non-broadcast) and are expected to
respond with Acknowledge packets. If a direct neigh-
bour is not heard from within a predefined time span
(15 minutes) then that neighbour is removed from the
table. Any HRT packet received from a direct neigh-
bour whatsoever, whether it be a request, a response,
or a flush command, is sufficient to reset the timer
for that neighbour (and therefore act as an unrequested
Acknowledge). This limits the number of keep-alive
message passing that is required within the network.

As an extension of the HRT protocol itself, informa-
tion in HRT response packets is cached in the same way
that ARP routing information is cached. However, this
information times out after fifteen minutes to ensure
that route information is always as up to date as pos-
sible. In the case where a network administrator explic-
itly changes routing information at a Core router, they
can then ensure that this new information is quickly
adopted by issuing an HRT Flush broadcast which tells
all routers in the network to clear cached content-based

6

routing information.

Note that routers can be partly an Edge router and partly
a Core router at the same time. That is, a router may
have knowledge about how to route certain content but
not all content.

3.4 A Router-attached Service

The implemented router benefits from one additional
feature which a network administrator might possibly
find useful. Each router, whether Core or Edge, pro-
vides a command to report it’s bandwidth usage to
it’s console. These statistics take the form of a visual
graph, built with ASCII [Gorn et al. 1963] characters,
which reports the per second bandwidth average for
each minute over the last hour. Incoming and outgoing
traffic are plotted separately, but on the same graph (see
Figure [5]). This service proved indispensable when
testing the performance of the router.

********** BANDWIDTH USAGE ********

***** MAX (in/out): 32.13 b/s *****

in = , out = . in+out = ;

Now 30 min ago*

32 ,,

30 ,,

28 ,,

27 ,,

25 ,,

24 ,,

22 ,,

20 ,,

19 ,,

17 ,.

16 ,; ,

14 .; ,

12 ;;, ;

11 ;;; ;

9 ;;; , ;

8 ;;;;, , ; ,

6 ;;;;; ,. ;. .

4, ;;;;;, . ., ;; ;

3,,;;;;;; ,.;;;;; . ; ;

1.,;;;;;; ;,;;;;; ; ; ;,,.

Figure 5: Bandwidth statistics output by the router in a vi-
sual manner - the graph has been vertically truncated to fit

Figure 6: Test topology designed to stress the HRT load-
balancing content-based routing protocol. HRT entries were
set to time out quickly after being updated so that the Edge
router would continuously send HRT requests for the content
to web server mapping.

Figure 7: Test topology used to determine throughput. Here
the two clients were set up to continuously request different
content from their respective Edge routers which would map,
through the two Core routers, to the different web servers.

4 Performance

Routers are often small and low-powered devices. For
this reason, it is desired to have very efficient algo-
rithms implemented on the router. We were especially
cognizant of this fact throughout the development of the
router. For example, very efficient data structures were
used for storing information at the router. The session
table, for example, is a hash table of hash tables where
the keys are the client’s TCP port and the server’s TCP
port. This allows for very quick session lookup. Wher-
ever possible, preference has been given to hash-based,
constant-memory data structures over dynamic, sorted
data structures, conserving precious router memory and
increasing throughput. Additionally, the router snoops
HRT responses passing through it destined for other
routers. This allows the router to keep fresh content-
based routing information and, possibly, to limit the
amount of HRT requests it will itself be required to
send in the future. Finally, network byte order is used
whenever possible when storing packet header informa-
tion. For example, all IPs stored in data structures on
the router are stored in network byte order. This limits
the amount of byte flipping that has to be done by the
router.

