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Abstract can failover to another replica. The challenge is to colyect
handle requests and transactions that are active at thetime
Replication is widely used in application server products the crash. The AS replication solutions we are aware of only
to tolerate faults. An important challenge is to correctbyc  consider the simple case where one request is associated
ordinate replication and transaction execution for statef  with exactly one transaction [15, 16, 14, 13, 28, 4, 3, 27]. In
application servers. Many current solutions assume that a contrast, we propose a tool that is able to handle different
single client request generates exactly one transaction atexecution patterns as described above. The system should
the server. However, it is quite common that several client provide exactly-onceexecution andstate consistencgven
requests are encapsulated within one server transaction orin the case of crashes [15, 27]. Assuming the 1-request/1-
that a single client request can initiate several serventa  transaction pattern, exactly-once means that for each sub-
actions. In this paper, we propose a replication tool that mitted client request, the server executes the correspgndi
is able to handle these variations in request/transactisn a transaction exactly once. State consistency guarantags th
sociation. We have integrated our approach into the J2EE the state at AS replicas and database is always consistent.
application server JBoss. Our evaluation using the ECPerf We refine these correctness properties to be able to capture
benchmark shows a low overhead of the approach. advanced execution patterns.
Our tool is based on an existing protocol [27] which as-
sumes the simple 1-request/1-transaction pattern. Itaises
1 Introduction classical primary/backup approach [18, 21, 15, 13, 2]. One
server replica is the primary executing client requests. It
Application servers (AS) have become a prevalent build- Propagates state changes to the backup replicas whenever a
ing block in current information systems. Clients send re- transaction commits. If the primary fails, a backup replica
quests to an AS which accesses database systems to manaffls over, reconstructs the state of the old primary, amd co
persistent data. The AS runs the application programs andinues the client connections. Requests that were active at
maintains volatile data, such as session informationthe.  the time the primary crashed (and only those) are automat-
server isstateful Requests are executed in the context of ically restarted at the new primary. This paper extends the
transactions which provide durability for the persisteate ~ basic tool to support advanced execution patterns.
isolation from concurrent transactions, and atomicity. In ~ Ourgoalis to provide a practical solution with little over-
the simplest execution model, each client request execute§ead. Hence, we have developed our replication tool within
within its own individual transaction. In practice, howeve the contextof a concrete AS architecture, namely J2EE [26]
execution can be more complex. For instance, the clientand integrated it into the open-source AS JBoss [17]. We
can start a transaction, and then submit several requests iRelieve, however, that the principle ideas can be applied to
the context of this transaction before committing it. This other kinds of application servers (e.g., CORBA, .NET),
is, e.g., often used when a web server (WS) is positionedand hence, keep the algorithmic description as general as
between the real (internet) client and the AS. At the other possible. Our performance analysis shows that the approach
extreme, one client request might create several indepencompares favorably with other fault-tolerant solutions.
dent transactions in the AS. Application programmers often
chop the execution of a request into a set of small transac2 Background
tions to avoid lock contention at the database.
AS servers are often replicated to achieve 7/24 availabil- AS architecture  We assume the application logic to
ity. If one replica crashes, the work assigned to this raplic be programmed within componentrterprise JavaBeans



Application server fail. Uniform-reliable deliveryis stronger: if any member

T tion M. . ap - . . .
cO;?;Ea;c — — receives a message (even if it fails immediately afterwards
RM. Requestr, | oo all members receive the message unless they fail. Our al-
~{EsB] gorithms require all messages of the same sender to be re-

ceived in sending order (FIFO). The GCS automatically re-
moves crashed members from the view of currently con-
Figure 1. J2EE architecture nected members and also provides explicit join and leave
primitives. Upon a view change all members receive a view

(EJB)in J2EE). Components can have state. We assumechange message providing thtual synchronyproperty:
that a component is only associated with a single client if membersp andq receive both first view” and thenl””,
(e.g., stateful session beans (SFSB) in J2EE), or that therdhey receive the same set of messages while membéfs of
is a concurrency control mechanism in place that allows at!n @n asynchronous environment, the GCS might wrongly
most one transaction to be active on the component (e_g_gxclude a non-crashed member. In this case, we require the
entity beans (EB) in J2EE). We assume all components toaffected replica to_shut (_jown. An glternatlve would have
run within the same runtime environment (called container Pe€n to apply semi-passive mechanisms [10].
in J2EE). Additionally, the server provides a set of sersice
like transactions and security. Figure 1 shows an J2EE ar-‘?’ Model
chitecture with a transaction service, and three EJBs. The We make the following assumptions. All communication
client makes a request to a method of an EJB which in turnis asynchronous and reliable (no network partitions). -Indi
can call other EJBs and/or the database before returning aidual components within a server do not fail butan AS only
response to the client. fails entirely by crashing (no byzantine behavior). For now
Most AS architectures provide two ways to access ser-databases and clients do not crash. We discuss their crashes
vices. Either the components explicitly make service calls in Section 5. Clients and components are single-threaded
or such service calls are made automatically whenever athat block when waiting for the response of a request but
method of a component is activated. The transaction ser-execution does not need to be deterministic. For space rea-
vice is implemented by the transaction manager (TM). A sons, we only consider full state consistency. Our solstion
transaction consists of a set of operations. If a transactio for relaxed state consistency handle transaction abdetdif
commits, all its operations succeed. The state changes irently but use similar reasoning.
the database are persistent while changes on AS compo- In a non-replicated system without crash, we assume
nents usually remain volatile. If the transaction abomy, a each request to execute successfully, and the server to pro-
changes performed so far on the database are undone by théide acorrect responseThis could be an abort exception if
database system. Whether the changed state on AS compahe transaction fails, e.g., due to application semantics.
nents is undone depends on the AS architecture. In J2EE, If a non-replicated server crashes before returning a cor-
changes on SFSBs are not automatically undone. How-rect response to a request, the client receivéslare ex-
ever, programmers can provide rollback methods for SFSBsception and the request is executed at-most-once. All state
which are automatically called by the J2EE server in the at the AS and the database connections are lost. We assume
abort case. We say the AS server provifidisstate consis-  the standard database behavior in this case: the database
tencyif mechanisms exist to abort changes on components,aborts all active transactions except those inghepared
otherwise it provideselaxed state-consistencyf a trans- state (in case of 2PC) which will remain active until the
action accesses more than one database, a 2-phase comngidtabase receives tkemmit/abortdecision.

