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Abstract

Replicationis an areaof interestto bothdistributedsys-
temsand databases.The solutionsdevelopedfrom these
twoperspectivesareconceptuallysimilar but differ in many
aspects:model,assumptions,mechanisms,guaranteespro-
vided, and implementation. In this paper, we provide an
abstract and “neutral” framework to compare replication
techniquesfrombothcommunities.Theframeworkhasbeen
designedto emphasizethe role playedby different mecha-
nismsand to facilitate comparisons.Thepaperdescribes
the replicationtechniquesusedin bothcommunities,com-
paresthem,andpointsout waysin which they canbe inte-
gratedto arrive to better, morerobustreplicationprotocols.

1. Intr oduction

Replicationhasbeenstudiedin many areas,especially
in distributedsystems(mainly for fault tolerancepurposes)
andin databases(mainlyfor performancereasons).In these
two fields,thetechniquesandmechanismsusedaresimilar,
andyet,comparingtheprotocolsdevelopedin thetwo com-
munitiesisafrustratingexercise.Dueto themany subtleties
involved, mechanismsthat areconceptuallyidentical,end
up beingvery different in practice. So, it is very difficult
to take resultsfrom oneareaandapply themin the other.
In thelast few years,aspartof theDRAGON project[16],
we have devoted our efforts to enhancedatabasereplica-
tion mechanismsby takingadvantageof someof theprop-
ertiesof groupcommunicationprimitives. We have shown
how groupcommunicationcanbeembeddedintoadatabase
[1, 22, 23] andusedaspart of the transactionmanagerto
guaranteeserialisableexecutionof transactionsover repli-
cateddata[17]. We havealsoshown how someof theover-
headsassociatedwith groupcommunicationcanbehidden
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behindthe cost of executingtransactions,therebygreatly
enhancingperformanceand removing one of the serious
limitations of groupcommunicationprimitives[18]. This
work hasproventheimportanceof andtheneedfor a com-
monunderstandingof thereplicationprotocolsusedby the
two communities.

In this paper, wepresentamodelthatallows to compare
anddistinguishexisting replicationprotocolsin databases
anddistributedsystems.We startby introducinga very ab-
stractreplicationprotocolrepresentingwhatweconsiderto
be the key phasesof any replicationstrategy. Using this
abstractprotocolas the baseline, we analysea variety of
replicationprotocolsfrom both databasesand distributed
systems,andshow their similaritiesanddifferences.With
theseideas,we parameterisethe protocolsandprovide an
accurateview of the problemsaddressedby eachone of
them. Providing sucha classificationpermitsto systemat-
ically explore the solutionspaceandgive a goodbaseline
for thedevelopmentof new protocols.While suchwork is
conceptualin nature,webelieveit is avaluablecontribution
sinceit providesa muchneededperspective on replication
protocols.However, thecontribution is not only a didactic
onebut alsoeminentlypractical.In recentyears,andin ad-
dition to ourwork, many researchershavestartedto explore
the combinationof databaseand distributed systemsolu-
tions[25, 29, 21, 15]. Theresultsof this paperwill helpto
show whichprotocolscomplementeachotherandhow they
canbecombined.

Thepaperis organisedasfollows. Section2 introduces
our functionalmodelanddiscussessomebasisfor ourcom-
parison.Section3 andSection4 presentreplicationproto-
colsin distributedsystemsanddatabases,respectively. Sec-
tion 5 refinesthediscussionpresentedin Section4 for more
complex transactionmodels.Section6 discussesthediffer-
entaspectsof thepaper. Section7 concludesthis paper.

2. Replication asan Abstract Problem

Replicationin databasesanddistributedsystemsrely on
differentassumptionsandoffer differentguaranteesto the
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clients.In thissection,wediscussthecontext of replication
in databasesanddistributedsystems,andintroducea func-
tionalmodelof replicationto allow usto treatreplicationas
anabstractproblem.

2.1. Replication Context

Hereafter, we assumethat the systemis composedof a
setof replicasover which operationsmust be performed.
The operationsare issuedby clients. Communicationbe-
tweendifferent systemcomponents(clients and replicas)
takesplaceby exchangingmessages.

In this context, distributedsystemsdistinguishbetween
the synchronousand the asynchronoussystemmodel. In
thesynchronousmodelthereis a known boundon therel-
ativeprocessspeedandon themessagetransmissiondelay,
while nosuchboundsexist in theasynchronousmodel.The
key differenceis that the synchronoussystemallows cor-
rect crashdetection, while the asynchronoussystemdoes
not (i.e., in an asynchronoussystem,when someprocess
p thinks that someotherprocessq hascrashed,q might in
factnot have crashed).Incorrectcrashdetectionmakesthe
developmentof replicationalgorithmmore difficult. For-
tunately, muchof thecomplexity canbehiddenbehindthe
so calledgroup communicationprimitives. This is the ap-
proachwe havetakenin thepaper(seeSection3.1).

Databasesdo not distinguish synchronousand asyn-
chronoussystemssincethey acceptto live with blocking
protocols(a protocol is saidto be blocking if the crashof
someprocessmay prevent the protocolfrom terminating).
Distributed systemsusually look for non-blockingproto-
cols.

