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Abstract

As scientific experiments and their analysis become in-
creasingly automated, the need for workflow management
support rises. Many workflow management systems tai-
lored to scientific workflows have been developed. How-
ever, they are mainly stand-alone systems and ignore that
many scientific research groups already store and manage
experimental data in laboratory information systems, called
LIMS. LIMS are typically web-based and allow researchers
to insert and view experiment related data. In this paper we
describe Exp-WF, a workflow management module that is
designed to be incorporated into a typical LIMS such that
workflow management and the traditional functionality of a
LIMS co-exist. Scientists describe the execution order of ex-
periments as a workflow model. Exp-WF then automatically
selects experiments for execution and dispatches them to the
people or machines responsible for performing them. Exp-
WF extends existing workflow models to be able to handle
the particularities of scientific experiment workflows. Exp-
WF can be incorporated into an existing web-based LIMS in
a nonintrusive way by using servlet filter technology to ob-
serve user actions and act upon them. Exp-WF uses agent-
based technology with asynchronous communication to dis-
patch tasks to remote machines.

1. Introduction

The increasing prevalence of automated experimental
techniques has allowed research scientists to dramatically
increase the amount of data processed over the course of
a typical experiment [2]. Such large volumes of data must
be reliably stored, and processed for monitoring and data
mining purposes. Therefore, many research groups have
developed information systems that keep track of the ex-
periments conducted, record which ingredients and instru-
ments are used, and any observations and results achieved
[8, 13, 5, 25, 10]. These systems are often referred to aslab-

oratory information management systems (LIMS). LIMS of-
ten follow a 3-tier architecture, where users view and mod-
ify data via web-based forms. Some also allow programs
to access the LIMS, e.g., via a web-service interface. The
application logic in the middle-tier receives and processes
the user requests, and accesses the appropriate data in the
database. The design of current LIMS reflect the need of
constant interaction between users (the scientists) and the
data management system.

However, current LIMS, especially those of smaller re-
search groups, do not adequately support the current autom-
atization in scientific research. In the wet lab, robots are
able to run hundreds of experiments in the same time a hu-
man technician is able to run one or two. The large amounts
of data produced in the wet lab must then be fed into pro-
grams for detailed analysis. These programs are often com-
pute intensive and require adequate computing resources.
In order to support such automated execution, aworkflow
management system (WFMS)[9] is needed. In our context,
aworkflowdescribes the set of tasks to be performed within
a complex experiment suite, the order in which these tasks
are conducted, and the data that flows from one task to the
next. A WFMS must provide a language to define work-
flows, and a workflow engine that starts workflow instances,
and then automatically dispatches tasks in proper order to
the people, machines or programs that are responsible for
performing them.

Many WFMSs tailored to scientific workflow manage-
ment have been proposed (e.g. [2, 3, 11, 14, 17, 30, 21]).
However, many of these systems are tailored to specific re-
search areas. Furthermore, most of these tools are stand-
alone systems, provide their own interfaces and cannot be
easily integrated with an existing LIMS.

This paper presents Exp-WF, a workflow management
module designed to address these concerns. It makes sev-
eral contributions. First of all, it demonstrates an approach
by which workflow management capabilities can be added
to an existing 3-tier LIMS with minimal impact on the com-
ponents of the original system. Exp-WF has been integrated



Figure 1. Part of a protein creation workflow.

with Exp-DB, a lightweight, extensible LIMS [25, 20].
Exp-WF uses servlet filter technology, as provided by many
web containers, to intercept interactions between the web-
based user and components of the original LIMS. This al-
lows Exp-WF to respond to these requests transparently. At
the same time, it is able to maintain the interactive nature
in which LIMS are used. Furthermore, Exp-WF allows for
a flexible integration of external systems (e.g. robots per-
forming experiments, computing resources running analy-
sis tasks) by providing a software agent framework. We are
confident that other web-based LIMS applications could be
augmented with Exp-WF in a similar fashion. Addition-
ally to this integration, Exp-WF extends traditional work-
flow models to be able to model more advanced experiment
execution patterns, as they are often found in scientific re-
search. This allows Exp-WF to support a more complex
array of scientific workflows.