Unfortunately, extensive testing of the router was not
possible within the confines of the GINI framework due
to the use of blocking message queue calls. Specif-
ically, the GINI router passes messages between it’s
layers using inter-process communication (POSIX IPC)

7

message queues using blocking sends and receives.
When there is heavy message traffic between the router
layers the router will eventually deadlock with some
threads stuck in the msgrcv function and some threads
stuck in the msgsnd function. Detailed analysis using
gdb [The GNU Project Debugger] and further research
into the problem suggests a number of possible prob-
lems not least of which may be the fact that the mes-
sage queues are possibly running out of space due to an
extremely high number of “in-flight” messages as the
router load increases. Because our work was done in
a shared lab environment we were without root level
access on the machines we were using. Setting the
maximum message queue size is possible through the
msgctl function but this requires root access and there-
fore we were unable to test message queues of larger
sizes than the default. Various attempts were made to
make no-blocking msgsnd and msgrcv calls but to no
avail. Finally, as the project deadline loomed near we
were forced to abandon any hope of producing stress-
testing data on our newly created content-based load-
balancing service-attached router.

Nevertheless, various network topologies were set up
(see Figures [6] [7]) and tested. In our testing,
one or more user-mode linux (UML) machines were
initialized as web servers by running the command
“/etc/init.d/httpd start”. A fairly large HTML file was
placed in /var/www/html to act as content. The Linux
command line utility NetCat was used on other UML
machines to request content from the routers them-
selves. The routers were set up with various content-
based routing tables.

All portions of the router were successful. The routers
built up and tore down HTTP sessions in a similar man-
ner to a normal TCP session - sessions were properly
timed out after the allotted 2*MSL time period after
final RST packets were sent to both client and server.
The splicing of HTTP data requests generated content-
based routing lookups which, in turn, triggered HRT re-
quest packets to be flooded to the direct neighbours of
the requesting router. The HRT content-based routing
protocol performed well and as expected, passing rout-
ing information back to those routers making requests.
Packets were successfully buffered for open sessions
while waiting for an HRT response and these packets
were properly forwarded once a webs ever was chosen
and it’s TCP session with the router was initialized.

5 Restrictions

5.0.1 Packet flow

It should be noted that in order for the load-balancing
algorithm to work properly the client machine must be
on one side of the edge router and the server on the
other with an assurance that packets cannot be routed
around the router. If this were not the case, the server
could potentially deliver packets directly to the client
or through a path not including the edge router as an
intermediate step without giving the router a chance
to rewrite the packets, which would be delivered with
incorrect IP headers. These packets would leave the
server and client TCP stacks significantly confused, and
would cause incorrect state to be kept at the router. This
state would eventually time out. It is therefore vital that
the edge router remain as forwarding agent throughout
the life of a content-base routed TCP session.

5.0.2 HRT packet loss

The HRT protocol is built on top of IP datagrams and is
therefore susceptible to packet loss. There is no mech-
anism in place to guarantee that HRT packets are de-
livered uncorrupted, or indeed delivered at all. Data
corruption in Request and Response packets could lead
to content being matched with the incorrect server.
The effects of packet loss in Hello packets can be ne-
glected since Hello packets are retransmitted periodi-
cally. Packet loss in Request or Response packets could
lead to a request for a URL to IP matching never be-
ing filled even though there exists an edge router on the
network that can fill the request; this would lead to the
eventual timing out of the initiating session.

6 Future Work

Although all the design goals of the content-based load-
balancing service-attached inter-networking router
were implemented in full, there are many related ideas
that warrant investigation. Certainly, one potential av-
enue for future work is achieving actual performance
data. The obstacle here is the message queue deadlock
which must be resolved before the router can handle
any real throughput. One potential solution would be to

8

increase the kernel-set maximum message buffer size
beyond the size possibly needed to store all messages
passed by the router at any one given time. This param-
eter would of course vary on machines and architec-
tures with different specifications. Another possibility
would be to perform a detailed analysis of the contents
of the message queue at the point of deadlock. We have
ascertained that deadlock occurs when all threads are
either stuck in a layer send due to the message queue
filling up, or in a receive where no messages of the re-
quired type are available in the queue. It remains to
see what type of messages do fill the message queue.
With high probability there is a module that is stuck in
a send, or in a receive for messages of a certain type
while the queue is filled with messages destined for the
same module, but of a different type. Another potential
avenue would be to discard IPC for shared memory or
sockets for communicating between the router threads,
although this is susceptible to similar deadlock vulner-
abilities.