This reflects another fundamentaldifferencebetween
distributedsystemsand databasereplicationprotocols. It
has beenshown that the specificationof every problem
canbedecomposedinto safetyandlivenessproperties[3].1

Databaseprotocolsdo not treatlivenessissuesformally, as
part of the protocol specification. Indeed,the properties
ensuredby transactions(Atomicity, Consistency, Isolation,
Durability) [11] areall safetyproperties.However, because
databasesacceptto livewith blockingprotocols,livenessis
not an issue.For thepurposeof this paper, we concentrate
onsafetyproperties.

Databasereplicationprotocolsmayadmit,in somecases,
operatorinterventionto solve abnormalcases,like thefail-
ure of a server and the appointmentof anotherone (a
way to circumvent blocking). This is usually not done
in distributedsystemprotocols,wherethe replacementof
a replica by anotheris integratedinto the protocol (non-
blockingprotocols).

1A safetypropertysaysthatnothingbadeverhappens,while a liveness
propertysaysthatsomethinggoodeventuallyhappens.
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Figure 1. Functional model with the five
phases

Finally, distributed systemsdistinguishbetweendeter-
ministic and non-deterministicreplica behaviour. Deter-
ministic replica behaviour assumesthat when presented
with the sameoperationsin the sameorder, replicaswill
producethe sameresults.Suchan assumptionis very dif-
ficult to make in a database.Thus,if the differentreplicas
have to communicateanyway in orderto agreeon a result,
they canaswell exchangethe actualoperation. By shift-
ing theburdenof broadcastingtherequestto theserver, the
logic necessaryat theclient sideis greatlysimplifiedat the
priceof (theoretically)reducingfault tolerance.

2.2. Functional Model

A replication protocol can be describedusing five
genericphases. As we will later show, somereplication
techniquesmay skip somephases,order themin a differ-
entmanner, iterateover someof them,or mergetheminto
a simplersequence.Thus,the protocolscanbe compared
by theway they implementeachoneof thephasesandhow
they combinethe differentphases. In this regard, an ab-
stractreplicationprotocolcanbedescribedasasequenceof
thefollowing fivephases(seeFigure1).

Request(RE): the client submitsan operationto one(or
more)replicas.

Server coordination (SC): the replicaserverscoordinate
with eachotherto synchronisetheexecutionof theopera-
tion (orderingof concurrentoperations).

Execution (EX): the operationis executedon the replica
servers.

Agreementcoordination (AC): the replicaserversagree
ontheresultof theexecution(e.g.,to guaranteeatomicity).

Response(END): the outcomeof the operationis trans-
mittedbackto theclient.

The differencesbetweenprotocolsarisedueto the dif-
ferentapproachesusedin eachphasewhich, in somecases,
obviate the needfor someother phase(e.g., when mes-
sagesareorderedbasedon an atomicbroadcastprimitive,
the agreementcoordinationphaseis not necessarysinceit



is alreadyperformedaspartof theprocessor orderingthe
messages).

Within this framework, we will first considertransac-
tions composedof a single operation. This can be a sin-
gle reador write operation,a morecomplex operationwith
multipleparameters,or aninvocationon a method.A more
advancedtransactionmodelwill beconsideredin Section5.

RequestPhase. During the requestphase,a client sub-
mits an operationto the system. This canbe donein two
ways: theclient candirectly sendtheoperationto all repli-
casor theclientcansendtheoperationto onereplicawhich
will thensendtheoperationto all othersaspartof theserver
coordinationphase.

This distinction,althoughapparentlysimple,alreadyin-
troducessome significant differencesbetweendatabases
and distributed systems. In databases,clients never con-
tactall replicas,andalwayssendtheoperationto onecopy.
Thereasonis verysimple:replicationshouldbetransparent
to the client. Being ableto sendan operationto all repli-
caswill imply the client hasknowledgeaboutthe datalo-
cation,schema,anddistribution which is not practicalfor
any databaseof averagesize. This is knowledgeintrinsi-
cally tied to the databasenodes,thus,clientsmustalways
submittheoperationto onenodewhich will thensendit to
all others.In distributedsystems,however, a cleardistinc-
tion is madebetweenreplicationtechniquesdependingon
whethertheclient sendstheoperationdirectly to all copies
(e.g.,active replication)or to onecopy (e.g.,passive repli-
cation).

It couldbearguedthat in bothcases,the requestmech-
anismscanbeseenascontactinga proxy (a databasenode
in onecase,or a communicationmodulein the other), in
which casethereareno significantdifferencesbetweenthe
two approaches.Conceptuallythis is true. Practically, it
is not a very helpful abstractionbecauseof its implications
as it will be discussedbelow whenthe differentprotocols
arecompared.For themomentbeing,notethatdistributed
systemsdeal with processeswhile databasedeal with re-
lational schemas. A list of processesis simpler to handle
thana databaseschema,i.e., a communicationmodulecan
be expectedto be able to handlea list of processesbut it
is not realisticto assumeit canhandlea databaseschema.
In particular, databasereplicationrequiresto understandthe
operationthatis goingto beperformedwhile in distributed
systems,operationsemanticsusuallyplay no role.