protocol (2PC) is necessary at commit time for atomicity. gyecytion Patterns We classify execution patterns by the
The TM first sends greparerequest to all participating  nymper of client requests involved in a transaction and the

databases which return either wittpeeparedmessage or  umber of transactions generated by a request. Ir.the
their decision to abort. If all (_jatapages have successfullyp(,mern (1-request/1-transaction), each client request initi-
prepared, the TM sendscammitdecision to all databases,  aes 3 single transactidh and the entire request execution
otherwise (at least one aborted)atwort confirmation. The  ,, the AS and the database is performed within

databases terminate the transaction accordingly. A first extension allows several client requests to run
Communication between AS replicas is viaggoup com- within a single transaction (see Fig 2(a)) leading tdl-a
munication systeniGCS) [7]. A group member can mul- 1 pattern(N-requests/1-transaction). A client first sends a
ticast a message to all members (including itself). Send-begintransaction request, then several requests for compo-
ing a message witteliable deliveryguarantees that whena nents, and finally @ommit/abortrequest. The client re-
member receives a message and does not fail for sufficientlyceives responses before the corresponding transaction ter
long time then all members receive the message unless theyninates. This pattern requires the AS to export the be-



Primary Container ner transaction might be the outer transaction of another in

@ [Comp | [T™ | ner transaction. The 1-N pattern is widely used in practice
[primary beging . when a long execution needs to be chopped into small trans-
| TM.begin() actions in order to increase concurrency within the dabas
ﬁ/_,_ﬁ,—::[] [24, 20]. The programmer typically provides compensating
primary.invoke(r1, B1, Tf) transactions for each transaction type in order to guaran-
\’ﬂje;ﬂ tee that if not all transactions commit the effects of alsead
rl.resp committed transactions are undone.
primary invoke(r2, BT, Tf) Finally, the two extensions can be combined tol-4
2resp EI] pattern Sevgral cllie.n_t requests might execute W.ithin trans-
imary commit(T) actionT; while T} initiates several inner transactions. Fur-
J\»M”“m) thermore, the patterns above can be refined by considering
/*’:[l] that each transaction might access only one database or sev-

' eral databases. Only in the latter case 2PC is needed.
(a) N-1: N-requests/1-transaction

Pri . Correctness For space reasons we are not able to pro-
rimary Container

vide a formal correctness definition or formally prove the

Client [ Compt | [Comp2| [ ™™ | correctness of the algorithms. Instead, we resort to a more
primary.invoke(r1, B1, ni informal reasoning. We state correctness as a set of prop-
TM.beging erties that have to be provided despite crashes of individ-
T 1 ual AS replicas. From the perspective of the client, cor-
[Z TM.begin() rectness mearsxactly-once request executjdhat is, the
T2 client receives exactly one correct response for each gubmi
(Epe— ted request, and no failure exception. From the perspective
of the server we requirexactly-once transaction execution
r2.res andfull state consistencyThe first requires that each trans-
TM.commitTH) action commits at most once. If it does not commit, it aborts
.resp |r1.resple——— due to application semantics or database exceptions (e.g.,
deadlock). The second requires that if a transacfi@om-

mits, the database has commitiE@nd all non-crashed AS
replicas have the state changes performed bl T" aborts,
Figure 2. Execution Patterns the database has abortEdand none of the AS replicas has
the state changes performed By Additionally, in order

to synchronize client and server perceived correctness we
require what we caltequest / transaction matchingdrhis
|Ineans that each committed transaction must be result of the
successful execution of a request or sequence of requests,
namely the one that produces the correct response seen by
the client. This requirement is motivated by the fact that th

. . “execution of a request might be replayed if its first executio
ate more than one transactlons Iead!ng ta-H patte.rn was interrupted by a crash. However, if the failed execution
_(1—request/N—transacyons). we (_explam the semantics US9ed to the commit of a transaction and the second, success-
N9 the_ gxample of Fig _2(b)‘ A client request to a compo- ful execution follows a different execution path that would
nentinitiates a transactié. When the component creates not include this very same transaction, then we would have

;syb-requesc;[ tg ané)ther component dgrmg thz ezr_erz]cutlona ghosttransaction that does not refer to any execution that
1 is suspended and a new transactionis started. The the client perceives as successful.

sub-request is executed within the contexfef WhenT;
commits,T; resumes, and further execution again happens
within the context off. T, might commit whileT} aborts, 4 Replication Algorithms
or vice versa. Howevefl; always terminates beforg, .
We callT; theouterandTs theinnertransaction. An outer
transaction might have several inner transactions, and-an i

(b) 1-N: 1-request/N-transactions

gin/commit/abort methods of the TM. It is often used when
a web-server (WS) runs between the real client and the AS.
In this case, the real client makes a request to a componen
in the WS (e.g., a servlet) which is in turn the client for the
AS and makes calls to the AS. Controlling transactions from
outside the AS has also become important for web-services
The second extension allows a client request to gener