One interesting idea that we had while working on this
project is a UML-to-Internet gateway. This would cre-
ate the possibility of designing a complete network sim-
ulation, and connecting it to the Internet. Possible ap-
plications would include honey pots, hosting services
and public “network sandboxes” where anything goes.
The implementation of such a scheme is possible be-
cause each router and each UML is running as one or
several client processes on the host machine. There-
fore, these processes should be able to negotiate con-
nections with the Internet in the same fashion as any
other user process on the host machine. Routing GINI
packets out onto the Internet would be restricted to cer-
tain protocols: root privileges on the host machine are
required to modify raw Ethernet frames. Therefore, an
unprivileged router can only act as a gateway for pack-
ets which any unprivileged process can create: UDP,
TCP and possibly ICMP packets.

A GINI-to-Internet router would have a route entry for
all destinations that are “on the outside”. Incoming
packets matching that entry would be examined, and
unsupported protocols would be rejected (or dropped).
Supported packet types would have to be sanitized and
rewritten for transmission. In the simpler UDP (data-
gram) case, the router would open the socket and sim-
ply transmit a UDP packet of its own which has the
same flags and payload. Figuring out which UDP port
the client expects a reply on would be trickier, and

would probably require user intervention. TCP sessions
could be handled with a splicing method similar to the
approach described for load-balancing. The difference
here would be that the outgoing/incoming end on the
Internet “interface” of the gateway could rely on oper-
ating system facilities to simplify opening and closing
connections and transmitting data. We are aware that
the UML includes several different UML interfaces that
offer functionality similar to what we have described.
Efforts could be made to extend and simplify the inter-
faces already offered by UML.

Another avenue for future work would be to make the
HRT protocol withstand packet loss and corruption.
This could be accomplished by storing HRT packet
hashes/checksums and sending messages acknowledg-
ing the receipt of HRT requests and replies.

7 Conclusions

In this paper we have presented a content-based load-
balancing service-attached inter-networking router
within the GINI [Maheswaran] framework. TCP splic-
ing and forwarding was implemented in roughly the
same manner as in [Spatscheck et al. 2000] which al-
lows the router to perform content-based routing. A
novel and powerful regular expression approach to con-
tent request matching was described which allows for
a very flexible routing scheme. A unique protocol,
HRT, was built on top of IP which allows for passing
of content-based routing information among routers in
a similar manner to MAC address routing with the ARP
protocol. Router-based load-balancing over a number
of servers is explained as a more secure and efficient
approach than other schemes such as DNS looping. Fi-
nally, a useful feature was added to the router which
allows for the reporting of bandwidth usage statistics.

9

8 Appendix: Running the Router

The router discussed in this paper extends the base
source code of the GINI router [Maheswaran] and
therefore the GINI documentation should suffice for
information not related to the content-based routing,
the load-balancing, or the router-attached bandwidth re-
porting service.

Load-Balancing

The load-balancing performed by the router requires
absolutely no setup by the administrator. If multiple
servers are available that serve a given content request,
then traffic will be balanced in a session by session
manner across these servers.

Setting up the Content-Based Route Table

Content-based routing is performed by matching con-
tent requests (URIs) to regular expressions. These ex-
pressions are mapped to one or many servers which
offer the requested content. To add an entry in this
content-based routing table issue the following com-
mand:

• htable add regex ip1 [ip2 ip3 ...]

It should be noted that the regular expression should
have no spaces in it because the command line inter-
face of the router will parse it as multiple parameters
to the add command. Also, incomplete IPs are inter-
preted by filling in zeros where numbers are missing.
Thus, “192.168.” will be interpreted as “192.168.0.0”.
The following is a sample output of the “htable show”
command:

===

H T A B L E

RegEx IP Address Timeout(secs)

[0] .*documentation.* 0

192.168.1.222

192.168.1.223

[1] .*cgi-bin.* 0

192.168.1.30

2 entries found.

