Jigsaw Image Mosaics

Kim and Pellacini, 2002
Kacper Wysocki

26th January 2005

Notes

e Given arbitrary container and set of aribitrary tiles, fill compactly with
similar color, optionally deforming slightly for effect.

e Problem: given container image and tiles {T}}, find set of shapes {S;}
such that

— union over S; resembles container image as closely as possible

— each S; is a translated and rotated copy of one of the T;’s, possibly
slightly deformed

Energy framework for mosaicing

e Minimize the weighted sum of energy terms. Change weights of terms
==> different results.

e Generalizes Photomosaics and Simulated Decorative Mosaics

e Maintain edges using best-fitting tiles (ie wedge-shaped in corners)

Advantages
e user can control result by changing weights

e introduce new mosaicing generation rules by adding more terms to energy
function

e preparation and generation is completely automatic

Contributions
e energy-based framework for mosaicing generalizing known algorithms
e energy-minimization algo solving mosaicing problem at acceptable cost

e ’soft’ packing problem -> feature-based texture synthesis and product
manufacturing

Related work
e Photomosaics [Finkelstein and Range, 1998] [Silvers and Hawley, 1997]

— collection of images arranged in rectangular grid
— for each block, search db for closest match

— quick and impressive, but limited to rectangular
o Simulated Decorative Mosaics [Hausner, 2001]

— align square tiles with varying orientations to preserve input edges
and maximize coverage

— we use arbitrary shapes, can’t use algo directly
We can do the above, but slower.
e Escherization [Kaplan and Salesin, 2000]

— regular tilings, using closed figure, as close as possible to original
figure

e [Haeberli, 1990]

— randomly choose tile positions, construct CVD, fill each voronoi re-
gion with sampled color

— may not fit tiles
e Packing problem is NP-hard

— boundary matching
— db-driven layout
— leftmost placement policy

— Dense Packing of Poly’s [Milenkovic, 1999]

* computational geometry and math programming

Preparing inputs
Input:

e container image

e set of tiles

e shape of tiles and container as polygons

Use active contours[Kass et al., 1987]

e automatic segmentation from clip art harvested from web

e important edges: segment input image into disjoint containers - final com-
posite will have important edges

e algorithm independent within each segment

e allow user-specified arbitrary segmentations

Mosaicing Framework
Formalization
e Tile configuration: subset of input tiles with repetition + transformations

e JIM when minimizes E in

E=wec -Ec+wg: -Eg+wo-Eo+wp:Ep

C color difference

G gap

0 overlay /penetration

D deformation
Photomosaics:

e use rectangular tile db
® W =wo =wWp =00
Simulated Decorative Mosaics:
e square tiles with uniform color chosen from input image palette
e segment container to preserve edges
® Wwp =0

Intuitive use of weights

Energy evaluation

Ec
Eg

Eo
Ep

average L2color differences at random locations, for each tile

spring energy formulation: each vertex attached with spring to near-

est edge. if signed distance is > 0, add E¢ = %2

same as Eqg, but for d < 0

sum of deformation energies for each tile - difference in shape from
original

k 1
1
Ep = 5 Z/ a|Din(s) — Tin(s)|* + B| D1 (s) — Ty (s)|*ds
i=170

where T;(s) and D;(s) are original and deformed shapes of the i-th
tile, parametrized by s € [0,1]. First and second term of integral
measure the difference wrt stretching and flexing, respectively, while
« and 3 are sensitivity params.

Basic algorithm

Three phases:

1. Place/pack tiles, ignoring deformation

2. Refine and deform

3. Assemble, adjust

works because deformations are always smaller than smallest tile

1. Packing:

approx by ignoring deformations
one tile at a time
search db for tile

determine exact position & orientation to maximally align against
boundry

Registration problem
keep placing tiles until full or cannot place
— backtrack to previous good energy config

new container = old container - shape

2. Refine

e deform to reduce gaps and overlaps

e compute final deformation using active contours interacting with ea-
chother

we - VEc +wg - VEq +woVEp +wp -VEp =0

— VE¢ is close to 0
— VEop = 2d-n or gap, shrink/expand
— VEp = a(D;n(s) — Tin(s)) + B(D;m(s) — T;m(s))

Optimizations
Time complexity is
O(Vzite - Ntite - Veontainer = Ntitesin - (1 +0))
Viite number of vertices per tile
Niite number of tiles in database
Veontainer Vvertices in container
Nyilesin tiles in container

b branching overhead

Tile placement

Reduce branch factor b
e try locations that make container easier to fill after update
e guess container after ’average’ tile
e casier to fill if as convex as possible

® SO:

— construct CVD with areas roughly size of average tile

— pick random least-neighboured site

Branch-and-bound with lookahead

Penalize tiles that make filling more difficult at next iteration
Add term to energy eq’n:

E = wg-Eg+wo -Eo+we-Ec+wpa-Epa
Era = wa-area+ (1 —wy)-length?
favours small area and short circumference, prevents tiles that fit well but lead

to hard-to-fill updated container

Container cleanup

after update, jagged or disjoint edges in container

If shallower than shallowest tile, will never be filled. Separate regions and
consider gap.

Reduces Veontainer and branching factor

Geometric Hashing

e Match geometric features against database of features
e find a set of suitable tiles, then evaluate energy equation

e pruning technique

Preprocessing

e grid of squares in the plane = table entries

e if shape boundry crosses square, record tile ID and orientation as entry in
list attached to table entry

e place all tiles in all discrete orientations in grid to build hash table

Packing stage
e Register container boundry segment to hash table
e access entries of squares container passes through

e for every tile found, cast vote for (tile ID, orientation) pair

consider entries with more than {treshold} votes

Reduces O(Nyjie) to O(hgriq) where hg,iq is grid granularity

Results

e 900 tiles
e 8x size variations

e 10 min up to 2 hr

Conclusions

e general energy-based framework for mosaicing problems generalizing ex-
isiting algo’s

e JIM

e good ’soft’ packing for texture synthesis and product manufacturing

Future work

e bounds for energy of final configuration are difficult to predict
e 3D mosaics for surface and volume packing

e video mosaics - Klein et al.

