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Towards Quality Control for DNA Microarrays
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ABSTRACT

We present a framework for detecting probes in oligonucleotide microarrays that may add
significant error to measurements in hybridization experiments. Four types of so-calledde-
generate probe behavior are considered: secondary structure formation, self-dimerization,
cross-hybridization, and dimerization. The framework uses a well-established model for
computing the free energy of nucleic acid sequence hybridization and a novel method for
the detection of patterns in hybridization experiment data. Our primary result is the iden-
tification of unique patterns in hybridization experiment data that are shown to correlate
with each type of degenerate probe behavior. A support function for identifying degener-
ate probes from a large set of hybridization experiments is given and some preliminary
experimental results are given for the Affymetrix HuGeneFL GeneChip. Finally, we show
a strong relationship between the Affymetrix discrimination measure for a probe and the
free-energy estimate from theoretical models of hybridization. In particular, probes on the
HuGeneFL GeneChip with high free-energy estimates (weak hybridization) have almost al-
ways approximately zero discrimination. The framework can be applied to any Affymetrix
oligonucleotide array, and the software is made freely available to the community.
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1. INTRODUCTION

T echnologies such as Affymetrix oligonucleotide arrays (DNA chips or GeneChips) have
launched several new fields in functional genomics. However, the amount of error in the measurements

of gene expression produced by these technologies represents a significant obstacle to understanding gene
regulatory mechanisms. This paper presents a framework for identifying several types of error common to
Affymetrix oligonucleotide arrays.

Essentially, an organism specific array (a.k.a. chip) contains a set of probesthat target most, if not all,
genes and other areas of biological interest (termed targets) in the genome of the organism. Each probe p

is an oligonucleotide of length 20–25 bp and is tethered to the chip at a specific location. The nucleic acid
sequence of each such probe is the Watson–Crick complement of a nucleotide sequence t that is located
ideally in exactly one position of one target in the genome of the organism. We term this complementary
strand t a tag and say that tag t matchesprobe p. Each target is typically represented by between 11 and
60 such tags.

A hybridization experimentconsists of harvesting, under some specific condition, a sufficiently large
sample of mRNA transcripts from the tissue or organism under study. In an experiment, the mRNA is
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preprocessed and labeled to form a sample of cRNA. This sample is stained and brought into contact
with the chip. Those cRNA tags present in the sample should then hybridize with (and only with) their
matching probes on the chip. The intensity of each RNA/DNA hybrid (termed probe–tag pair) is optically
measured. In an error-free scenario, this intensity is proportional to the true number of transcripts present
in the sample. A statistically robust method is then applied to the set of probe–tag pairs representing each
target to estimate the quantitative level of expression for that target. See, for example, Affymetrix (2002),
Li and Wong (2001a), and Li and Wong (2001b).

Variability among different hybridization experiments is commonly characterized as biological variability,
sample variability, or technical variability. We are primarily concerned here with technical variability.
Technical variability introduces error to hybridization experiments in the form of stochastic errorthat may
be caused by lab equipment or conditions, or bias error that may be caused by the design or construction
of the chip. Our concern here is with the detection (and eventually prediction) of bias error in experiments.
Several strategies exist in the literature for designing oligonucleotide microarrays that attempt to minimize
(or detect) technical bias error (BenDor et al., 2000; Hubbell and Pevzner, 1999; Sengupta and Tompa,
2000; Tobler et al., 2002). These methods, however, focus primarily on establishing design rules for the
de novoconstruction of universal microarrays or on the inclusion of probes to detect faults in the chip
construction phase. The work presented here introduces a framework to predict when probes and their
matching tags will exhibit degenerate behavior(their intensity readings are consistently not proportional to
the true number of transcripts present in the sample). The framework uses both probe sequence information
supplied by NetAffx (2001) and a large set of hybridization experiments. The framework will provide us
with a tool for the in silico evaluation of the quality of a chip before it is manufactured. The predictions
also act as a filter to remove some types of error common to gene expression studies.

This paper considers four types of degenerate behavior that we conjecture to add a significant amount of
error to intensity measurements in hybridization experiments: secondary structure formation (a tag or probe
strongly hybridizes with itself), self-dimerization (two copies of the same tag hybridize), dimerization (two
distinct tags in the sample hybridize), and cross-hybridization (two distinct tags t, t ′ with matching probes
p, p′, respectively, tend to hybridize with both p and p′). A well-designed microarray should prevent the
occurrence of these four types of degeneracy.