Timeouts of zero denote entries which have been ex-
plicitly added to the table by an administrator. Time-
outs greater than zero denote cached routing informa-
tion that will eventually be purged when it’s timer runs
out. Also, note that there are index numbers listed
for each regular expression. IPs can be added or re-
moved from a given entry by referencing the entry’s
index number when issuing the “htable add” or “htable
del” command as follows:

• htable add -i ‘regex index number’ ip1 [ip2 ip3 ...]

If no IPs are listed with a “htable del” command then
the entire entry is removed from the table. Two extra
show commands, “htable shows” and “htable shown”,
are made available for printing the number of active
sessions for each server and for showing the HRT
neighbours of the router, respectively. Finally, there
are two commands made available which generate HRT
traffic. The first, “htable flush”, causes the router to
clear all cached routing information and to also send a
HRT flush packet to each of it’s neighbours. The sec-
ond command, “htable send”, is primarily for debug-
ging and testing purposes and can be used to generate a
HRT request packet as follows:

• htable send URI ip

Note that the IP given in this command is used as the
originating requester IP (i.e. the router which will re-
ceive the HRT responses).

Requesting Bandwidth Statistics

Bandwidth statistics can be reported for the last hour by
issuing the following command at the router console:

• htable bandw

10

References

APOSTOLOPOULOS, G., AUBESPIN, D., PERIS, V.
G. J., PRADHAN, P., AND SAHA, D. 2000. Design,
implementation and performance of a content-based
switch. In INFOCOM, 1117–1126.

BERNERS-LEE, T., FIELDING, R., AND FRYSTYK,
H., 1996. Hypertext Transfer Protocol – HTTP/1.0.
RFC 1945 (Informational), May.

CARDELLINI, V., COLAJANNI, M., AND YU, P. S.
1999. Dynamic load balancing on web-server sys-
tems. IEEE Internet Computing 3, 3, 28–39.

CARDELLINI, V., COLAJANNI, M., AND YU, P. S.
2000. Geographic load balancing for scalable dis-
tributed web systems. In MASCOTS, 20–27.

CARZANIGA, A., RUTHERFORD, M., AND WOLF, A.,
2003. A routing scheme for content-based network-
ing.

GORN, S., BEMER, R. W., AND GREEN, J. 1963.
American standard code for information interchange.
Commun. ACM 6, 8, 422–426.

HEDRICK, C., 1988. Routing Information Protocol.
RFC 1058 (Historic), June. Updated by RFCs 1388,
1723.

LOUGHEED, K., AND REKHTER, Y., 1990. Bor-
der Gateway Protocol (BGP). RFC 1163 (Historic),
June. Obsoleted by RFC 1267.

MAHESWARAN, D. M. Gini is not the internet, a
toolkit for constructing user-level micro internets.

MCCLOGHRIE, K., BAKER, F., AND DECKER, E.,
1994. IEEE 802.5 Station Source Routing MIB using
SMIv2. RFC 1749 (Proposed Standard), Dec.

MOY, J., 1989. OSPF specification. RFC 1131 (Pro-
posed Standard), Oct. Obsoleted by RFC 1247.

PLUMMER, D., 1982. Ethernet Address Resolution
Protocol: Or converting network protocol addresses
to 48.bit Ethernet address for transmission on Ether-
net hardware. RFC 826 (Standard), Nov.

POSTEL, J., 1979. Internet Message Protocol. RFC
753, Mar.

SHIN, J., KIM, J., AND KUO, C. Content-based packet
video forwarding mechanism in differentiated ser-
vice networks.

SPATSCHECK, O., HANSEN, J. S., HARTMAN, J. H.,
AND PETERSON, L. L. 2000. Optimizing TCP
forwarder performance. IEEE/ACM Transactions on
Networking 8, 2, 146–157.

THE GNU PROJECT DEBUGGER, G. Gdb: The gnu
project debugger.

11

