Distributed Information Systems: Architecture

Logical Components of Information System

- Logical Components provide vertically layered architecture
 - Client needs a presentation layer through which it can submit operations and obtain a result.
 - The application logic establishes what operations can be performed over the system and how they take place.
 - enforces the business rules
 - establishes the business processes
 - The resource management deals with the organization (storage, indexing, and retrieval) of the data necessary to support the application logic.
 - Provides persistence and querying capability
Presentation and Application

- **Presentation Logic**
 - Web-Browser
 - Static web-pages
 - Dynamic web-pages
 - Touch screen
 - Specialized Software for banks/travel agencies/CAD

- **Application Logic**
 - BookFlight / ReserveCar / PayBill
 - Java Classes / Java Beans

Resource Manager / Services

- **Resource Management**
 - Persistent Object Store
 - Relational Database Management System
 - XML data
 - File System
 - Set/get data

- **System Services**
 - Security: Authentication / Access Control / Encryption
 - Transactions: All-or-Nothing / Isolation / Durability
 - Query optimization and execution
 - Service/Object Location
 - Communication: RMI/multicast/persistent queues
 - ...
Mainframe

- Clients access the system through display terminals
 - What is displayed and how it appears is controlled by server ("dumb" terminals)
 - Often limited GUI
- Typical architecture of main-frame applications:
 - Advantages:
 - Highly optimized
 - Easy to keep data consistent
 - Disadvantages:
 - Often no conceptual separation of components
 - Little modularity
 - Experts must know all
 - Examples
 - Bank application (terminals with green text-only screens)

1-tier architecture

Separation of presentation logic from other layers

- Move (part of) presentation layer to client
- Modern Bank Software:
 - Presentation Logic at PC/client (implemented in Swing, Applets, etc.)
 - API (application programming interface) allows the presentation logic module to call application logic methods
 - retrieveClientaccountinfobyname(&clientname)
 - retrieveClientaccountinfobyid(&clientid)
- Web-Pages
 - Powerful Web Browser at client
 - Web-page creation or webpage storage at server
 - Presentation Logic split between client and server
Separation of presentation logic from other layers

- Advantages:
 - Individual presentation layers for different clients (web-browser, PDA browser, telephone,...)
 - Use computing power at client for sophisticated presentation layer
 - Introduces concept of API (application program interface)
 - Specify an interface (set of objects/methods or functions) that can be called from the outside
 - Provides conceptual separation of presentation and business logic

- Compare with integrated solutions
 - Cgi scripts and servlets creating html AND containing SQL to call dbs

Separation of application logic from storage management

- Standard
 - Application Logic is implemented in application programs. Access DB through JDBC, ODBC, etc.
 - Application Logic client of DBS

- Performance optimization
 - Stored procedures: move application logic to DBS

- Data Integrity
 - Use triggers
Location of System Services - Traditional Relational

- Presentation + application code

<table>
<thead>
<tr>
<th>Query Language Interface</th>
<th>Programmatic Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Module</td>
<td></td>
</tr>
</tbody>
</table>

SQL Query

Comm. Module

Result

Communication Module

Query Optimizer

Transaction Manager

Storage Manager

Data

- Function Shipping
 - JDBC
 - C with embedded SQL
 - Phyton
 - 4th Generation Languages (Dbase etc.)

© Ozsu, Valduriez 1998

Migration of System Services -- OO

- Presentation + application code

<table>
<thead>
<tr>
<th>Query Execution</th>
<th>Cache Management</th>
<th>Transaction Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. Module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Get Object

Get Page

Get Tuple(s)

Comm. Module

Return Page

Return Object

Return Tuple(s) as Object

Communication Module

Transaction Manager

Storage Manager

Data

- Data Shipping
 - OO DBS
 - CAD Systems
 - Application Servers
 - TP-Monitors
 - Object layer on top of relational DBS
 - Object relational DBS

© Ozsu, Valduriez 1998
Horizontal Distribution at different Layers

Supporting multiple client types / client interfaces
Separating application logic
Data Distribution and replication

System Design

- Each box is a part of the system
- The more boxes,
 - the more modular the system
 - better distribution and parallelism
 - Better encapsulation, component based design, reuse
 - Fault-tolerance?
- The more boxes, the more arrows
 - More session and connection maintenance
 - More coordination
 - More complex to monitor and manage
- The more boxes,
 - the more context switches
 - More intermediate steps for each task
 - Performance problems
- Need to balance the advantages and disadvantages of the different architectures
Accessing more than one resource

- Problems:
 - The resource managers don’t know about each other and a potential common business logic
 - Each client has to implement this
 - The resource managers are probably different
 - Each client has to deal with heterogeneous environment
 - Very inefficient and complex

1-layer coordination

- Parallel database systems / cluster database systems / distributed databases: e.g., all DBS are part of a single system.
 - Client connects to any DBS node
 - Transparent forward of remote requests
 - Transparent load balancing, distributed query execution
 - Oracle
 - transparent replication
 - Supports distribution
 - Provides communication network between different database servers
 - Provides parallel database system
Data Warehouse

- Data Warehouse collects and copies data from data sources; further processing of data for advanced analysis
- Execution and data flow:
 - Updates and standard queries: to local DBS
 - Complex queries: to data warehouse
 - Data warehouse does not forward queries but accesses own copy
 - Changes in data sources via push/pull integrated into data warehouse

Middleware approach

- Middleware is just a level of indirection separating client from several servers
- Advantages
 - Simplify design of clients by reducing interfaces (only sees middleware)
 - Transparent access to underlying systems
 - Centralizes control
 - Functionality available to all clients
 - Is able to handle heterogeneity
 - Advanced System Services
 - Takes care of locating resources, accessing them, gathering results
- Disadvantages
 - Another indirection
 - Single Point of Failure
Components of a Multi-DBMS

- **Tasks**
 - Divides user query into sub-queries to underlying (heterogeneous) data sources
 - Collects and results and performs post-processing (additional query processing: necessary for join over tables from different sources)
 - Distributed transaction management for isolation and atomicity
 - Contains meta information in order to perform tasks automatically

- **Existing systems**
 - Many research prototypes
 - Commercial systems for heterogeneous query processing OR for distributed transaction processing
 - J2EE Application Server
 - Restricted support for transaction isolation in case of caching (relies on underlying DBS)
 - Programmer must explicitly state for each DB call which DBS to access
 - No post-processing of queries from different data sources (programmer must do this)
J2EE

Browser

Application
Client

Web-Server:
Presentation Logic: Servlets, JSP
Business Logic: Servlets

Application-Server:
Business Logic: Enterprise Java Beans
Resource Management: Transaction Management, Access Control

LAN

Database

Application Server Examples
(not only J2EE)

- BEA Tuxedo (TP-Monitor)
- BEA Weblogic (J2EE)
- Bluestone Sapphire/Web
- ColdFusion
- Compaq (Tandem) Pathway
- Compaq (DEC) ACMS
- IBM CICS (TP-Monitor)
- IBM IMS/DC (TP-Monitor)
- IBM Websphere (J2EE)
- Iona iPortal App Server
- iPlanet (Sun/Netscape) (J2EE)
- Microsoft COM+ (formerly MS Transaction Server, or MTS)
- Oracle Application Server
- SilverStream
- WebObjects
- And many others. See serverwatch.internet.com

COMP-614: Distributed Data Management
Distributed Application Logic

- Distribution of system services similar to DBS case

COMP-614: Distributed Data Management