Server Coordination Phase. Duringtheservercoordina-
tionphase,thedifferentreplicastry to find anorderin which
theoperationsneedto beperformed.Thisis thepointwhere
protocolsdiffer themostin termsof orderingstrategies,or-
deringmechanisms,andcorrectnesscriteria.

In termsof orderingstrategies, databasesorder opera-
tionsaccordingto datadependencies.Thatis,all operations

musthave the samedatadependenciesat all replicas. It is
becauseof this reasonthatoperationsemanticsplay anim-
portantrole in databasereplication: anoperationthat only
readsa dataitem is not thesameasanoperationthatmod-
ifies that dataitem sincethe datadependenciesintroduced
arenot the samein the two cases.If thereareno director
indirectdependenciesbetweentwo operations,they do not
needto beorderedbecausetheorderdoesnot matter. Dis-
tributedsystems,on the other hand,arecommonlybased
on very strict notionsof ordering. From causality, which
is basedon potentialdependencieswithout looking at the
operationsemantics,to total order(eithercausalor not) in
whichall operationsareorderedregardlessof whatthey are.

In termsof correctness,databaseprotocolsuseserialis-
ability adaptedto replicatedscenarios:one-copy serialis-
ability [6]. It is possibleto useothercorrectnesscriteria[17]
but, in all cases,thebasisfor correctnessaredatadependen-
cies.Distributedsystemsuselinearisability andsequential
consistency[5]. Linearisabilityis strictly strongerthanse-
quentialconsistency. Linearisability is basedon real-time
dependencies,while sequentialconsistency only considers
theorderin which operationsareperformedon every indi-
vidual process.Sequentialconsistency allows, undersome
conditions,to readold values. In this respect,sequential
consistency has similarities with one-copy serialisability,
but strictly speaking,thetwo consistency criteriaarediffer-
ent.Thedistributedsystemreplicationtechniquespresented
in this paperall ensurelinearisability.

ExecutionPhase. Theexecutionphaserepresentstheac-
tualperformingof theoperation.It doesnotintroducemany
differencesbetweenprotocols,but it is a good indicator
of how eachapproachtreatsanddistributestheoperations.
This phaseonly representsthe actualexecutionof the op-
eration,the applyingof the updateis typically donein the
AgreementCoordinationPhase.

AgreementCoordination Phase. During this phase,the
differentreplicasmakesurethatthey all do thesamething.
This phaseis interestingbecauseit bringsup someof the
fundamentaldifferencesbetweenprotocols. In databases,
thisphaseusuallycorrespondsto aTwo PhaseCommitPro-
tocol (2PC)during which it is decidedwhetherthe opera-
tion will becommittedor aborted.This phaseis necessary
becausein databases,the Server CoordinationPhasetakes
careonly of orderingoperations. Oncethe orderinghas
beenagreedupon, the replicasneedto ensureeverybody
agreesto actually commit the operation. Note that being
ableto orderthe operationsdoesnot necessarilymeanthe
operationwill succeed.In a database,therecanbe many
reasonswhy an operationsucceedsat one site and not at
another(load,consistency constraints,interactionswith lo-
cal operations).This is a fundamentaldifferencewith dis-
tributedsystemswhereonceanoperationhasbeensuccess-



fully ordered(in the Server CoordinatorPhase)it will be
delivered(i.e., “performed”)andthereis no needto do any
furtherchecking.

Client ResponsePhase. The client responsephaserep-
resentsthe momentin time when the client receivesa re-
sponsefrom thesystem.Therearetwo possibilities:either
the responseis sentonly after everythinghasbeensettled
andtheoperationhasbeenexecuted,or theresponseis sent
right away and the propagationof changesand coordina-
tion amongall replicasis doneafterwards. In the caseof
databases,thisdistinctionleadsto (1) eageror synchronous
(noresponseuntil everythinghasbeendone)and(2) lazyor
asynchronous(immediateresponse,propagationof changes
is doneafterwards)protocols. In the distributed systems
case,the responseusuallytakesplaceonly after theproto-
col hasbeenexecutedandnodiscrepanciesmayarise.

The client responsephaseis of increasingimportance
given the proliferation of applicationsfor mobile users,
wherea copy is not alwaysconnectedto therestof thesys-
tem and it doesnot make senseto wait until updatesare
appliedin theentiresystemto let the userseethe changes
made.

3. Distrib uted SystemsReplication

In this section,we describethe modelandthe commu-
nicationsabstractionsusedby replicationprotocolsin dis-
tributed systems,and presentfour replication techniques
that have beenproposedin the literaturein the context of
distributedsystems.

3.1. Replication Model and Abstractions

We considera distributed systemmodelledas a set of
servicesimplementedby server processesand invoked by
clientprocesses.Eachserverprocesshasalocalstatethatis
modifiedthroughinvocations.Weconsiderthatinvocations
modify the stateof a server in an atomicway, that is, the
statechangesresultingfrom an invocationarenot applied
partially. The isolationbetweenconcurrentinvocationsis
the responsibilityof the server, and is typically achieved
usingsomelocal synchronisationmechanism.This model
is similar to “one operation”transactionsin databases(e.g.,
storedprocedures).In orderto toleratefaults,servicesare
implementedby multipleserverprocessesor replicas.