2. Workflow Example

Figure 1 shows part of a workflow for protein creation
which we use as an example throughout the paper. Pro-
tein creation is needed, e.g., in the context of protein struc-
ture prediction. The nodes represent experiments to be per-
formed. We consider a rather wide definition of experiment.
It can, for instance, be an experiment in the wet lab (which
can be performed by a robot or by a human), or be the ex-
ecution of a program (e.g., BLAST). The execution order
is defined by the directed edges between experiments. The
flow of data between experiments must also follow the ar-
rows. Dashed arrows indicateconditional routing, mean-
ing that some condition must hold after the source experi-
ment completes in order for the destination experiment to
be executed. Solid arrows mean that the succeeding experi-
ment must be executed unconditionally. Finally, workflows
may be nested within other workflows, as in the case of the
protein productionexperiment which internally consists of
more refined experiments.
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Figure 2. Data model for Exp-DB

3. Exp-DB

We use Exp-DB as an example LIMS [25, 20] Exp-DB
has a typical three-tier architecture. Users (client tier)inter-
act with the system through a standard browser. The middle
tier is responsible for the presentation logic and the appli-
cation semantics. The runtime environment is an Apache
Tomcat web server [4] using Java Technology [15]. The
backend tier can be any relational database system (cur-
rently PostgreSQL [29]).

3.1. Data model

A simplified representation of the data model is depicted
in Figure 2. The design was inspired by a model proposed
by scientists conducting crystallography research [27]. The
model presented here is simplified and leaves out many de-
tails. The model has a set of core tables (light grey). They
define the general framework. Each research group extends
this basic set with individual tables that contain the infor-
mation related to the particular experiments they perform
and the programs they use (dark grey).

The Project lists general information about all
projects being conducted. TheExperiment table stores
the basic information pertaining to every experiment con-
ducted, including its experiment id, project id, creation date,
etc. In addition, each type of experiment has its own table
(e.g. PCR) with type specific information. The experiment-
type tables are child tables of theExperiment table and
inherit its primary key. These tables are added by a research
group and reflect the specific experimental setup.

The ExperimentType table stores the names of all
experiment types for which there is a dedicated table. It
must be updated whenever a new experiment type table is
added. For example, for the schema in Figure 2, it holds
valuesPcr andDigestion. It allows Exp-DB to dynamically
identify a table name as being an experiment type, which is
used, for instance, for automatic web-page generation.

TheSample table stores general information about ex-
periment input and output data objects. As with experi-
ments, each sample type has its own table storing its type-
specific information. The names of the different Sample



Figure 3. Web application architecture

type tables are stored in theSampleType table with a sim-
ilar role as theExperimentType table. A sample type
related to a wet lab experiment type could be the description
of a primer, an enzyme or similar. If related to a program, it
is the description of input and output parameters.
ExperimentTypeIO stores input and output require-

ments for experiment types. The table contains an en-
try for each input and output sample type of a experiment
type. TheExperimentIO table contains the specific in-
put and output samples of the experiment instances. Each
entry contains a reference to an experiment and a sample
used for this experiment. It also contains a reference to the
ExperimentTypeIO entry which it represents. This en-
sures that only input and outputs samples of the correct type
are stored.

3.2. Web application

Figure 3 shows the internal architecture Exp-DB’s mid-
dle tier. It follows the well-known MVC (Model View Con-
troller) architecture [28]. The presentation logic provides
the web-based user interface (view) using JavaServer Pages
(JSP). The Java ServletUserRequestServlet is the
controller. It handles all incoming requests from the JSP
pages. It calls the JavaBeanTableBean (model) if neces-
sary, and then redirects the response to the JSP responsible
for returning a new web-page to the client. Web-services
are currently not supported by Exp-DB.