Our replication tool uses a primary/backup approach. It
consists of a client algorithm (which is downloaded to the
1in J2EE, the application programmer can specify at deployrtime client when it connects to the AS) and a server part. We
that a call to a method should always generate a new transacti assume the replication tool obtains control before a reques




is sent to the TM or a component, and after the call returns.database allows the new primary to check wether the
We first provide an overview of the algorithm for the 1-1 database transaction committed, and apply or disregard the

pattern, and then discuss the N-1, 1-N and N-N algorithms AS state accordingly, hence providing state consistency.

when only one database is accessed. For space and read-

ability reasons we only present the solution for N-1 in algo- 4.2 N-1 Algorithm

rithmic form. We also shortly discuss how the algorithms

can be adjusted to work with more than one database. In the N-1 model the client can include several requests
within a single transaction. If the primary now crashes be-
4.1 1-1 Algorithm Overview fore a transactiol’ commits, the database abdftsbut the

client might have already received the responses for some
of the requests belonging 6. These responses now refer
bined ideas from [14, 13]. The client replication algo- to a transaction that aborted at the database due to a crash.

rithm intercepts each request submitted from the client to VW& have implemented two approaches to address this prob-

the server, attaches a unique id, and forwards the request t&£M- TheN-1-best-efforalgorithmiis fast but only provides

the current primary. Upon a failure exception, it resengs th a-most-once execution in some cases. Nhe-orderedal-
request with the same id to the new primary. This repeatsternatlve achieves better transparency at the price oehigh

until it receives a correct response. overhead during normal processing.

The primary executes a client request within a transac- N-1-best-effortIn the first approach, the main adjustments
tion7. Atcommittime, it propagates all changes performed are at the client side. The client replication algorithmpee
by T'on components together with the request/response paiall requests and corresponding responses for each transac-
in a singlecommittingmessage (uniform-reliable delivery), tion. If the primary crashes while a transaction was active,
and enters the identifiérid of T into the database as part the client algorithm replays the execution at the new pri-
of the transaction. When it receives its own committing mary. Ifit leads to the same results as the original exeautio
message, it commit$’, returns the response to the user, it was successful and failover is completely transparent. |
and multicasts @ommittedmessage (reliable delivery). If it leads to different results, the replay was unsuccessitl a
T aborts at some time during the execution, aborted the reexecuted transaction is aborted. The real client, hav
message is multicast (reliable delivery) containing the re ing seen the old non-repeatable responses, is informed with
guest/abort response pair. a failure exception, and hence transparency is lost.

When the primary crashes, a backup becomes the new Figures 3, 4, 5 show the N-1-best effort algorithRe-
primary and performs failover. For a given request with questhas an identifierid while a Response&aptures the
associated transactich, the new primary might have re- response to a request. A sin@l&U objectceu at the client
ceived before the crash (1) not yet any message, (2) thereplication algorithm keeps track of the execution within
committing message but no decision message, or the (3}he current transaction. It contains the transaction iflent
commit/aborted messages. In the first case, our failure as+xid of typeTID, and all requests executed so far together
sumptions guarantees that the database abdrteth the with their responses{{R). The server maintains &U ob-
second case, the database might have committed or abortejgct for each currently active transaction (one per client)
T. The new primary checks wheth@fs txid was inserted  EU keeps track of transaction identifierid and the set of
in the database. If yes, the database had comniltfexhd component§’OM P that have been accessed so far. In con-
the new primary applies the component changes includedtrast to the 1-1 algorithm, the servers do not need to keep
in the committing message, and stores the request/responsgack of request/response pairs. Tdaetent of a Message
pair. Otherwise it ignores the committing message. In caseobject depends on the type of message.

(3), if the decision was commit, the new primary appliesthe  The client replication algorithm (Figure 3) intercepts be-
component changes of the committing message, if the decigin, invoke and commit requests. We ignore abort requests
sion was abort, it ignores them. In any case, it stores thefor space reasons. For simplicity, the algorithmic descrip
request/response pair. After failover, when the new prymar tion assumes that the client submits requests in the correct
receives a request from a client it checks first whether it hasorder (begin/invoke/invoke.../commit). An abort indudsd
recorded a corresponding request/response pair, and, if yesapplication semantics or by the database (deadlock, stc.) i
returns immediately the response. Otherwise it execuges th considered a correct response. In this case, we expect the
request according to the primary algorithm. client to submit a new begin transaction as next request.

Resubmitting requests in failure cases but avoiding  Upon intercepting the begin request (Fig. 3(a)). ¢he
reexecution if the request was already successfully ex-object is initialized and the request is forwarded to the cur
ecuted provides exactly-once execution and proper re-rent primary until it is successfully executed. Upon an in-
guest/transaction matching. Inserting the txid into the voke request (Fig. 3(b)), the response from the primary is

Our 1-1 algorithm is from [27] which in turn had com-



void begin ()
1. while (true)
2. ceu.initialize();
3. ceu.txid = primary.begin();
4. if (#failure Exception) return;
5. else find a new primary;
(a) transaction begin

Response invoke (Request req, Component comp)

. Generate req.rid;

2. while (true)

3. Response resp = primary.invoke(req, comp, ceu.txid);
4. if (3 abort Exception) throw abort Exception;

5. if (# failure Exception)
6

7

8

=

ceu.RRU = {(req, comp, resg);
return resp;