To copewith the complexity of replication,the notion
of group (of servers)andgroup communicationprimitives
have beenintroduced[7]. The notion of group actsas a
logicaladdressingmechanism,allowing theclient to ignore
the degreeof replicationandthe identity of the individual
server processesof a replicatedservice. Group communi-
cationprimitivesprovideone-to-many communicationwith

variouspowerful semantics. Thesesemanticshide much
of the complexity of maintainingthe consistency of repli-
catedservers. The two main groupcommunicationprim-
itivesareAtomicBroadcast(or ABCAST) andView Syn-
chronousBroadcast(or VSCAST).We give herean infor-
maldefinitionof theseprimitives.A moreformaldefinition
of ABCAST canbe found in [14] andof VSCASTcanbe
foundin [27] (seealso[8, 9]). Groupcommunicationprop-
ertiescanalsofeatureFIFO orderguarantees.

Atomic Broadcast (ABCAST). Atomic Broadcastpro-
videsatomicityandtotal order. Let m andm′ betwo mes-
sagesthatareABCAST to thesamegroupg of servers.The
atomicitypropertyensuresthatif onememberof g delivers
m (respt.m′), thenall (not crashed)membersof g eventu-
ally deliverm (respt.m′). Theorderpropertyensuresthat
if two membersof g deliver both m andm′, they deliver
themin thesameorder.

View Synchronous Broadcast (VSCAST). The defini-
tion of View SynchronousBroadcastis morecomplex. It
is definedin the context of a groupg, andis basedon the
notion of a sequenceof views v0(g), v1(g), . . . , vi(g), . . .
of groupg. Eachview vi(g) definesthecompositionof the
groupatsometime t, i.e. themembersof thegroupthatare
perceivedasbeingcorrectat time t. Whenever a processp
in someview vi(g) is suspectedto have crashed,or some
processq wantsto join, a new view vi+1(g) is installed,
which reflectsthemembershipchange.

Roughly speaking,VSCAST of messagem by some
memberof thegroupg currentlyin view vi(g) ensuresthe
following property:if oneprocessp in vi(g) deliversm be-
fore installing view vi+1(g), thanno processinstallsview
vi+1(g) beforehaving first deliveredm.

3.2. ActiveReplication

Active replication, also called the state machineap-
proach[28], is a non-centralisedreplicationtechnique.Its
key conceptis thatall replicasreceiveandprocessthesame
sequenceof client requests.Consistency is guaranteedby
assumingthat, when provided with the sameinput in the
sameorder, replicaswill producethe sameoutput. This
assumptionimpliesthatserversprocessrequestsin a deter-
ministicway.

Clientsdo not contactoneparticularserver, but address
serversasa group. In orderfor serversto receive thesame
input in thesameorder, client requestscanbepropagatedto
serversusinganAtomic Broadcast.Weakercommunication
primitivescanalsobe usedif semanticinformationabout
theoperationis known (e.g.,two requeststhatcommutedo
not haveto bedeliveredat all serversin thesameorder).

The main advantageof active replicationis its simplic-
ity (e.g.,samecodeeverywhere)andfailure transparency.
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Figure 2. Active replication

Failuresarefully hiddenfrom theclients,sinceif a replica
fails, therequestsarestill processedby theotherreplicas.

Thedeterminismconstraintis themajordrawbackof this
approach.Although onemight also argue that having all
theprocessingdoneon all replicasconsumestoo many re-
sources.Notice however, that the alternative, that is, pro-
cessinga requestat only one replicaand transmittingthe
statechangesto theothers(seenext section),in somecases
maybemuchmorecomplex andexpensivethansimply ex-
ecutingtheinvocationon all sites.

Figure 2 depictsthe active replicationtechniqueusing
anAtomic Broadcastascommunicationprimitive. In active
replication,phasesRE andSCaremergedandphaseAC is
notused.Thefollowing stepsareinvolvedin theprocessing
of anupdaterequestin theActiveReplication,accordingto
our functionalmodel.

1. The client sendsthe requestto the servers using an
Atomic Broadcast.

2. Server coordinationis givenby thetotal orderproperty
of theAtomic Broadcast.

3. All replicasexecutetherequestin theorderthey arede-
livered.

4. No coordinationis necessary, asall replicaprocessthe
samerequestin thesameorder. Becausereplicaaredeter-
ministic, they all producethesameresults.

5. All replicasendbacktheir result to the client, andthe
client typically only waitsfor thefirst answer.

3.3. PassiveReplication

The basic principle of passive replication, also called
Primary Backup replication, is that clients sendtheir re-
queststo a primary, which executestherequestsandsends
updatemessagesto the backups(seeFigure3). Theback-
ups do not executethe invocation,but apply the changes
producedby the invocationexecutionat the primary (i.e.,
updates).By doing this, no determinismconstraintis nec-
essaryon theexecutionof invocations.

Communicationbetweenthe primary and the backups
has to guaranteethat updatesare received and then pro-
cessedin the sameorder, which is the caseif primary
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Figure 3. Passive replication

backupcommunicationis basedon FIFO channels.How-
ever, FIFOchannelsarenotenoughto ensurecorrectexecu-
tion in caseof failureof theprimary. For example,consider
thattheprimaryfailsbeforeall backupsreceive theupdates
for acertainrequest,andanotherreplicatakesoverasanew
primary. Somemechanismhasto ensurethat updatessent
by thenew primarywill be“properly” orderedwith regard
to the updatessentby the faulty primary. VSCAST is a
mechanismthat guaranteestheseconstraints,andcanusu-
ally be usedto implementthe primary backupreplication
technique[13].