The TableBean functions as a single, generic inter-
face to all the tables in the database. It provides methods
for querying, inserting, updating, and deleting data from a
table. In order to handle non-trivial relationships between
tables (e.g., betweenExperiment table and childPCR
depicted in Figure 2),TableBean checks available meta-
information as can be found in theExperimentType,
ExperimentTypeIO and SampleType tables. For
example, suppose a user submits a request to read the
records inPCR. The TableBean will find Pcr in the
ExperimentType table, and therefore, perform corre-

sponding reads both onPCR and theExperiment table.
When adding new experiment or sample types to the data
model,TableBean remains unchanged. The other com-
ponents of the web application are similarly generic.

Exp-DB provides generic interfaces and procedures for
the four basic operations read, insert, update, and delete.In
a read operation, the user indicates via special JSPs a table
and some search criteria, and the system retrieves and dis-
plays all the records in the given table that fulfill the search
criteria. For insert operations, the user selects the tableinto
which a new record will be inserted. The system retrieves
the schema information for that table, and generates a cor-
responding web-form. The user completes and returns the
form, and the system performs the insert. Update and delete
operations require to specify the table to be updated, enter
a search criteria, and select the desired target record from
among the results matching the search criteria. For updates,
also the new values must be specified.

While it is expected that research groups will develop
their own interfaces over time, the basic operation types
(1) read records from a tuple according to a search criteria,
(2) insert a new record into a table, and (3) update/delete a
given record, will likely remain the same.

4. Workflow Model of Exp-WF

4.1. Basic Model

The basic workflow model of Exp-WF is a simplified
version of [18] and has three parts.

Workflow Specification The workflow specification is
used to defineworkflow patterns. A workflow pattern con-
sists of a set oftasksand a set oftransitions. Each task is
a place-holder for an experiment to be performed. In the
following, we often use the words task and experiment in-
terchangebly. A transition defines the control flow (i.e., ex-
ecution order) between asourcetask and adestinationtask.
Each data object passed between two tasks must be repre-
sented by its own (additional) transition. Additionally, tasks
can have input objects not being produced by source tasks
and output objects not consumed by destination tasks. A
transition may be labeled withconditionswhich allows the
modeling of iterative loops or branching. A condition will
be evaluated once the destination task is considered for ex-
ecution. Only if the outcome istrue the transition can be
used to reach the destination task. The specification model
also includesagentswhich represent the people or robots to
perform tasks. Our model also supports sub-workflows but
they are not further described for space reasons. In Fig. 1,
pcr, digestion, etc. become tasks of the workflow pattern for
protein creation. The pattern also contains a reference to the



Figure 4. Execution Model

sub-workflow pattern encapsulated in theprotein produc-
tion task. The arrowsPCR-ligation, digestion-ligationetc.
are replaced by transitions for control flow and data objects.
Conditions are attached to the transitionstransformation-
PCR screeningand transformation-miniprepdefining the
criteria under which each transition should be followed.

Instance-level model The instance-level model describes
how a given workflow pattern can be used to create multi-
ple workflow instances each one representing a run-through.
A workflow instance (for short, also ”workflow”) contains
general information (date of creation, its current status,
etc.), andtask instances. A task instance stores execution
details about each individual experiment and a reference to
the agent performing it.

Execution Model The execution model employed by
Exp-WF is somewhat similar to [23] and depicted in Fig.
4. It describes the states in which a task instance can be.
A task instance is firstcreated. If a required source task
of any incoming transition aborts or conditions are not met
the task and tasks that depend on it becomeunreachable.
Otherwise, once all necessary input objects are available,
the instance enters theeligible state. This state allows for
the possibility to obtain user authorization before the task
actually starts in order to make sure that the input objects
are of good enough quality. Some automatic quality control
may be implemented using conditions, but many decisions
require an evaluation by humans or other agents. For tasks
requiring authorization, the worklfow manager sends a re-
quest to an authorized agent and waits for response. If au-
thorization is not given, the task instance enters theaborted
state, otherwise it enters thedelegatedstate (which is imme-
diately entered if no authorization is needed). A delegated
instance might be aborted, or start and enter theactivestate.
Once execution has finished and all results are entered into
the database, the instance enters thecompletedstate. An
active instance might also abort.