. else
9. while @ failure Exception)
10. find a new primary;
11. replay(ceu);
12. if (@ replay failure)
13. ceu.initialize();
14. throw replay failure;

(b) regular request

void commit ()
1. while (true)

2. primary.commit(ceu.txid);
3. if (# failure Exception)
4. ceu.initialize();
5. if (3 abort Exception) throw abort Exception;
6. else return;
7. else
8. while @ failure Exception)
9. find a new primary;
10. if (primary.iscommitted(ceu.txid))
11. ceu.initialize();
12. return;
13. else
14. replay(ceu);
15. if (@ replay failure)
16. ceu.initialize();
17. throw replay failure;

(c) transaction commit

void replay (CEU ceu)
1. ceu.txid = primary.begin();
2. if (3 failure Exception) throw failure Exception
3. else
4, for each (oreq, ocomp, oresp)ceu.RR
5 Response nresp = primary.invoke (oreq, ocomp, ceu,txid)
6. if (3 failure exception) throw failure Exception
7 else if @ abort exception) throw replay failure
8 else if (nresp != oresp)

9. primary.abort(ceu.txid);
10. throw replay failure;
(d) replay

Figure 3. N-1-best-effort at the client side

TID begin ()
1. new EU eu;
2. eu.txid = TM.beginTransaction();
3. return eu.txid;

(a) transaction begin

Response invoke (Request req, Component comp, TID txid)
1. find eu corresponding to txid;
2. eu.COMPU = {comg};
3. return comp.invoke(req);

(b) regular request at primary

void commit (TID txid)
1. find eu corresponding to txid;
2. for each comg eu.COMP
3. set comp.state to current state of corresp. component;
4. new committing Message m1,;
5. ml.content Heu};
6. multicast m1 by uniform reliable delivery;
7. insert eu.txid into database;
8. wait until receive m1;
9. TM.commitTranasction(txid);
10. if (A abort Exception)
11. new committed Message m2;
12.  m2.content {eu.txid};
13.  multicast m2 by reliable delivery;
14. else
15. new aborted Message m3;
16. ma3.content {eu.txid};
17. multicast m3 by reliable delivery;
18. throw abort Exception;
(c) transaction commit

Bool is.committed (TID txid)
1. if txid can be found in database return true
2. else return false;

(d) check outcome of transaction

Figure 4. N-1-best-effort at primary

the transaction might have committed before the crash or it
aborted upon the crash. The client algorithm checks at the
new primary (lines 9-10). We will see later how the new
primary answers such request. If the transaction commit-
ted, the commit request returns successfully (lines 11-12)
Otherwise, the transaction is replayed at the new primary
(lines 13-17). The replay (Fig. 3(d)) starts a new transacti
and resubmits each request of the old execution (lines 1-5).
If one of these requests receives a different response than
the original execution, the reexecuted transaction istabor
throwing a replay failure exception to the client (lines 7-
10). It is now up to the client to act upon this. Otherwise,
reexecution has been successful and the algorithm contin-
ues with the request that was active at the time of the crash.
Note that after the reexecution the state of the new primary
(or the database) might not be exactly the same as the state

captured (lines 3-7), or, if the primary crashes a replay is of the old primary after the first execution, but this does not.
initiated at the new primary (lines 9-14). Upon a commit réally matter because only responses but not server state is
request (Fig. 3(c)), if no crash happens, the commit returnsVisible to the client. Throu_ghout the algorlthm additional
to the user. If the transaction aborts because of database sé*S crashes reset the algorithm to the appropriate place.
mantics, the response is an abort exception (lines 3-6). Ifa The server (Figure 4) creates an object upon trans-
crash occurred before the server returns from the commit,action begin (Fig. 4(a)), and keeps track of each compo-



void failover () this case the client perceives exactly-once executiortsor i
1. new Eu eu, new set COMP; o requests, the server executes the corresponding trasrsacti
2. in order of reception process each committing message m . .
3 eu = m.content exactly once, the state between database and new primary is
4. if (3 aborted message m’ with m’.content == eu.txid) consistent, and client and server execution matches. If the
5. or (Acommitted message m’ with m’.content == eu.txid replay is not successful, the transaction aborts. Thetdgen
6. and eu.txid does not exist in database) informed and exactly-once is not provided. However, state
7 Ignore commlttlng message . t . d d d . th th I t th
8 else /| transaction committed consistency is provided, and since neither the client ner
9. foreach comm eu.COMP server perceives a successful outcome, execution matches.
10. if @ ¢ € COMP && ¢ == comp) (3) If the primary crashes after the client had submitted the
E lc-s(t:%f"\;R‘jomp-State commit request but before receiving a response, the cases
. else = comp; . _ . . ;-
13, for each comp COMP are the.same as those in th(_e 1-1 algorithm: the new pri
14.  create corresponding component; mary might not yet haye received any message, might have
15.  setcomponent’s state to comp.state; received the committing but not the committed message,
or might have received the commit/abort message. The
Figure 5. N-1-best-effort failover at backup failover mechanism guarantees the state consistency be-

tween database and AS server by applying the state changes
of the committing message if and only if the database trans-
ction has committed. The client checks at the new pri-
%ary whether the transaction had committed. If it commit-
ted, no reexecution takes place. This provides exactlygonc
execution at both client and server and execution match-
ing. If it did not commit, replay is initiated as in situation

nent accessed by a request (Fig. 4(b)). At commit time
(Fig. 4(c)), we send the committing message including the
final state for each accessed component, and insert the txi
into the database (lines 1-8). Then we commit the trans-
action. If commit was successful, we send a commit mes-
sage (lines 9-13) and the commit completes. If commit is

not successful due to database semantics, the primz_alry in 2) above. In total, this protocol provides state consisgen
forms the backups about the abort so that they can discar equest/transaction matching, and at-most-once executio

tT.e conlttlng n:gessaghe, andkr%tubr nshthe lgxceptlcl)ln “? theAS failures are transparent in some but not all cases. Note
client (lines 15-18). When asked by the client replication that if the transaction aborts due to application semantics

a;:go;thrg, thef|s_ccr>]mm_|;tedrgut|ne (F'?]' 4(d)), checks in but the primary crashes before returning the response, the
the database for the txid and returns the answer. client replication algorithm will actually replay the trseuc-