Passivereplicationcantoleratenon-deterministicservers
(e.g., multi-threadedservers) and uses little processing
power when comparedto other replication techniques.
However, passive replicationsuffers from a high reconfig-
urationcostwhenthe primary fails. The five stepsof our
framework arethefollowing:

1. Theclient sendstherequestto theprimary.
2. Thereis no initial coordination.
3. Theprimaryexecutestherequest.
4. Theprimarycoordinateswith theotherreplicasbysend-

ing theupdateinformationto thebackups.
5. Theprimarysendstheanswerto theclient.

3.4. Semi-ActiveReplication

Semi-active replication is an intermediatesolution be-
tweenactive andpassive replication. Semi-active replica-
tion doesnot requirethat replicasprocessserviceinvoca-
tion in a deterministicmanner. Theprotocolwasoriginally
proposedin a synchronousmodel[24]. We presentit here
in a moregeneralsystemmodel.

Themaindifferencebetweensemi-activereplicationand
active replicationis that eachtime replicashave to make
a non-deterministicdecision,a process,called the leader,
makes the choiceand sendsit to the followers. Figure 4
depictsSemi-active replication.PhasesEX andAC arere-
peatedfor eachnondeterministicchoice.

Thefollowing stepscharacterisesemi-activereplication,
accordingto our framework.

1. The client sendsthe requestto the servers using an
Atomic Broadcast.
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2. The servers coordinateusing the order given by this
Atomic Broadcast.

3. All replicasexecutetherequestin theorderthey arede-
livered.

4. In caseof anondeterministicchoice,theleaderinforms
thefollowers usingtheView SynchronousBroadcast.

5. Theserverssendbacktheresponseto theclient.

3.5. Semi-PassiveReplication

Semi-passive replication [10] is a variant of passive
replicationwhich canbeimplementedin theasynchronous
modelwithout requiringany notionof views. Themainad-
vantageover passive replicationis to allow for aggressive
time-outsvaluesandsuspectingcrashedprocesseswithout
incurring too high a cost for incorrect failure suspicions.
Becausethis techniquehasnoequivalencein thecontext of
databasereplication,wedonotdiscussit in detail.Roughly
speaking,in semi-passive replicationthe Server Coordina-
tion (phase2) and the AgreementCoordination(phase4)
arepartof onesinglecoordinationprotocolcalledConsen-
suswith DeferredInitial Values.

3.6. Summary

Figure5 summarisesthedifferentreplicationapproaches
in distributedsystems,groupedaccordingthefollowing two
dimensions: (1) failure transparency for clients, and (2)
serverdeterminism.

4. DatabaseReplication

Replicationin databasesystemsis donemainly for per-
formancereasons.Theobjective is to accessdatalocally in

orderto improveresponsetimesandeliminatetheoverhead
of communicatingwith remotesites.This is usuallypossi-
blewhenanoperationonly readsthedata,while write oper-
ationsrequiresomeform of coordinationamongthe repli-
cas. Fault toleranceis an issuebut it is solved usingback
upmechanismswhich,evenbeingaform of replication,are
entirelytransparentto theclients.

4.1. Replication Model in Databases

A databaseis a collectionof dataitemscontrolledby a
databasemanagementsystem.A replicateddatabaseis thus
a collectionof databasesthatstorecopiesof thesamedata
items(for simplicity, we assumefull replication). Hence,
wedistinguisha logicaldataitemX andits physicalcopies
Xi on thedifferentsites.Thebasicunit of replicationis the
dataitem.

Clientsaccessthe databy submittingtransactions.An
operation,oi(X), of a transaction,Ti, canbe eithera read
or a write accessto a logical dataitem,X , in thedatabase.
Moreover,atransactionis aunit of work thatexecutesatom-
ically, i.e., a transactioneithercommitsor abortsits results
on all participatingsites. Furthermore,if transactionsrun
concurrentlythey mustbe isolatedfrom eachotherif they
conflict. Two operationsof differenttransactionsconflict if
bothaccessthesamedataitem andoneof themis a write.
Isolation is provided by concurrency control mechanisms
suchaslocking protocols[6] which guaranteeserialisabil-
ity. Theseprotocolsareextendedto work in replicatedsce-
nariosand to provide 1-copy serialisability, the accepted
correctnesscriterionfor databasereplication[6].

A client submitsits transactionsto only one database
and, in general,it is connectedonly to this database.If a
databaseserver fails,activetransactions(notyetcommitted
or aborted)runningon thatserver areaborted.Clientscan
thenbeconnectedto anotherdatabaseserverandre-submit
the transaction.The failure is seenby theclient but, in re-
turn, the client’s logic is much simpler. From a practical
point of view, in any working system,failuresare the ex-
ceptionsoit makessenseto optimisefor thesituationwhen
failuresdo notoccur.