4.2. Supporting Multiple Task Instances

In the basic model each task of a workflow may only
have one instance. This is not adequate for modeling sci-

entific workflows for several reasons. Firstly, experiments
may fail due to a variety of causes (e.g., culturing bacte-
ria may produce an insufficient amount of bacteria). In a
lab setting, such experiments might be repeated until a sat-
isfactory result is obtained. Although we could model this
as an iterative loop from a task to itself, this would require
to add such loops to virtually any task in a workflow, mak-
ing it a clumsy solution. Secondly, several experiments of
the same type are often carried out simultaneously (and not
serially), whereby only the best results are used as input
for destination tasks. Since the basic model only allows a
single instance per task, we would need to model all these
experiment instances as individual (parallel) tasks sharing
the same source and destination tasks. This is not only in-
elegant but also inadequate if the number of experiment in-
stances to create is not known before runtime. Thirdly, at
any point in a workflow, researchers may attempt to improve
on the quality of their results by repeating some portion of
the workflow. They then choose a previous task in the work-
flow at which to begin this repetition and resume from that
task on. This would require to add backtracking transitions
from every task to each one of its predecessors.

To address these issues, we have developed an extended
model that supports multiple task instances for a given task
in a workflow instance, and allows for less rigorous spec-
ification of task ordering. We faced two challenges. (1)
How can the workflow manager determine when enough
instances of a source task have completed for the next task
to begin execution? (2) How to deal with transitions be-
tween tasks that might now have multiple instances associ-
ated with them. In particular, if one task uses another task’s
output for its own input, how to determine which instance’s
output to use for which instance’s input.

In the Extended Specification Model, each task defi-
nition includes a default number of instances for the task.
This is the number of “parallel” instances that will be auto-
matically started when this task comes up for execution.

TheExtended Execution Modeldistinguishes between
a task execution modelthat describes the state of the exe-
cution of all instances pertaining to a given task, and atask
instance execution modelto refer to the execution of indi-
vidual instances for a task. Both are variations of the basic
execution model. The main difference for the task execution
model is that it moves from eligible directly to active with-
out a delegated state which only exists for task instances.
Additionally, each active state contains pointers to all ex-
isting instances for this task. The task instance execution
model contains all the states of the basic execution model
except of unreachable and eligible, since they have already
been determined for the task itself.

When a task becomes active, the default number of in-
stances are created and executed according to the task in-



stance execution model. Additional instances may later be
created arbitrarily by users, e.g., if existing instances are
yielding unsatisfactory results. As long as any instance has
yet to reach the completed or aborted state, the task will re-
main in the active state. Eventually, all instances of the task
will either complete or abort. If every instance aborts, then
the task itself aborts, otherwise it completes.

In order to allow backtracking, a task that has aborted,
completed or is unreachable may be “restarted” either by a
user or subsequent to the restarting of another task. Restart-
ing sends a task back to the eligible state, and the eligibility
requirements are reevaluated. This is necessary because the
re-execution of a task may be triggered by the re-execution
of one of its source tasks, and the conditions that previously
enabled the task to execute may not longer hold true.

In the basic model the completion of a task possibly trig-
gered the creation and execution of its destination tasks.
In the new model, if a task waits for the previous task to
complete, it risks waiting even while satisfactory inputs are
present. On the other hand, if it begins executing too soon,
it risks missing out on as-yet-unavailable results that may
be of higher quality than those at its disposal. Our current
setting requires that at least the default number of instances
of the source tasks have completed. In conjunction with
specifying that authorization is necessary for a task, thisal-
lows the system to begin any tasks without undue delay,
while giving users the power to delay that execution if more
source task instances are desired.