Each of the four degenerate behaviors may contribute to error in gene expression measurements in a
distinct way. As a simple example, consider a set of tags t1, . . . , tl representing some target g where t1
is known to form a strong secondary structure. We assume further that the remaining tags do not have
an affinity to form secondary structure. Let p1, . . . , pl be the matching probes for t1, . . . , tl , respectively.
During a hybridization experiment, t1 will have a tendency to hybridize with itself, and therefore it will
tend not to hybridize with its matching probe p1 on the chip at the same rate as ti , i > 1. The intensities
of probe–tag pair (p1, t1) would then be consistently lower than would be witnessed had a better tag been
chosen. Moreover, the intensities for this probe–tag pair should tend to be consistently lower than other
probe–tag pairs representing the same target. Therefore, the intensity of the entire target (computed as a
weighted average of the intensities of all tags representing that target) will tend to be lower than the true
number of transcripts present in the sample. We explore similar style arguments for the remaining types
of degeneracy in this paper.

For each of the four types of degeneracy, we conjecture that the pattern of intensity measurements for
degenerate probes over a sufficiently large set of hybridization experiments is distinct from the pattern of
intensity measurements for nondegenerate probes. This distinct pattern for degenerate probes is recognizable
by comparing the intensity of a probe to the intensities of the remaining probes in its probe group. For
example, a plausible pattern of degenerate behavior caused by secondary structure is illustrated as follows.
Consider once again a set of tags t1, . . . , tl representing some target g. If the intensity measurements of
the probe p1 associated with t1 rank extremely low w.r.t. the intensity measurements for probes associated
with t2, . . . , tl , especially when the target g is highly expressed, then it is possible that t1 is prone to form
secondary structure and therefore is not hybridizing with p1 at the same rate as the other tags hybridize
with their respective probes. When the target g is lowly expressed, we could expect that the rank of the
intensity for probe p1 would be more uniformly distributed between 1..l.

The above example begs the following questions: (i) How can we predict whether a tag or probe has an
affinity to exhibit degenerate behavior? (ii) What is the appropriate definition for the pattern of intensity
measurements for nondegenerate and degenerate probes? (iii) How do we detect these patterns and measure
the significance of such putative degenerate patterns?
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We begin in Section 2 by defining a conflict graphfor a chip. Each vertex in the conflict graph corre-
sponds to a probe on the chip. Edges in the conflict graph correspond to degenerate behavior of a probe (or
the corresponding tag) or pair of probes (the corresponding pair of tags). With respect to question (i), the
affinity for a probe (or pair of probes) to exhibit each type of degeneracy is estimated via a well-studied
method based on theoretical models for calculating the free-energy (�G) of a hybridization for either a
single sequence (secondary structure) or between two sequences (cross-hybridization, dimerization) (Math-
ews et al., 1999; Sankoff and Zuker, 1984; SantaLucia, 1998a, 1998b, 2002; Ship et al., 2002; Zuker et al.,
1999). An edge is added to the conflict graph if and only if the minimum free energy of hybridization that
causes degeneracy is below a conservative threshold.

Section 3 uses the Affymetrix HuGeneFL GeneChip (NetAffx 2002) and a set of 126 hybridization
experiments (i.e., cell files) from three separate laboratories. The HuGeneFL GeneChip is a relatively old
chip for which there are many hybridization experiments available to the general public. We examine the
structure of the conflict graph induced by the HuGeneFL chip and our theoretical model of hybridization.
We find several interesting facts including that the putative degenerate probes tend to have low �G

estimates, the conflict graph tends have many low degree vertices, and furthermore, that the conflict graph
is highly disconnected.

W.r.t. question (ii), Section 4 gives both an intuitive justification and a formal definition of the patterns
for degenerate and nondegenerate probe behavior in hybridization experiments. We begin by showing that
the set of predicted nondegenerate probes displays a pattern of intensity measurements distinct from the
pattern of intensity measurements for probes predicted to be degenerate. We also show that the set of probes
predicted via the theoretical hybridization model to exhibit degenerate behavior do in fact follow our pattern
for degenerate probe behavior. More precisely, the distribution of ranks for a probe predicted to have an
affinity for a specific degenerate behavior is different than the distribution of ranks for nondegenerate
probes (the background distribution), and furthermore, this distribution of ranks agrees with our intuition.