In this section,we will usea very simpleform of trans-
action that consistsof a single operation. This allows us
to concentrateon thecoordinationandinteractionstepsand
makesit possibleto directly comparewith distributedsys-
temapproaches.Thenext sectionwill refinethis modelto
extendit to normaltransactions.Althoughthesingleoper-
ation approachmayseemrestrictive, it is actuallyusedby
many commercialsystemsin theform of storedprocedures.
A storedprocedureresemblesaprocedurecall andcontains
all theoperationsof onetransaction.By invokingthestored
procedure,theclient invokesa transaction.

Notethattheuseof quorumsis orthogonalto thefollow-



Eager
Update Everywhere

Eager
Primary Copy

Lazy
Primary Copy

Lazy
Update Everywhere

update propagation

up
da

te
 lo

ca
tio

n

Figure 6. Replication in database systems

ing discussion.Quorumsonly determinehow many sites
and which of them needto be contactedin order to exe-
cuteanoperation.Independentlyof which sitesparticipate,
thephasesof thedifferentprotocolsarethesame.In anex-
tremecase,readoperationsonly accessthelocalcopy (read-
one/write-allapproach[6]), while write operationsrequire
coordinationin any case.

4.2. Replication Strategies

Gray et. al [12] have categoriseddatabasereplication
protocolsusingtwo parameters(seeFigure6). Oneis when
updatepropagationtakes place (eagervs. lazy) and the
secondis who can perform updates(primary vs. update-
everywhere). In eagerreplication schemes,updatesare
propagatedwithin the boundariesof a transaction,i.e., the
userdoesnotreceivethecommitnotificationuntil sufficient
copiesin thesystemhave beenupdated.Lazy schemes,on
theotherhand,updatea local copy, commitandonly some
timeafterthecommit,thepropagationof thechangestakes
place.Thefirst approachprovidesconsistency in astraight-
forwardway but it is expensive in termsof messageover-
headandresponsetime. Lazy replicationallowsa wideva-
riety of optimisations,however, sincecopiesareallowedto
diverge,inconsistenciesmightoccur.

In regardto who is allowedto performupdates,thepri-
mary copy approachrequiresall updatesto be performed
first at onecopy (the primary or mastercopy) andthenat
theothercopies.This simplifiesreplicacontrolat theprice
of introducinga singlepoint of failureanda potentialbot-
tleneck.Theupdateeverywhereapproachallows any copy
to beupdated,therebyspeedingupaccessbut at thepriceof
makingcoordinationmorecomplex.

4.3. Eager Primary Copy Replication

In aneagerprimarycopy approach,anupdateoperation
is first performedat a primarymastercopy andthenpropa-
gatedfrom this mastercopy to thesecondarycopies.When
theprimaryhastheconfirmationthat thesecondarycopies
have performedthe update,it commitsandreturnsa noti-
fication to the user. Orderingof conflicting operationsis
determinedby the primarysite andmustbeobeyedby the
secondarycopies. Readingtransactionscanbe performed
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Figure 7. Eager primar y cop y

on any siteandreadingtransactionswill alwaysseethelat-
estversionof eachobject.Early solutions,e.g.,distributed
INGRES[4, 30], usedthis approach.Currently, it is only
usedfor fault-tolerancein orderto implementahot-standby
backupmechanismwhereaprimarysiteexecutedall opera-
tionsandasecondarysiteis readyto immediatelytakeover
in casetheprimaryfails [11, 2].2

Figure7 shows thestepsof theprotocolin termsof the
functionalmodelasit wouldbeusedin ahotstand-byback-
up mechanism.The server coordinationphasedisappears
sinceexecutiontakesplaceonly at theprimary. Theexecu-
tion phaseinvolvesperformingthe transactionto generate
thecorrespondinglog recordswhicharethensentto thesec-
ondaryandapplied.Thena2PCprotocolis executedduring
theagreementcoordinationphase.Oncethis finishes,a re-
sponseis returnedto theclient.

Fromhere,it is easyto seethateagerprimarycopy repli-
cationis functionallyequivalentto passive replicationwith
VSCAST. The only differencesare internal to the Agree-
ment Coordinationphase(2PC in the caseof databases
and VSCAST in the caseof distributed systems). This
differencecan be explainedby the useof transactionsin
databases.As explained,VSCASTis usedto guaranteethat
operationsareorderedcorrectlyevenaftera failureoccurs.
In a databaseenvironment,the useof 2PCguaranteesthat
if the primary fails, all active transactionswill be aborted.
Therefore,thereis no needto orderoperationsfrom “be-
fore the failure” and“after the failure” sincethereis only
onesourceandthedifferentviewscannotoverlapwith each
other.

4.4. EagerUpdateEverywhereReplication

From a functionalpoint of view therearetwo typesof
protocolsto considerdependingon whetherthey usedis-
tributedlockingor atomicbroadcastto orderconflictingop-
erations.

Distrib uted Locking Approach Whenusingdistributed
locking,a itemcanonly beaccessedafterit hasbeenlocked

2Notethattheprimaryis still asinglepointof failure,suchanapproach
assumesthatahumanoperatorcanreconfigurethesystemsothattheback-
up is thenew primary
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Figure 8. Eager update everywhere with dis-
trib uted loc king

atall sites.For transactionswith oneoperation,thereplica-
tion controlrunsasfollows(seeFigure8). Theclient sends
therequestto its local databaseserver. This server sendsa
lock requestto all otherserverswhich grantor do not grant
the lock. The lock requestactsasthe Server Coordination
phase.If thelock is grantedby all sites,we canproceed.If
not, thetransactioncanbedelayedandtherequestrepeated
sometime afterwards. Whenall the locks aregranted,the
operationis executedatall sites.DuringtheAgreementCo-
ordinationphase,a 2PCprotocolis usedto make surethat
all sitescommit thetransaction.Afterwards,theclient gets
a response.