The backup, during normal processing, stores all re- tion. This does not violate any of the properties.
ceived messages in a FIFO queue. Figure 5 shows the

failover. Committing messages are processed in FIFO or-Increasing the chances for exactly-onceReexecution

der to track the latest state of each component (lines 2-3).might not succeed if non-determinism occurs which can

I the corresponding transaction committed, we determine h@ppen because of database access. For example, assume
which components were affected (lines 8-12). Otherwise Defore the primary crasti;; reads and updates and re-

the committing message is ignored (lines 4-7). Finally, all turns a response to the client. Then the primary crashes
necessary components are recreated (13-15). Alterngtivel Pefore7: commits. At the new primary assume a trans-
component recreation can also happeily after failover ~ actionT: reads and updates before T’ resubmit its re-
during normal processing of the new primary: whenever a duest. Hencel's replay reads a different value ofthan
client makes a request to a component we first look whetherduring the original execution. This might lead to a dif-

it is in COMP and if yes, remove it from COMP, initial- ferent response if the value of affects the response. To

ize it, and adjust the component state before performing thev0id such behavior, we propose an alternative algorithm
corresponding operations. N-1-orderedthat works for database systems that guaran-

tee serializability through strict 2-phase locking. WithIN
Reasoning about correctne®ge have to look at the time-  ordered, the reexecution of all database access is performe
points at which the primary can crash. (1) If it crashes when in the same order as during the original execution. Dur-
the client attempts to start a transaction, the databass-tra ing normal processing, each database access is assigned a
action (if already started) aborts, and the new primary hasunique increasing identifier. Before the response for the re
not yet done anything. The client algorithm simply restarts quest is returned, a message with the identifiers of all ac-
the transaction. (2) If it crashes sometime during the ex- cess triggered by the request is multicast to the backups. At
ecution before the client submits the commit request, thethe time of resubmission after the primary crashes, each re-
database transaction aborts and the new primary does nagplayed database access must be executed according to its
know anything about the transaction. The client algorithm original order and new requests may not start until all re-
replays the execution at the new primary. If it is success- submissions have completed. In the example above, when
ful, execution continues with the last request submittad. | 73's request is submitted befollg@ resubmits its request, it



Result interceptDatabaseAccess (Request ciemt SQL sql) sage is multicast to all backups containing all correspaadi

1. while (RDBAT.size- 0 and clientreq.rid = RDBAT.First().rid) DBA objects (Fig. 6(b)). Requests that do not access the
g: ;l'(firgéi%t\;v aits until timeout or notification; database do not require a multicast message. At failover,
4.  TOA=RDBAT: the new primary will handle all the ordering messages re-
5. RDBATempty(); ceived before the crash of the old primary (Fig. 6(c)). We
g- Res”u?:'?_e:fgcmzt;‘qgl if]"ﬁ?efed‘gtabase. discard each ordering message for which the corresponding
8. if (req.rid == RDBAT.First().rid) ’ transaction has co_mmmed, since cI_|ent requests invdlved

9. RDBAT.removeFirst(); this transaction will not be resubmitted (lines 3-6). Other
10. notify each waiting clienteg; wise, theD BA objects contained in the ordering message
E el?‘e(iﬂt TOA with toarid & 1 orginal ; will be recorded in a lis DBAT and sorted in ascending

. I oac wi oa.ria =req.ri original execution . .

13, new DBA dba: Qatabase access order (!lnes 8-10). Wher) a client request
14.  dba.rid = req.rid; is replayed at the new primary, each resulting database ac-
15.  dba.order = counter++; cess will be intercepted (Fig. 6(a)). If the order of the re-
16.  DBATU = {dba}; played database access is not the smallest as recorded in

17. returnr;

(a) database access the RDBAT, it has to wait until all database accesses with

smaller order have been executed (lines 1-2). A new request

Response invoke (Request req, Component comp, TID txid) (not resubmitted) has to wait unfilD BAT is empty. Only

1. find eu corresponding to txid;

2. eu.COMPU = {comp}; when these conditions are fulfilled, the database access can
3. Response resp = comp.invoke(req) be executed (line 7). In order to handle clients that do not
;1- if (req is f:l Cgent request) replay (e.g., they crashed by themselves), there is a timeou
o ?o?’V;:Sh‘iij@’é DBAT with dbarid == req.ri: (lines 3-6) of how long a request is blocked. When the first

7. cdsU = {dba}; DBAT\ — {dba} timeout is triggered, all waiting requests will be notified,

8. if(cds!=p) and all further request will not be blocked by the ordering

9. new ordering Message m; mechanism to guarantee termination. For instance, in above

10. m.content {(bdd, cds}; example, ifT; does not resubmit its request within a cer-
11. multicast m by reliable delivery;

12. return eu.resp; tain time,7%’s request will execute. In case of timeout, the
(b) regular request leading to multicast ordering message RDBAT will be emptied, but the remaining B A objects
in the RDBAT will be temporarily stored in a lisTOA

void failover ()

1. .. to avoid reassigning access numbers to replayed database

2. new list RDBAT; accesses that had a timeout (lines 4 and 12).

