
Exp-DB: Fast Development of Information

Systems for Experiment Tracking

Nomair A. Naeem1, Stéphane Raymond2, Anne Poupon3, Miroslaw Cygler2,
and Bettina Kemme1

1 School of Computer Science, McGill University, Montreal, Canada
2 Macromol., Structure Group, NRC Biotechnology Research Inst., Montreal, Canada

3 Lab. d’Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France

Abstract. Bioinformatics research groups require information systems
keeping track of experiments and their results. However, current solutions
are often ad-hoc, difficult to maintain, extend, or use in different context.
This paper presents Exp-DB, an infrastructure for the fast development
of information systems for experiment tracking. Exp-DB provides a basic,
extensible database design, components for accessing the data, and a
web-based interface. It allows for fast implementation of an initial system
even by non IT-experts which can then be extended step-by-step.

1 Introduction

Bioinformatics research is driven by experiments. Typically, experiments are ex-
ecuted in from of a workflow: related experiments are executed in a predefined
order and might depend on each other. We refer to a set of such related exper-
iments as experiment workflow. With the introduction of new technology, more
and more experiments are automated leading to an explosion in the number of
experiments and a need to closer analyze the settings of previous experiments
in order to focus on promising experiment paths.

As a result, many research groups have started to develop web-based infor-
mation systems that keep track of their experiments, e.g., [2, 5, 6]. The startup
cost, that is, the initial investment until a first system is running, can be quite
high. Since these systems are often built by biologists or other scientists, the
team members first have to learn the essentials of the technology if they do not
know it yet. Since at the beginning it is not yet clear how the system is going
to evolve, and due to time pressure and lack of experience, the systems often
lack modularity and extensibility, and are only usable in very specific context.
As a result, each research group has to develop its own system completely from
scratch in order to reflect their particular way of performing experiments.

This paper addresses the problems and issues mentioned above. It presents
Exp-DB, a multi-tier infrastructure intended to help small scientific research
groups to develop their own information system for experiment tracking. The
design and implementation of Exp-DB was motivated by two goals. Firstly, the
design, architecture, and infrastructure must be simple enough to be understood
in reasonably short time by people without extensive computer skills. This is



2

needed to have a first running system in short time. Secondly, the system must
provide sufficient modularity and flexibility such that it can be extended, ad-
justed and optimized in many different ways (although this might require more
computer science knowledge than the first step).

The architecture of Exp-DB follows a strict separation of tasks: data stor-
age, application logic, and presentation logic are implemented in separate com-
ponents. Within each of the components, different concepts are implemented
separately from each other in different modules. The architecture is based on
Java Technology and uses Apache/Tomcat as its execution environment.

A research group develops its own system based on Exp-DB in the following
steps. Exp-DB provides an initial, quite simple relational data model. Relying
on the basic structure of the Exp-DB data model, attributes have to be added
to existing tables, and new tables have to be created reflecting the particular
research conducted. For instance, for each type of experiment, typically one ad-
ditional table has to be added to the database plus some indication how this
experiment type is related to other experiment types. For each newly created
table, one small application logic program has to be generated. No further work
is required to get a first running system. Web-pages are automatically gener-
ated from the entered information. The tasks to be performed require moderate
knowledge in relational database design, and basics in Java programming.

There exist many databases storing keeping track of scientific experiments,
e.g., [5, 6, ?]. General laboratory systems are e.g., [4, 7, 1, 8]. However, none of
these system provides the general functionality and simplicity of our system.

2 Experiments and Workflows

Our system has been designed while cooperating with the Macromolecular Struc-
ture Group at the Biotechnology Research Center, National Research Council,
Canada (http://www.bri.nrc.ca/pha bio/msg/msg en.htm), and we would like
to take their experimental setup as an example throughout the paper. This
group is engaged in finding the structure of proteins mainly through x-ray crys-
tallography. The workflow starts with (1) selecting a set of genes or subsequences
of genes as promising targets. For each selected target the further steps include
(2) cloning, (3) protein production, (4) purification, (5) crystallization, (6) X-
ray crystallography, and (7) structure analysis. (8) An alternative method after
step following step (5) is NMR (nuclear magnetic resonance) spectrometry. (9)
Optional quality testing occurs after the purification step (4). (10) Also, if steps
(5) to (8) are unsuccessful, fragmentation splits the proteins retrieved in step (4)
into smaller fragments that might be easier to crystallize. Steps (2) to (4) might
be skipped if the proteins are provided by other labs.

From this example workflow, we can introduce the following definitions. An
experiment type describes a specific form of experiment, e.g., “cloning”, “pu-
rification”, etc. An experiment is an instance of an experiment type. An ex-

periment workflow is a directed graph. Each node depicts an experiment. An
edge from experiment E1 to experiment E2 indicates that E1 was performed



3

before E2 and its output served as input for E2. Experiments are not randomly
combined to experiment workflows but usually follow standard workflow pat-
terns. That is, an experiment of type T1 might typically follow an experiment
of type T2 but, e.g., not vice versa. Some patterns, however, are impossible
(e.g., Crystallization → Cloning). This means, we have to restrict experiment
workflows to only allow meaningful transitions between experiment types. A
workflow model a directed graph where nodes are experiment types. An arrow
from experiment type T1 to experiment type T2 indicates that the output of
an experiment of type T1 can (but need not) be input of an experiment of type
T2. From there, a legal workflow is an experiment workflow such that for each
arrow from experiment E1 of type T1 to E2 of type T2 in the workflow graph,
the workflow model graph has an arrow from T1 to T2. A workflow can have
one-to-many and many-to-one relationships. That is, experiment E1 of type T1
can have edges to experiments E21 and E22 both of type T2 as long as there is
an arrow from T1 to T2 in the model (one purification experiment is input for
many crystallization experiments). In a similar way, many experiments of the
same type can be input to one further experiment (e.g. the results of many x-ray
crystallography experiments can be input for a single structure analysis).