As a chip is increasingly used by the community and the raw intensity values (i.e., the cell files) are made
publicly available, this library of knowledge should give us the ability to distinguish between degenerate
and nondegenerate probes on the chip. To realize such a strategy, we investigate how well the patterns
of degenerate and nondegenerate probes (for each type of degenerate behavior) can be used alone to
measure the affinity for a probe to exhibit degenerate behavior. In Section 5, we define support functions
for estimating the log-likelihood ratio that a probe has an affinity for a specific type of degenerate behavior
(secondary structure, dimerization, cross-hybridization) given only a large set of hybridization experiments.
The results in Section 5 indicate that many additional hybridizations are required, if our support functions
are to function correctly. We provide a weak lower bound on this number in Section 5.2.

In Section 6, we incorporate discrimination into our framework and investigate its relationships with
our estimates of free energy for hybridizations. The notion of discrimination introduced by Affymetrix
measures the ability of the intensity for a probe to represent the true number of mRNA transcripts present
in a sample. Essentially, the ratio of intensities for a perfect match probe and a mismatch probe is used to
estimate the specificity of the probe. We give experimental evidence of a correlation between probe–tag
pairs with high �G estimates (weak hybridization properties) and discrimination values that are almost
always approximately equal to zero (the perfect match and mismatch intensities are equal).

Finally, in Section 7, we state a number of open problems and future directions.

2. NOTATION AND TOOLS

2.1. Probes, tags, and groups

Let 
dna = {A,C,G, T } and 
rna = {A,C,G,U}. A probep of length n is a string p = p1p2 . . . pn ∈

n

dna . A tag t of length n is a string t ∈ 
n
rna . The reverset r of t is the string tntn−1 . . . t1. The Watson–

Crick (wc-) complement̄q of q is the string obtained from qr by interchanging A↔ T and C ↔ G. We
say that two strings s and t are a wc-complementaryiff s̄ = t . We say that probe p matchesa tag t (or t
matches p) iff t is the wc-complement of p after replacing U with T .

Let T = {t1, . . . , tl} be a set of tags, ti ∈ 
n
rna . Let P = {pi : pi matches ti ∈ T } be the set of

corresponding probes. The probes are fixed to the chip whilst the tags are derived from the mRNA in
the sample. Let G = {g1, . . . , gm} be the set of targets (genes or other areas of biological significance).
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For our purposes, each g ∈ G is represented by a (unique) set of tags Tg ⊆ T . For all g, g′ ∈ G, g �= g′,
Tg ∩ Tg′ = ∅. Let Pg represent the set of probes which match the set of tags Tg; i.e., Pg = {p ∈ P :
p matches some t ∈ Tg}. We call Tg the tag groupand Pg the probe groupfor g and Tg and Pg are said
to target g.

Definition 1 (Chip). A chip C = 〈G,P, {Pg : g ∈ G}, T , {Tg : g ∈ G}〉 is comprised of a groupG
of genes, setsP and T of probes and tags, and sets of probe groupsPg ∈ P and tag groupsTg ∈ T for
each geneg ∈ G.

2.2. Models of hybridization

Affinity for duplex formation is most commonly measured in terms of duplex stability or hybridization
strength by free energy�G in kcal/mol (SantaLucia, 1998). Throughout this paper, all �G measurements
are in kcal/mol. This is defined as the total change in energy from duplex to single-stranded states. In a
series of papers (SantaLucia et al., 1996, 1998a, 1998b, 2002), the thermodynamic hybridization parameters
for most DNA 2-mers against most 2-mers including both wc-complementary 2-mers and mismatch 2-
mers, and various misalignments were determined. These parameters are used with the nearest-neighbor
model (N-N) for calculating the �G for a pair of (not necessarily wc-complement) nucleic acid sequences.
The N-N model predicts the �G of an alignment of a pair of nucleic acid sequences by summing the
thermodynamic hybridization parameters for each occurring 2-mer against the 2-mer to which it is aligned
and thermodynamic parameters for the energy required to initiate duplex formation. Essentially, lower �G

scores for two nucleic acid sequences indicate a stronger hybridization between the nucleic acid sequences.
The N-N model is believed to give accurate predictions of duplex free energy for nucleic acid sequences
of length 5–60 (SantaLucia et al., 1996).

Observation 1. The minimum�G over all alignments between nucleic acid sequencest = t1 . . . tn
and s = s1 . . . sm can be found inO(nm) time andO(n+m) space.