The final hurdle is to determine which instance’s out-
puts to pass along to a destination task. One extreme would
send the output of all completed instances and let the agent
of the destination decide which one to take. This might
overwhelm the receiver. The other extreme lets Exp-WF
pick a single instance as the output provider. This requires
an automated quality control mechanism. Our solution is
a compromise forwarding outputs from all“successfully”
completed source instances to the destination task. Success
of an instance must now be specified explicitly by the ex-
ecutor of the task instance. Indicating success means that
the instance’s outputs are of “good enough” quality, and the
instance is considered completed, otherwise aborted. The
agent of the destination task still must determine among the
outputs of successful source tasks, but ideally the range of
choices will be limited to a more reasonable number. The
choice of inputs must be specified when the agent sends the
instance’s results back to the system.

The final task of a workflow instance might now be
reached although other tasks are still being processed. In
order to control workflow termination, the final task of a
workflow now requires authorization to be performed.

This extended execution model has been designed with
wet lab experiments in mind. In this environment, although
many experiments are now automatized and conducted by

Figure 5. Workflow data model

robots, experiment execution is still controlled by techni-
cians that look at output results and decide which ones to
use for further experiments. Hence, the workflow manage-
ment system can take advantage of this interactive process
to let the technician regulate how many task instances are
eventually created and when a task really has completed.

4.3. Workflow data model

The workflow data model is also stored in the database.
In fact, in order to integrate with the legacy LIMS it ex-
tends Exp-DB’s original data model. Fig. 5 depicts the ex-
tensions. The challenges here lay in taking advantage of
existing information and connecting it to workflow related
information in a non-intrusive way. The diagram indicates
workflow-related objects in dark and the objects in the orig-
inal model in light.

Workflow patterns, tasks, and transitions are rep-
resented by the WorkflowPattern, WFPTask,
and WFPTransition tables, respectively.
LegalTransition specifies the execution order of
experiment types. The entries inExperimentTypeIO
already ensure that tasks will actually have the input or
output samples specified by the transition. Hence, data flow
is already captured by Exp-DB’s original data model. The
Agent and ExpType2Agent tables hold information
about the agent objects. AnAgent represents external
systems (e.g., users or robots) that are able to support
experiment execution, andExpType2Agent keeps track
of the experiment types those agents are authorized to
perform. Workflow instance information is stored in the
Workflow table. Task instance information is simply
stored in theExperiment table. This is the only table of
the original data model that has been extended in order to
point to the workflow and task the experiment belongs to,
and the executing agent.



5. Workflow Manager

The workflow manager component of Exp-WF is respon-
sible for the execution of previously defined workflows.
Once a workflow is instantiated (supported by the user in-
terface), the workflow manager has to detect eligible exper-
iments and dispatch them to an agent for execution.

5.1. Integration Overview

The challenge is to embed workflow functionality in a
modular way into the original LIMS without significantly
changing the existing infrastructure. We use two basic
mechanisms to facilitate the integration. The first allows the
system to keep track of the state of workflows, the second
provides a generic interface for agent communication.

5.1.1 Monitoring the workflow state

In Exp-DB, all information in the database is currently ac-
cessed via the web-based interface. Requests coming from
this interface might affect the state of workflows. For exam-
ple, data entered by a user might indicate the termination of
an experiment, which should trigger the execution of other
experiments.

This means we have to intercept the request processing
of Exp-DB as described in Section 3.2, and redirect re-
quests or responses that might impact the state of a work-
flow to the workflow engine. This includes update requests
involving any data pertaining to workflow definitions, ex-
periment types, experiments, samples, experiment I/O, and
agents, as well as the responses to any such requests. Non-
workflow-related actions (e.g., read-only operations) would
be allowed to proceed normally.

Exp-WF uses Java servlet filter technology [15] to per-
form these interceptions. A servlet filter is a program that is
associated with one or more web application resources such
as servlets, and is invoked by the web container prior to and
after each invocation of any of them. The filter can inspect
and modify the http requests and response objects. This
process is completely transparent to the targeted resource.
Filter-resource associations are defined in the web appli-
cations’s deployment description file, making it simple for
users to apply the technology to any additional components
they may add to their system. Note that a filter can also in-
tercept requests and responses forwardedwithin the appli-
cation. These characteristics lead us to believe that servlet
filters provide an intuitive, flexible, and non-intrusive way
to add workflow functionality to any LIMS based on web-
server technology.

5.1.2 Agent framework

In order to automate experiment execution, the workflow
manager requires a framework for registering and commu-
nicating with the external systems that will perform the ex-
periments. Exp-WF uses software agents that act as wrap-
pers for the external systems. A dedicated agent is required
for each such system.

Our current implementation of Exp-WF uses persistent
messages for agent communication. It uses OpenJMS [26],
an open-source implementation of the Java Message Ser-
vice (JMS) AP. JMS provides reliable and asynchronous
communication. That is, message delivery is guaranteed
even if communication partners are not connected all the
time.

While data is eventually stored in relational format, ex-
ternal systems usually have their own proprietary data for-
mat. In order to provide a general data transfer format, we
use XML. We use the system in [19] (modified to adjust
to our needs) to automatically extract task input data from
the relational database and represent it in a general XML
format, and similarily to translate XML data back into the
relational format. Each agent now must translate the XML
input information into a format readable by the external sys-
tem it represents. Exp-WF provides a template agent class
that provides all necessary messaging functionality and pro-
vides several other helpful methods including default mes-
sage handling procedures, simplifying the creation of a cus-
tomized agent for an external instrument. For example, we
used the template agent class to build an agent to represent
an automated liquid handling robot used in one of the labs
we have been working with. The only customization needed
was the specification of the robot’s required input and out-
put format, which was of a typical comma-separated format.
The location of the agent depends on the setup. Robots are
often controlled via PCs that are directly connected with the
robot. In this case, the agent could run on this specific PC.

5.2. Workflow engine

Architecture The architecture of the web application
with the addition of the workflow engine (dark) is
shown in Fig. 6. The Exp-WF components follows the
same MVC design pattern as the original Exp-DB: the
WorkflowBean represents the model and implements the
core functionality of the workflow engine; the original
JSPs build the view; and theWorkflowServlet and the
WorkflowFilter serve as controller.

The WorkflowBean’s primary responsibility is to
keep track of the state of workflow instances and tasks,
and to direct the workflow execution, e.g., determining a
task’s eligibility, sending tasks to theAgentManager,
or writing instance information to the database. The
WorkflowFilter intercepts requests destined for the



Figure 6. Workflow engine architecture

UserRequestServlet and responses destined to JSP
pages. If a request or response is not relevant to work-
flow management, it simply proceeds to its original destina-
tion, otherwise it is redirected to theWorkflowServlet.
The WorkflowServlet then invokes the relevant
WorkflowBeanmethods. After that it may either forward
the (potentially modified) request to its original destination,
or send a (potentially modified) response to the user. The
AgentManager is responsible for (1) choosing an appro-
priate agent for a task, (2) extracting the relevant input infor-
mation from the database, (2) sending messages to the agent
(e.g., containing task input data or abort notifications), (3)
handling messages coming from the agents (e.g., contain-
ing output data or notifications as that the agent has started
a given task instance), and (4) extracting output information
and sending it to theWorkflowBean for insertion into the
database.

Workflow and Task execution The workflow manager
keeps track of the status of all active workflows and initiates
the execution of any eligible tasks; thereafter, task execution
and completion is triggered by user actions and agent mes-
sages. In order to check task eligibility the workflow man-
ager keeps track of changes to tables likeExperimentIO.
An active task instance is forwarded to the agent that con-
trols execution. A human being is informed via email, and
must then enter the results via the web interface. In case of
a robot or external program, the corresponding agent per-
forms the coordination, and results are automatically in-
serted into the database. Once all output has been entered,
and the task is considered successful, the task instance has
completed. The workflow manager then tests any destina-
tion tasks for eligibility, and the process repeats.