A comparisonbetweenFigures4 and8 showsthatsemi-
active replicationandeagerupdateeverywhereusing dis-
tributed locking areconceptuallysimilar. The differences
arisefrom themechanismsusedduring theServer Coordi-
nationandAgreementCoordinationphases.In databases,
Server Coordinationtakesplaceusing2 PhaseLocking [6]
while in distributed systemsthis is achieved using AB-
CAST. The2 PhaseCommitmechanismusedin theAgree-
mentCoordinationphaseof thedatabasereplicationproto-
col correspondsto theuseof a VSCASTmechanismin the
distributedsystemsprotocol. If the databasesweredeter-
ministic, 2PCwould not beneededandtheprotocolwould
befunctionallyidenticalto activereplication(seeFigure8).

Data Replication based on Atomic Broadcast It has
beensuggestedto usegroupcommunicationprimitivesto
implementdatabasereplication. However, it hasnot been
until recentlythat theproblemhasbeentackledwith suffi-
cientdepthsoasto provide realisticsolutions[26, 17, 18].
Thebasicideabehindthisapproachis to usethetotalorder
guaranteedby ABCAST to provide a hint to the transac-
tion manageron how to orderconflictingoperations.Thus,
the client submitsits requestto onedatabaseserver which
thenbroadcaststherequestto all otherdatabaseservers.In-
steadof 2 PhaseLocking, the server coordinationis done
basedon thetotal orderguaranteedby ABCAST andusing
sometechniquesto obtainthe locks in a consistentmanner
atall sites[17, 19]. It mustbeguaranteedthattwo conflict-
ing operationsareexecutedin theorderof theABCAST at
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Figure 10. Lazy update everywhere

all sites. Oncethe local server hasexecutedthe operation
it sendsthe responseto the client (seeFigure2). The five
phasesarethefollowing:

1. Theclient sendstherequestto thelocal server
2. Theserver forwardstherequestto all serverswhich co-

ordinateusingtheAtomic Broadcast.
3. Theserversexecutethetransaction.
4. Thereis no coordinationat thispoint.
5. Thelocal serversendsbacktheresponseto theclient.

Thesimilaritiesbetweenactivereplicationandeagerup-
dateeverywhereusingABCAST areobviouswhenFigures
2 and9 arecompared.Theonly significantdifferenceis the
interactionbetweenthe client and the system. Regarding
the determinismof the databases,a completestudyof the
requirementsandtheconditionsunderwhichABCAST can
be usedfor databasereplicationand when an Agreement
Coordinationis necessarycanbefoundin [17].

4.5. Lazy Replication

Lazy replicationavoidsthesynchronisationoverheadof
eagerreplicationby providing a responseto the client be-
fore thereis any coordinationbetweenservers. As in ea-
gersolutionsthereexist bothprimarycopy andupdateev-
erywhereapproaches(seeFigure10 for lazy updateevery-
where).In thecaseof primarycopy, all clientsmustcontact
the sameserver to performupdateswhile in updateevery-
whereany server canbe accessed.Directly after the exe-
cutionof thetransactionthelocal serversendstheresponse
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Figure 11. Eager primar y cop y appr oach for
transactions

backto theclient. Only sometimeafterthecommittheup-
datesarepropagatedto theothersites.Thisallowsto bundle
changesof differenttransactionsandpropagateupdateson
aninterval basisto reducecommunicationoverhead.In the
caseof primarycopy theAgreementCoordinationphaseis
relatively straightforwardin thatall orderingtakesplaceat
the primary and the replicasneedonly to apply the prop-
agatedchanges. In the caseof updateeverywhere,coor-
dination is muchmorecomplicated. Sincethe othersites
might have run conflicting transactionsat the sametime,
thecopieson thedifferentsitesmight not only bestalebut
inconsistent.Reconciliationis neededto decidewhich up-
datesare the winnersandwhich transactionsmustbe un-
done.

Note that the conceptof laziness,while existing in dis-
tributedsystemsapproaches[20], is not widely used.This
reflectsthe fact that thosesolutionsaremainly developed
for fault-tolerantpurposes,makinganeagerapproachoblig-
atory. Lazyapproaches,ontheotherhand,areastraightfor-
wardsolutionif performanceis themainissue.

5. Transactions

In many databases,transactionsarenot onesingleoper-
ation or arenot executedvia a storedprocedure.Instead,
transactionsarea partialorderof readandwrite operations
which are not necessarilyavailable for processingat the
sametime. This has importantconsequencesfor replica
control resultingin protocolswhich have no equivalent in
distributedsystems.