The algorithm denoted by DP uses standard dynamic programming with a constant gap penalty. As a
bulge between two short nucleic acid sequences is unlikely, the internal-gap penalty is extremely high.
The algorithm takes into consideration ionic and temperature conditions. The computation of free energy
between two tags t, t ′ ∈ T is an RNA versus RNA alignment whereas the computation of free energy
between a probe p ∈ P and a tag t ∈ T is a DNA versus RNA alignment. Since the complete parameters,
including mismatch parameters, required to compute the free energy for RNA versus DNA and RNA versus
RNA alignments were not publicly available, we use the parameters for DNA versus DNA alignments as
a good approximation (Sugimoto and Nakano, 1996). Therefore, input to DP may be over 
dna or

rna ; however, in the latter case, the sequence is translated from 
rna to 
dna by replacing U with T .
We realize that the N-N model applied to the wc-complement of probes does not take into account the
“trailing sequence” of an actual cRNA tag in a sample. We also realize that DNA/DNA parameters will not
give us exact measurements for DNA/RNA and RNA/RNA structures. This is acceptable, as we require a
relative measure of stability, not an absolute measure.

We implemented an algorithm for the prediction of secondary structure that is built upon the standard
method for the prediction of RNA secondary structure (Sankoff and Zuker, 1984) with the DNA parameter
set of SantaLucia et al. and the N-N model. We assume that more complicated secondary structures will
not form in short sequences (length 25). Under this assumption, our program returns the minimum free
energy over all hairpin structures (without pseudo-knots) for a nucleic acid sequence. We represent this
as function S : 
n

dna → R; S(p) is the affinity for probe p to form secondary structure. Let t be the tag
matching p. It is clearly the case that the affinity for t to form secondary structure will differ from the
affinity for p to form secondary structure for several reasons: (i) the probe p is tethered to the chip while
tag t is not, (ii) tag t ∈ 
∗rna , p ∈ 
∗dna , and (iii) the free energy of a secondary structure formation for t
will be affected by a “tailing” ribonucleic acid sequence. However, for ease of exposition, we use S(p) as
an approximation for the affinity for tag t to form secondary structure. That is, we assume S(p) ≈ S(t).
We write that a probe p has high affinity to form secondary structure to mean either t or p may form
secondary structure.
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We use the algorithm DP to predict the pairwise behavior of two distinct probes p, p′ ∈ P . Let
t, t ′ ∈ T be the respective matching tags of p and p′. For p, p′, the function for cross-hybridization
X (p, p′) = min(DP(p, t ′),DP(p′, t)) computes the affinity for t ′ to hybridize with p and t to hybridize
with p′. Similarly, for dimerization, let D(p, p′) be the result of computing DP(t, t ′) where t, t ′ matches
p, p′, respectively. In the case of dimerization, we allow that p = p′. For ease of notation, we say that
probe p has an affinity to self-dimerize. A probe p is degenerate if any value for S(p), D(p, p), X (p, p′),
or D(p, p′) indicates an affinity for one of the degeneracy causing hybridization behaviors.

2.3. Conflict graph for a chip

To organize the properties of probes and relationships between probes on a chip we use a conflict
graph. Given a chip C = 〈G,P, {Pg : g ∈ G}, T , {Tg : g ∈ G}〉, we create an edge labeled multigraph
M = (V ,E, τ, κ). Each probe p ∈ P on the chip corresponds to a vertex p ∈ V . Here, κ is a function
labeling the edges of M , κ : E → {s, x, d}, and τ = {τs, τx, τd} is a set of suitable threshold parameters
for the S, X , D functions from Section 2.2.

Formally, we include an edge (p, p) ∈ E, p ∈ P , if S(t) < τs , where t matches p and set κ(p, p)← s.
If X (p, p′) < τx , then we include an edge (p, p′) ∈ E and set κ(p, p′) ← x. If D(p, p′) < τd , then
we include an edge (p, p′) ∈ E and set κ(p, p′) ← d. In the case of self-dimerization(two copies of t

dimerize), we add a self-loop to p and assign κ(p, p) ← d. We may also wish to introduce a threshold
for self-dimerization τsd that differs from τd . We describe how to chose the �G thresholds, τs, τx, τd ,
experimentally with respect to chip C in Section 3.1. These sets of secondary structure, self-dimerization,
cross-hybridization, and dimerization edges are denoted by S, SD, X, and D, respectively.

3. ANALYSIS OF AFFYMETRIX HUGENEFL GENECHIP

Our experiments are based on a set of 126 Affymetrix Inc. (TM) hybridization experiments made publicly
available by Lemon et al. (2002), Ship et al. (2002), and Virtaneva et al. (2001). These hybridization
experiments used the Affymetrix HuGeneFL chip (TM); this is a human-specific chip and has a probe set P ′
of size 131,542 used to represent a set G′ of 7,129 genomic targets or groups. We chose the HuGeneFL chip
since it targets a significantly high number of genes, the probe sets (and sequence) are available at NetAffx
(2002), and a large set of gene expression datasets are publicly available. Affymetrix defines a probe group
Pg for each g ∈ G′. For our experiments, we consider only those probe groups of size 20 from HuGeneFL.
That is, chip C has targets G = {g ∈ G′ : |Pg| = 20} and probes P = {p ∈ P ′ : p ∈ Pg for some g ∈ G}.
The tag set T , tag groups {Tg}, and probe groups {Pg} are formed from G and P . After these restrictions
and the removal of several Affymetrix control groups, we are left with |G| = 6,378 and |P | = 127,560 of
which 127,386 are unique DNA sequences. (However, G does contain 58 Affymetrix control groups.)