3 Database Design

Exp-DB distinguishes different types of information. textitAccess control infor-
mation is needed to restrict access to the system. Special information is infor-
mation that is very specific to a given research environment, e.g., information
about genes and proteins. Finally, meta information helps the interface layer to
retrieve information about the structure of the tables and their attributes. This
is needed for presenting data correctly and for type checking.

Experimental information is the backbone of the schema and describes ex-
periment types, experiments, workflow models, and experiment workflows. The
Experiment table contains general information about each experiment indepen-
dent of the experiment type. Type dependent information is stored in separate
tables, one for each type. The table Workflow is used to express workflows by
indicating parent and child experiments. The workflow model graph is encoded
into the Workflow Model table. Whenever a user wants to enter a record into
the Workflow table, the system checks in the Workflow Model table whether
such an experiment flow is legal.

4 Architecture and Implementation

The system has a three-tier architecture and follows standard software develop-
ment guidelines. Users (client tier) interact with the system through a standard
browser. The middle tier is responsible for the presentation logic. It uses the
MVC (Model View Controller) architecture. This helps to provide a clean sepa-
ration between the presentation and the processing of data. Our runtime envi-
ronment is an Apache Tomcat 4 web server that provides support for JSP 1.2



4

and Servlets 2.3 specifications. The backend tier can be any relational database
system. The presentation logic generates the webpages using JavaServer Pages
(JSP). The JSPs represents the ”View” that the users receive from the system.
The application logic is implemented as a combination of Servlets and Jav-
aBeans, and fulfills different needs. The JavaBeans encapsulate the data access
to the database system and represent the data in an abstract interface to JSPs
and Servlets. They implement the ”Model”. Finally, the Servlets ”control” how
the user interacts with the system, and how the different components should be
called. As backend tier, we currently use PostgreSQL.

The system consists of several modules. Each module consists of a set of
JSPs and JavaBeans that implement a specific functionality: users can enter
new information (e.g., new experiments), search the database, or access specific
existing entries in the database. All requests are filtered through the controller
servlet dispatcherServlet that forwards it to the corresponding module.

The non-experiment addition module is responsible for entering individual
entries to non experimental tables. It has a single JSP that is valid for all tables,
and a JavaBean for each table. It is completely hidden from the JSP how the
data is internally stored since all data access is passed through the JavaBean.

The experiment addition module is more complex since the addition of an
experiment requires entries into several tables and the experiment must be linked
to a specific workflow. The user is guided through a sequence of web-pages (JSP)
to enter all relevant information. Correctness checks are performed to guarantee
that only legal workflows are allows.

The query module provides a set of predefined queries that are typical for
experimental databases. Furthermore, the user can ask more complex queries in
form of SQL queries or through a query wizard.

The record module provides the functionality to access (view, modify, delete)
an individual existing record. For each of these methods, there exist one single
JSP (independently of the table). This JSP calls the corresponding JavaBean
of the table to retrieve or store the data, and then dynamically generates the
webpage. Furthermore, this module provides navigation through an experiment
workflow. Starting with the view of an initial experiment, the user can navigate
to the information about the child experiments or parent experiments.

Exp-DB only provides the basic framework. Before it will be operational, it
has to be extended and adjusted. We expect the most typical extension to be the
addition of new experiment types and the specification of the workflow model.
Such extension can be done very easily. Special extensions are possible, but will
require more knowledge about the underlying technology.

References

1. G. Alonso, C. Hagen: Geo-Opera: Workflow Concepts for Spatial Processes, Int.
Conference on Scientific and Statistical Database Management, 1997.

2. J. Frew, R.Bose: Earth System Science Workbench: A Data Management Infrastruc-
ture of Earth Science Products, Int. Conference on Scientific and Statistical Database
Management, 2001.



5

3. G. L. Gilliland, M. Tung, J. Ladner: The Biological Macromolecule Crystallization
Database and NASA Protein Crystal Growth Archive, Journal of Research of the
National Institute of Standards and Technology, 101(3), 1996.

4. N. Goodman, S. Rozen, L. D. Stein, A.G. Smith: The LabBase system for data
management in large scale biology research laboratories. Bioinformatics, 14, 562-574.

5. P. W. Haebel, V. L. Arcus, E. N. Baker and P. Metcalf: LISA: an intranet-based
flexible database for protein crystallography project management, Acta Crystallo-
graphica D57, 1341-1343, 2001.

6. M. Harris and T. Alwyin: Xtrack – a web-based crystallographic notebook, Acta
Crystallographica D58, 1889-1891, 2002.

7. Y. Ioannidis, M. Livny, S. Gupta, N. Ponnekanti: ZOO: A Desktop Experiment
Management Environment. Int. Conference on Very Large Databases, 1996.

8. J. Meidanis, G. Vossen, M. Weske: Using Workflow Management in DNA Sequenc-
ing. Int. Conference on Cooperative Information Systems, 1996.