Request processing Once a user request has been identi-
fied as workflow-related by theWorkflowFilter, it may
be handled in one of the three following ways as shown in
Figure 7. (a) A user request may be redirected to the Work-
flowServlet before it reaches its destination. There, it may

bepreprocessed. The workflow engine may then decide to
forward the request to its original destination (if it is a valid
action) or deny the request (if it violates the conditions on
the state of workflow and task instances). (b) Alternately, a
redirected request may actually beprocessedby the Work-
flowServlet. In this case, the workflow manager is respon-
sible for performing the requested action and generating an
appropriate response. The original destination is bypassed
entirely. For example, the workflow manager could assume
responsibility for all insertions into experiment-type tables
in order to facilitate the updating of workflow state infor-
mation. (c) Finally, theWorkflowFilter may not redi-
rect the request at all, but instead diverts the intended re-
sponse forpostprocessing. In this case, the request is han-
dled by its intended resource, but the results contained in
the response are examined by the workflow manager to see
if any further action is necessary. For example, if a user
enters the outcome of an experiment inExperimentIO,
the response will alert the workflow manager that the action
succeeded, prompting it to check whether any workflow or
instance state has to be changed. The workflow manager
may modify the response sent back to the user with details
about its own actions. Only successful user actions need to
be post-processed, since failed operations do not change the
state of the workflow.

Performance Evaluation We evaluated the performance
of the system for various operations including various work-
flow and non-workflow related requests. Response times
vary from 400 ms to 2000 ms. In general, little time was
spent in the WorflowFilter, WorkflowServlet or Workflow-
Bean. Instead, the response time was mainly determined by
the number of database read and write accesses. One has to
be aware that a simple insert into an experiment related table
can trigger several database reads in order to check whether
this modification changes any task or workflow state. Send-
ing messages to a persistent message queue also has some
time overhead. Still, even a response time of 2000 ms is
acceptable for user interaction.

6. Related Work

There are a number of existing workflow systems de-
signed to support the control of scientific experiments. ZOO
[1, 14] is probably the system most similar to Exp-WF in
scope. It provides generic, modular experiment manage-
ment support and an agent-based framework for incorporat-
ing external systems. However, data and workflow manage-
ment in ZOO are almost completely integrated and man-
aged within the database system. Our approach, in con-
trast, uses middleware based filter technology, and keeps
the data management of the original LIMS system basi-
cally unchanged. Opera [2, 3] delegates all its data man-



Figure 7. a) preprocessing b) processing c) postprocessing of a user request

agement requirements to its underlying database manage-
ment system (DBMS), and provides an application layer to
act as an interface between the system and its data reposi-
tory. Customizing Opera to a specific application is a ma-
jor undertaking that requires a good deal of expertise. In-
telliGen [17] is a distributed WFMS tailored specifically
to managing protein-protein interaction workflows. Rather
than an agent-based framework for incorporating legacy ap-
plications, it requires a workflow specification to include
task invocation or resource binding information that can be
used in constructing wrappers for the systems that will in-
voke the task at run-time. The authors also discuss dynamic
changes to workflows in order to be able to handle unpre-
dicted results in experiments. In contrast, our extensionsto
the workflow model make the fact that experiments might
be repeated many times explicit in the workflow descrip-
tion. In any of these approaches, the integration of an ex-
isting LIMS has not been discussed, and would be a major
effort.

A different suite of workflow systems for scientific re-
search [12, 6, 7, 22, 21] provide frameworks to process
and relate diverse data sources and software programs like
BLAST, and/or to control program execution across a grid.
The goal is to ease workflow definition and automatize
workflow execution. The workflow system is able to access
data in different data sources, transform and transfer it to
bioinformatics tools which perform computations, and feed
the results of one tool into other tools or databases in or-
der to execute what [22] calls a knowledge discovery work-
flow. The main challenges are to connect the diverse data
sources and tools, to use distributed computing facilitiesfor
compute intensive tasks and to take advantage of advanced
language abstractions like web-services. In contrast, the
focus of our work is rather on the support of experimen-
tal workflows which produce the data that is later used in
such knowledge discovery workflows. As such the issues
addressed in our system are quite differed. The main chal-
lenges in our system are to provide a workflow model that
is able to adequately model experiments as tasks, and to in-

tegrate the workflow engine with an already existing LIMS
system that stores the experiment related data. However, the
agent framework which already facilitates the execution of
programs at remote locations, could be extended to manage
compute intensive tasks, e.g., over a distributed computing
environment.

There exist many workflow languages and models (e.g.,
[30, 24, 23]) often providing features that are currently not
supported in Exp-WF like adaptive workflows and failure
handling. In principle, such features could be integrated
into Exp-WF. However, we are not aware of any model that
is able to model multiple task instances as one task in the
workflow pattern.

7. Conclusions

We have demonstrated that a workflow manager can
be seamlessly integrated into an existing three-tier labora-
tory information management system in a modular, non-
intrusive manner by using filter-based request and response
interception and a modular agent framework. The original
LIMS can be used as before. The integration was performed
with no modifications to the components of the existing web
application; moreover, only a single existing table (namely,
theExperiment table) was modified when workflow con-
cepts were added to the existing data model. We believe
that workflow management capabilities can be integrated in
a similar way into other data management systems sharing
a similar, web-based multi-tier architecture. Furthermore,
we have formulated a workflow model in which a task in
the workflow description can represent many task instances.
We believe this is an effective and convenient way to ex-
press the fact that many experiments are executed multiple
times until sufficiently good output is produced.

We are currently investigating whether aspect-oriented
programming can replace filter technology in case of sys-
tems that are not web-based. An aspect-oriented program-
ming language like AspectJ [16] allows the specification of
precise interceptor points, e.g., when a particular methodof



an object is called. This is similar to filters but provides
more alternatives as to where to intercept calls.
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[22] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-
Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao. Scientific
workflow management and the kepler system.Concurrency
and Computation: Practice & Experience, Special Issue on
Scientific Workflows, to appear, 2005.

[23] R. Müller. Event-oriented dynamic adaptation of workflows.
PhD thesis, University of Leipzig, 2002.

[24] R. Müller, U. Greiner, and E. Rahm. AgentWork: A work-
flow system supporting event-oriented workflow adaptation.
Technical report, Univ. of Leipzig, 2003.

[25] N. A. Naeem, S. Raymond, A. Poupon, M. Cygler, and
B. Kemme. Exp-DB: Fast development of information sys-
tems for experiment tracking. InInt. Conf. on Adv. Inf. Sys-
tems Engineering (Short Paper), 2003.

[26] OpenJMS Project Homepage. http://openjms. source-
forge.net/.

[27] A. Pajon, J. Ionides, J. Diprose, J. Fillon, R. Fogh, A. Ash-
ton, H. Berman, W. Boucher, M. Cygler, E. Deleury, R. Es-
nouf, J. Janin, R. Kim, I. Krimm, C. Lawson, E. Oeuil-
let, A. Poupon, S. Raymond, T. Stevens, H. van Tilbeurgh,
J. Westbrook, P. Wood, E. Ulrich, W. Vranken, X. Li,
E. Laue, D. Stuart, and K. Henrick. Design of a data
model for developing laboratory information management
and analysis systems for protein production.Proteins,
58(2):278–284, 2005.

[28] J. B. J. Patterns. http://java.sun.com/blueprints/patterns/mvc-
detailed.html.

[29] PostgreSQL. http://www.postgresql.org.
[30] W. van der Aalst, L. Aldred, M. Dumas, and A. ter Hofstede.

Design and implementation of the YAWL system. InInt.
Conf. on Adv. Information Systems Engineering, 2004.