3.1. Analysis of�G: Choosing thresholds

This subsection gives our rationale for choosing the thresholds τs , τd , and τx for deciding whether a
probe has an affinity for secondary structure, dimerization, or cross-hybridization. We begin by studying
the function DP(p, p̄) for the calculation of free energy (�G) for a randomly chosen set of 108 probes
p ∈ 
25

dna and their wc-complements p̄. We do this in order to determine whether the distribution of
�G over a large random set of length 25 probes is the same as the distribution of �G for the specific
probes on the HuGeneFL chip. We find that DP(p, p̄) is normally distributed about a mean of −29.2981
with minimum and maximum values of −45.083 and −15.603 over all p (Fig. 1 in Smith and Hallett
[2004]). The average �G for the set of all probe–tag pairs for the HuGeneFL chip C is −29.1549 with
range of −42.003 and −18.993. From Fig. 2 in Smith and Hallett (2004), we conclude that the random
set of probes is a good approximation to the probes in HuGeneFL. For chip C, let τc be the �G for
the weakest probe–tag pair. For HuGeneFL, τc ≈ −19. We note that for newer chips, the calculation of
the thresholds should be redone, since newer probe construction strategies bias the set of probes towards
having higher GC content. We now compute X (p, p′) and D(p, p′) for all distinct p, p′ ∈ P . In total, 239
of approximately 8× 109 pairs of probes have X (·, ·) ≤ τc and, in total, 487 such pairs have D(·, ·) ≤ τc.
Figures 1(a) and (b) depict the distribution of X (·, ·) and D(·, ·) for such pairs.

✄

✂

�

✁F1
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FIG. 1. Histogram (a) for cross-hybridization, depicts the number of probe pairs p, p′ ∈ P , p �= p′, where
X (p, p′) ≤ τc versus �G. Histogram (b) for dimerization, depicts the number of probe pairs p, p′ ∈ P , p �= p′,
where D(p, p′) ≤ τc versus �G.

Example 1 (Cross-hybridization). For probep = GAAAGCGGAACTGT T T CGGAGAAGG in
probe group U22029_ f_at and probep′ = GAAAGCGGTACTGT T T CGGAGAAGG in probe group
M33317_ f_at,X (p, p′) = −27.0336. For probep = CCCTGCTGCTCATCGAGTCGTGGCT in
probe group J03071_cds3_ f_at and probep′ = CCCTGCTGCTCATCCAGTCGTGGCT in probe
group J00148_cds2_ f_at,X (p, p′) = −28.6136. In both of these examples, probesp and p′ differ by
exactly one base and belong to different probe groups.

Example 2 (Dimerization). An example of possible dimerization is that probep = CGAAGCGGA
✄

✂

�

✁AU1
AT TCTCCATGCCCGAG in probe group M24899_at and probep′ = CTCGGGCATGGAGAAT T

CCGCT TCG in probe group X72632_s_at haveD(p, p′) = −32.4935. Note that probesp and p′ are
wc-complements.
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FIG. 2. For self-dimerization, histogram (a) depicts the distribution of �G estimates from D(p, p) for 108 randomly
chosen p ∈ 
25

dna
, and (b) depicts the distribution of �G estimates from D(p, p) for all probes p ∈ P .

Several additional examples of such probe pairs are also given below Fig. 3 of Smith and Hallett (2004).
Consider now the case of self-dimerization (dimerization between two copies of the same probe). We

begin by comparing the distribution of the �G estimates for a set of 108 randomly chosen probes p ∈ 
25
dna

and the distribution of the �G estimates for D(p, p) for all p ∈ P . Figure 2 depicts these two histograms.
✄

✂

�

✁F2
We find that the distribution of �G estimates D(p, p), for p ∈ P , is slightly more concentrated around
its mean than the distribution of �G estimates for the random probe set. In particular, we find that the
minimum �G measured by D(·, ·) over all probes in P is −16.303 compared to −27.763 for the random
set. