Video Tooning

Jue Wang, Yingqing Xu, Heung-Yeung Shum, Michael F. Cohen

Siggraph 2004

Presentation prepared by Kaleigh Smith, McGill University
Stylized Rending of Video

• Example and Motivation: Waking Life.
• Proprietary software by Bob Sabiston.

→ Show Waking Life clip.
Outline

• System overview
• Related work
• Video segmentation
• User specification of video semantics
• Stylized rendering
• Summary and Discussion
System Overview

Input Video

Compute Spatio-temporal Segmentation
System Overview

Input Video

Compute Spatio-temporal Segmentation

Indicate Semantic Regions on Keyframes
System Overview

Input Video

Compute Spatio-temporal Segmentation

Indicate Semantic Regions on Keyframes

Mean Shift Constrained Interpolation into 3D Regions
System Overview

Video Segmentation and Semantics

- Input Video
 - Indicate Semantic Regions on Keyframes
- Compute Spatio-temporal Segmentation
- Mean Shift Constrained Interpolation into 3D Regions
- Compute Edge Sheets
 - Define Background
 - Or-
 - Define Region Filling

Toon Video
- -or-
System Overview

Criteria of successful system:

• Spatio-temporal consistency.
• Higher level semantic representation.
• Control over the style of the result.

→ Show Video Tooning clip.
Outline

- System overview
- Related work
- Video segmentation
- User specification of video semantics
- Stylized rendering
- Summary and Discussion
Related Work

Video Segmentation and Spatio-temporal Coherence

– *Stylized Video Cubes*, A.W. Klein et al.

– *Spatio-temporal segmentation of video by hierarchical mean shift analysis*, D. DeMenthon, R. Megret.
Related Work: Mean Shift

- The mean shift point (cluster center) for P_1 is found by repeatedly re-centering the kernel at the centroid of points inside the kernel of P_1.
- Kernel of influence gives spatial and colour distance measure.
- Pixels with same mean shift point belong to same segment.

DeMenthon
Related Work

Stylized Rendering

– Waking Life

– *Stylization and Abstraction of Photographs*, D. DeCarlo and A. Santella.

Variable level of detail is a common goal of NPR styles.
Very Related Work

Video Paintbox Project, J.P Collomosse, D. Rowntree and P.M. Hall.

• Difference is that mean-shift segmentation is done in 2D on keyframes and associations are created between segments according to segment colour, shape and location.

Show Video Painbox clip.
Outline

• System overview
• Related work
• Video segmentation

• User specification of video semantics
• Stylized rendering
• Summary and Discussion
Video Segmentation

• Goal: create a representation that will provide a basis for spatio-temporal coherence.

• Application of standard mean shift image segmentation to 3D (x,y,t) video space.
Anisotropic Mean Shift Video Segmentation

• Kernel bandwidth and shape for each pixel adapts to local video structure (density of similar pixels).
Anisotropic Mean Shift Video Segmentation

- Segments more smooth
- Variable coarseness (level of detail in foreground vs. background)
- Thin objects better segmented
Anisotropic Mean Shift Video Segmentation

- Segments more smooth
- Variable coarseness (level of detail in foreground vs. background)
- Thin objects better segmented
Anisotropic Mean Shift Video Segmentation

- Segments more smooth
- Variable coarseness (level of detail in foreground vs. background)
- Thin objects better segmented
Anisotropic Mean Shift Video Segmentation

- Total absolute differences across 9 frames in a 10 frame sequence.
- Clean segmentation of moving girl.
Outline

• System overview
• Related work
• Video segmentation
• User specification of video semantics
• Stylized rendering
• Summary and Discussion
User specification of video semantics

- Create high level semantic REGIONS from low level segments.
- User inputs boundaries and keypoints.
 - These boundaries used to create 3D unions of mean-shift segments that belong to a region.
User specification of video semantics: Create 3D regions

- Interpolate user-defined boundary points and points on mean-shift segments to determine region at intermediate frames.

- **Goals:**
 - **Smooth** region shape (user points).
 - **Minimize temporal difference** (user points and points on mean-shift segments).
Outline

- System overview
- Related work
- Video segmentation
- User specification of video semantics
- Stylized rendering

- Summary and Discussion
Stylized Rendering

- Video is now represented as a set of pixelized 3D regions.

- Two major steps in rendering:
 1. Construct and smooth semantic region surfaces.
 2. Specify styles for rendered video.
Region surface reconstruction

- Pixelized semantic regions converted into **3D polyhedral surfaces** using the marching cubes algorithm.
- Smoothing of semantic regions.
Stylized Rendering

Video represented as semantic region surfaces.

Toon Video

Define Background

Define Region Filling

-or-

(or-

Define Background
Edge sheets

• Used to add solid strokes in final rendering.

• For temporal coherence of edges, construct 2D edge sheets (region wrappers).

DeCarlo & Santella edge style
Edge sheets

- Render edges in different styles.
- Edge style affected by:
 - edge importance weight
 - edge length, motion & direction
 - virtual light direction
Region colouring

- Semantic regions filled with weighted combination of colours:
 - user defined colour
 - original pixel or average pixel colour
 - define subregions with distinct colours
3D Paint Strokes

• User adds paint strokes within regions at keyframes – creates ‘Stroke Sheets’.
• Authors provide a method to ‘flow’ paint strokes between keyframes.
Outline

- System overview
- Related work
- Video segmentation
- User specification of video semantics
- Stylized rendering
- Summary and Discussion
Stylized Results

Show Video Tooning full video.
Performance

- Automated mean-shift runs overnight for 300 frame video.
- User interaction lengthy (2 hours) for short video example.
- Optimization of regions and edge and stroke sheets an additional ½ hour.
- No measure on perceived temporal coherence of stylized video.
Future Work

• Other stylistic choices for region filling, edges and paint strokes.
• Enhance interface to allow for segments to be cut (currently only segment joining).
• Video representation is resolution independent in space and time: working on vectorized encoding as a compression technique.
Discussion

• Very similar to the framework presented in Video Paintbox.
• The main contribution seems to be the use of a 3D video segmentation technique before user interaction and stylized rendering.
Discussion

• Video results are temporally coherent (at the expense of speedy video segmentation?)

• Enables users to specify semantics (easily? complicated regions that split into two?)

• Video results show a wide variety of styles (which styles can not be achieved?)
Questions?