3. in order of reception process each ordering message m

4. if 3 committed message m’ with m’.content = m.content.txid .

5. or m.content.txid exists in database 4.3 1-N Algorithm

6. discard m;

7. else . . .

8 for each dba m.content.cds Our 1-N algorithm extends the 1-1 algorithm in order

9 RDBAT.add(dba); to handle outer and inner transactions and the relationship
10. sort F;'?B'I“T ascendingly according to dba.order and santzy between them. For that, we use a special request identifi-

accordingly;

cation system. A client request has the request id given by
the client replication algorithm. Now assume a transaction
T was initiated by a request with requestrid. Then, the
Figure 6. N-1-ordered extensions i'th request made withiff” that starts an inner transaction
receives as request idd.i, i.e., a concatenation of the re-

has to wait untill’;’s request is reexecuted to guarantee that quest id of the outer transactidhand a counter that keeps
Ty again reads the same data as in the original execution. irack of how many inner transactiofisstarted.

(c) handling ordering message at failover

Figure 6 shows how the N-1-ordered algorithm extends  The algorithm handles inner transactions in the same
the N-1-best-effort algorithm. During normal processing, way as outer transactions. At commit time of any inner or
the N-1-ordered algorithm intercepts all accesses to theouter transaction, the request/response pair and the etlang
database (Fig. 6(a)). We assume the algorithm knowscomponents are multicast as in the 1-1 algorithm. Since we
from which client request each database access is triggereduse FIFO multicast and inner transactions always terminate
For the original execution (no resubmissionpBA object before their corresponding outer transaction, the message
records the pair of the rid of the client request and a uniqueof an inner transaction always arrive at the backups before
increasing number which represents the order of the accesgshe messages of the corresponding outer transaction. As-
A DBAT set captures alDBA objects. Before the re- sume transactioifi; triggered by client request with request
sponse for a client request is returned,cafering mes- id 1 submits a request with requestidl that starts inner



transactioril,. When the primary crashes, there are three transactioril,, then make a couple of requests that are ex-
main cases. (1) Botfi}, andT, were still active, (2) both  ecuted withinTs, and then request the commit @%. If
had terminated (commit or application induced abort), or the primary fails after committind» but before commit-
(3) Tz had terminated whild} was active. The new pri- ting 71, the client replayd3. In order for the reexecution
mary is able to distinguish these three cases by examiningo be successful, it must resubmit all requests associated
the messages it has received fgrand 7, during normal with T,, otherwiseT> becomes a ghost transaction. Fur-
processing and checking for transaction identifiers in the thermore, none of these resubmitted requests may actually
database if necessary. In the first case, it will not apply any be reexecuted becau%g already committed. Hence, the
component changes even if it had received the committingserver must keep track of all request/response pairs associ
message. The client will resubmit request 1 and the newated with committed inner transactions.
primary reexecutes starting wiffy. All correctness prop-
erties are provided. In the second case, the new primary4.5 A transaction accesses several databases
has installed the component changes of both transactions.
If the client replication algorithm resubmits the request 1 In order to handle 2PC, we adjust an idea proposed in
Ty's response is immediately returned without reexecution. [16] for replication of stateless AS to work with stateful AS
Case (3) is more difficult. The client resubmits request For that, we have to slightly change the commit handling of
1, triggering the start of a new transactibhat the new pri-  our algorithms (see Figure 4(c)). The primary intercepts
mary. If the execution is deterministi€; will submit the the firstpreparerequest sent by the TM to a database and
very same request 1.1 that initiat&dl on the old primary.  multicasts gpreparingmessage to the backups before for-
Since the new primary keeps the request/response pair fowarding the request to the database. Then it intercepts the
T, the new primary immediately returns the response with- first decision (commit/abort) that the TM sends to one of
out reexecution. With this is executed exactly once and the databases. In case of commit, it sends@amitting
its execution is part of the correct response returned to themessage as in our previous algorithms before forwarding
client. However, if execution is not deterministig;, might the commit to the database. After the transaction has termi-
not make the same requdst as in the original execution.  nated at all databases, the response is returned to thé clien
Our first solution to handle this problem assumes that com-and a correspondingmmit /abort message is multicast to
pensating transactions exist. Recall that if the 1-N patter the backups. No txid needs to be inserted into the database.
is used to chop a long execution into small pieces, compen- At the time the old primary crashes, the new primary
sating transactions are often provided by programmers. Inmight have received for a given transaction (1) not yet any
this case, in the example above, when the discrepancy bemessage, (2) therepared message, (3) theommitting
tween the old and new request withidl is detected, the  message, (4) thebort/commit message. In the first case,
new primary first callsl,’s compensating transaction and our failure assumptions guarantee an abort of the corre-
then continues execution. That i5; effects are undone  sponding transaction at all databases. In case (2), some
and it appears as if it had never executed. Without compen-might have aborted the transaction, others might be blocked
sating transactions the approach becomes best-effos sincin the prepared state. The new primary can now force all
ghost transactions liké, cannot be undone. Sin@g does  databases to abort the transaction if they have not yet done
not belong to an execution that was perceived correct by theso. In case (3), some databases might have committed the
client, 75 violates the request/transaction matching require- transaction, others might be blocked, and the backup has re-
ment. In our solution, a client is informed about existing ceived the component state changes. The new primary can
ghost transactions whenever they are detected. Note hownow ask all databases to commit the transaction if they have
ever that without compensating transactions the N-1 patter not yet done so. In the last case, nothing needs to be done
allows even during normal processing that an inner transac-because all databases and the new primary have the correct
tion commits while the outer aborts. state after transaction execution.

4.4 N-N Algorithm 5 Client and Database Failures

For an N-N execution, the 1-N and N-1 algorithms have  If the database crashes the AS server has to wait until
to be merged. Complexity arises because of the following it recovers (unless the database is replicated itself which
situation. Assume a transactid@i executing on behalf of is outside the scope of this paper). Upon recovery, the
one or more client requests. Now assume fRainitiates database aborts transactions that were active at the time of
an inner transactioff,. In the 1-N model, there was one the crash. The AS can easily determine whether a transac-
specific request made [, that was executed in the con- tion has committed by looking for the txid in the database
text of T». However, with an N-N patteri; can first start  or by being aware of the steps of the 2PC protocol. In case



a transaction was active at the time of crash, and henceups on a component basis just before the componentreturns
aborted, the AS primary can easily replay the transactionfrom a method call. Hence, if several components are called
in the 1-1 and 1-N patterns. In the N-1 case it has to for- within one client request, several messages are sent. For
ward the abort exception to the client replication algenth  more detail see related work. For both (2) and (3) one server
with a request to initiate the replay of the transaction. was primary for all clients. We first looked at the 1-1, N-1,

If the client crashes, a 1-1 or 1-N execution can simply and 1-N patterns using one database, and then look at the
finish the execution. A N-1 or N-N execution should abort 1-1 pattern accessing several databases. We looked at the
the transaction if the client had not yet submitted the com- patterns individually to understand the impact of the parti
mit request because the AS server only has partial infor-ular mechanisms responsible.

mation about the transaction. However, in the N-N pattern 1-1 a|gorithm Figure 7(a) shows the average response
this could result in an inner transaction committed while times of order entry transactions at increasing IR for tHe 1-
the outer aborted due to the client crash. If a compensatingexecution pattern. Response times for the 1-1 algorithm are
transaction for the inner transaction exists we can apply it 409 better than the original implementation in [27]. At low
load, the new 1-1 algorithm adds 15 ms (15% overhead). As
6 Evaluation a comparison, [21] also indicates around 15% overhead for
FT-CORBA (primary-backup) compared to non-replicated

We have integrated the approach into the J2EE servelCORBA. JBoss clustering adds around 120 ms (120% over-

JBoss [17]. For that we used the ADAPT J2EE replica- head). The high overhead is due because it sends state after
tion framework [5] which provides interceptor points and each method invocation while our approach sends one mes-

functionality like getting and setting component state. As sage _pertran_sacnon._ Response _t|mes for_all Set.Ups recreas
GCS we used Spread [1]. In J2EE both SFSBs and EBs car?tead'ly with increasing load un_tll saturation points whic
contain state. However, the state of EBs is always written IS arou.nd 27 IR for the non.-repllcated JBoss, 23 for JBoss
back to the database at commit time. Hence, committing clustering and the 1-1 algorithm.
messages only contain SFSB state changes. We improvefl-1 algorithm  Figure 7(b) shows the response times for
the 1-1 algorithm as presented in [27] by parallelizing some the N-1 execution pattern. We modified the ECperf im-
tasks. The 2PC solution does not change the TM but usegPlementation so that each order entry transaction contains
wrapper objects to intercept the requests from the TM to theOn average 5 order requests. The figure does not show re-
databases. Our replication tool detects the executioanpatt ~ Sults for JBoss clustering since response times are fivestime
depending on the requests it intercepts, and automaticallyas high as in the 1-1 model. Response times are generally
applies the corresponding algorithm. higher than for the 1-1 model shown in Fig. 7(a) since sev-
Our performance evaluation anaiyzes the repiication eral client requests are included in one transaction. Com-
overhead during normal processing using the ECperf benchPared to no replication, the N-1-best-effort algorithm sdd
mark [25]. The ECperf application is split into customer, again about 15% overhead while N-1-ordered adds 30%.

manufacturing, supplier and corporate domains. ffaes- The latter has higher overhead since it propagates the or-
action injection ratg(IR) is an indicator of the load submit- ~ der in which database access takes place at the end of each
ted to the System (transactions per Second)_ Results ConC”ent request. ConSidering that these are five additional
tain the average response timeavtler entrytransactions messages, the overhead is quite small. This is true because
of the customer domain in miliseconds, and the maximum the messages are small and only sent with reliable delivery.
achievable throughput measured in business operations pel regard to throughput, all configurations saturate much
minute. Results are only measured over the steady stat€arlier due to CPU overhead. N-1-ordered saturates at 8
phase (10 minutes) of each test run. We also anaiyzele, N-1-best-effort at 9 IR, and the non-replicated JBoss at
failover times but do not present them since the numbers10 IR.
for all tested cases were similar to [27]. Our configuration 1-N algorithm  Figure 7(c) shows the response times for
consists of one machine emulating clients, one web serverthe 1-N execution pattern. We changed the ECperf im-
machine, two machines running JBoss application serverplementation such that each order entry request triggers
3.2.3., and one machine running the DB2 database systeman outer transaction which on average contains three in-
All machines were PCs 3.0 GHz Pentium 4 with 1 GB of nertransactions. Again, response times are generallghigh
RAM) running RedHat Linux. than for the 1-1 execution pattern since now each order en-
Our evaluation compares (1) a regular, non-replicatedtry request includes several transactions. In absolutestim
JBoss server as baseline for comparison; (2) two JBosgthe 1-N algorithm takes more additional time than the 1-1
server replicas using our replication tool; (3) two JBoss algorithm in Figure7(a) since we now have to send an ad-
server replicas using JBoss’s own replication solutiokedal  ditional uniform-reliable message for each inside transac
JBoss clustering. JBoss clustering propagates state ks bac tion. In contrast, JBoss clustering adds the same time (120



i /] /
600 —a— 1-1-1 algorithm 500 —a— N-1-1-best-effort algorithm / 600 —a— 1-N-1 algorithm )[
550 —«—JBoss Clustering / / 450 —a— N-1-1-ordered algorithm 550 — JBoss Clustering /'
500 | s Non-Repli JBoss 1 / 400 | —e—Non-Replicated JBoss / 500 | —e— Non-Replicated JBoss /
450 450
2 a0 g 0 L —7 L € 40 A
g 350 L L7 o 30 g 350 LS
= 300 = 250 e = 300 =X
g 250 o Wl g, - % B oo e
2 200 A g 200 = S %00 =
3 e 3 150 3 [ >, ~—
o 150 o T 150
100 g 100 100
50 50 50
ol v 0 P 0 T S
1 3 5 7 9 1113 15 17 19 21 23 25 27 29 1 2 3 4 5 6 7 8 9 10 11 1 3 5 7 9 11 13 15 17 19 21 23 25
Injection Rate Injection Rate Injection Rate
(@) 1-1 (b) N-1 (c) 1-N

Figure 7. ECperf Response Time Comparison

ms) as in the 1-1 pattern since the replication mechanism isgated but others not. Pramati [23] logs state changes in
not related to transactions. In terms of throughput, the 1-N the database and receives them upon recovery after a crash.
algorithm saturates at 21 IR, JBoss clustering saturates atVeblLogic [6] uses a single primary server replica, and only
23 IR, and the non-replicated JBoss saturates at 25 IR. Theropagates changes after commit. None of the systems sup-
1-N algorithms saturates earlier than JBoss because of th@orts advanced execution models and only Pramati provides
increased bookkeeping to guarantee exactly-once exacutio state consistency for the 1-1 pattern.
and state consistency, and to detect ghost transactions. There exists many proposals for replication of CORBA
1-1 with 2PC  For this experiment we have not used the components, e.g., [8, 9, 22, 19, 12, 2]. Most of them do not
ECPerf but a simpler evaluation. A client submits one consider database access. [28] extend the CORBA based
request to a SFSB which performs two database updatesault-tolerant Eternal system [22] to work correctly with
that either access the same database (no 2PC) or differerd database backend tier. The transaction context within
databases (requiring a 2PC). Table 1 shows the average rethe components is replicated, and duplicate requests to the
sponse time at a load of 10 transactions per second, and thdatabase are suppressed. However, component execution
maximum achievable throughput. Accessing one databasehas to be deterministic. [13] combine replication and trans
the 1-1 algorithm adds 5.4 ms to the response time of theactions for CORBA using an approach similar to the 1-1
non-replicated JBoss reflecting a 15% increase, while with algorithm. However, none of the approaches provides ad-
a 2PC, the 1-1 algorithm has an overhead of 8.3 ms (it hasvanced execution patterns.
to send an additionalreparing message) but this reflects Phoenix [4, 3] for .NET handles the 1-1 pattern with
an increase of only 8%. The maximum throughput for the one database using checkpoints and request/reply logging.
1-1 algorithm compared to the non-replicated case is around-ailover starts from the last checkpoint and applies logged
90% with a 2PC and 86% when one database is accessedequests assuming piecewise deterministic behavior [11].
The 1-1 algorithm performs, in relative terms, better with ~ Outside of any concrete AS architecture, [15] provides
a 2PC than without because the total response times with a&xactly-once execution for stateful AS for the 1-1 pattern
2PC is so much higher than if no 2PC is necessary. accessing one database. [14, 16] provide exactly-once se-
In summary, these experiments show that our solutionsmantics forstateles#AS for the 1-1 pattern. Our algorithms
in general incur little overhead for all typical executicatp use similar mechanisms to check the status of database
terns. Our replication tool clearly outperforms JBossissel  transactions. We advance this existing work by looking at
tering mechanism in all cases in terms of response time, andstateful AS and advanced execution patterns, and by inte-

is similar in terms of saturation point. grating our solution into a real AS architecture.
There has been a lot of work on database replication.
7 Related Work However, the underlying model is quite different since it

does not consider state changes outside the database.

Looking at J2EE servers, JBoss [17] makes each replica
primary for some clients. Since state is propagated each8 Conclusion
time a component returns from a method call, several mes-
sages might be sent for each client request. As a result, if This paper presents a replication tool for AS servers that
the primary crashes in the middle of executing a requestis able to combine replication and transactions for advaince
the state changes for some components might be propaexecution patterns providing strong correctness progeerti



Model Algorithm Response Time (ms) Tx numbers (per second)
one database Non-replicated JBos$ 34.9 30
1-1 algorithm 40.3 26
more than one databaseNon-replicated JBoss 103.5 10
1-1 algorithm 111.8 9

Table 1. 1-1 execution accessing one or more than one databas e

Our solution does not require any special properties from [11] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.

the component implementations, the clients or the database
We have integrated our solution into the J2EE server JBoss,
but we believe that the main ideas can be applied to other!

architectures. Our approach has comparable or better per-
formance than existing solutions while providing stronger
semantics for many different execution patterns.

Our current research looks at fault-tolerance if a web-

server is applied between client and AS. Any web-server

replication must be coordinated with our AS replication.
We are also currently extending our algorithms to allow [14]

more than one primary in order to distributed client request

across several replicas.
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