The fact that now a transactionhasmultiple operations
andthat thoseoperationsneedto beproperlyorderedwith
respectto each other requires to modify the functional
model. The modification involves introducinga loop in-
cluding the Server Coordinationand Executionphasesor
the Execution and AgreementCoordinationphases,de-
pendingon the protocolused. The loop will be executed
oncefor eachoperationthatneedsto beperformed.
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Figure 12. Eager update everywhere ap-
proach for transactions

5.1. EagerPrimary Copy Replication

In the caseof primary copy, thereis no needfor server
coordination. Hence,the loop will involve the Execution
and the AgreementCoordinationphases. In this loop an
operationis performedat the primary copy and then the
changessentto the replicas. This is donefor every oper-
ationand,at theend,a new AgreementCoordinationphase
is executedin orderto go througha 2PCprotocolthatwill
committhetransactionatall sites(seeFigure11).

Note that the AgreementCoordinationphasesfor each
operationandthat the oneat the endusedifferentmecha-
nisms.If wecomparethiswith thealgorithmin Section4.4,
wenoticethatthelastphaseis thesame.For eachoperation
exceptthelast,it sufficesto sendtheoperation.In thefinal
AgreementCoordinationphase,a 2PCprotocol is usedto
makesureall siteseithercommitor abortthetransaction.

An alternative approachto this one is to use shadow
copiesand propagatethe changesmadeby a transaction
only after the transactionhas completed(note that com-
pletedis not the sameascommitted). If this approachis
used,theresultingprotocolis identicalto thatshown in Fig-
ure7.

5.2. Eagerupdateeverywherereplication

We will againlook at thetwo differentapproachesused
to implementeagerupdateeverywherereplication.

Distrib uted Locking In thiscase,alockmustbeobtained
for every operationin thetransaction.This requiresrepeat-
ing theServerCoordinationandExecutionphasesfor every
operation. At the end,onceall operationshave beenpro-
cessedin thisway, a2PCprotocolis usedduringtheAgree-
mentCoordinationphaseto commitor abortthetransaction
at all sites(seeFigure12).

Certification BasedDatabaseReplication Whenusing
ABCAST to sendthe operationsto all replicas,the result-
ing total orderhasno bearingon theserialisationorderthat
needsto be produced. For this reason,it doesnot make
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cation

much senseto use ABCAST to sendevery operationof
a transactionseparately. It makessense,however, to use
shadow copiesat one site to perform the operationsand
then,oncethetransactionis completed,sendall thechanges
in onesinglemessage[17]. Dueto thefactthatnow atrans-
actionmanagerhasto unbundlethesemessages,theagree-
mentcoordinationphasebecomesmorecomplicatedsince
it involvesdecidingwhethertheoperationscanbeexecuted
correctly. This can be seenas a certification stepduring
which sitesmake surethey canexecutetransactionsin the
orderspecifiedby the total orderestablishedby ABCAST
(seeFigure13).

5.3. Lazy Replication

Whenusinglazy replication,updatesarenot propagated
until the transactioncommits. Then all the updatesper-
formedby thetransactionaresentasa unit. Thus,whether
transactionshave oneor moreoperationsdoesnot make a
differencefor lazy replicationprotocols.

6. Discussion

This paperpresentsa generalcomparisonof replica-
tion approachesusedin thedistributedsystemanddatabase
communities. Our approachwas to first characterise
replication algorithms using a generic framework. Our
genericframework identifiesfive basicsteps,and,although
simple, allows us to classify classicalreplication proto-
cols describedin the literatureon distributedsystemsand
databases.

Figure 14 summarisesthe different replication tech-
niques.We seethat any replicationtechniquethat ensures
strongconsistency haseitheranSC and/orAC stepbefore
theEND step. All techniqueshave at leastonesynchroni-
sationstep(SC or AC). If the executionstep(EX) is de-
terministic,no synchronisationafter EX is needed,as the
executionwill yield the sameresulton all servers. For the
samereason,if only one server doesthe executionstep,
thereis no needfor synchronisationbeforethe execution.
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Figure 14. Synthetic view of appr oaches

Severalconclusioncanbedrawn from thisfigure.First,pri-
marycopy andpassive replicationschemesshareonecom-
mon feature:they do not have an SC phase(sincethe pri-
mary doesthe processing,thereis no needfor early syn-
chronisationbetweenreplicas).Furthermore,updateevery-
wherereplicationschemesneedtheinitial SC phasebefore
anupdatecanbeexecutedby thereplicas.Theonly excep-
tionsaretheCertificationbasedtechniquesthatuseAtomic
Broadcast(Sect.5.2). Thosetechniquesare optimistic in
the sensethat they do the processingwithout initial syn-
chronisation,and abort transactionsin order to maintain
consistency. Finally, thedifferencebetweeneagerandlazy
replicationtechniquesis the orderingof the AC andEND
phases:in the eagertechnique,the AC phasecomesfirst,
while in thelazy technique,theEND phasecomesfirst.

7. Conclusion

Despitedifferentmodels,constraintsandterminologies,
replicationalgorithmsfor distributedsystemsanddatabases
bearseveral similarities. Thesesimilarities put into evi-
dencetheneedfor strongercooperationbetweenbothcom-
munities. For example, replicateddatabasescould bene-
fit from the abstractionsof distributedsystems.Presently,
we are planninga performancestudy of the different ap-
proaches,takinginto accountdifferentworkloadandfailure
assumptions.
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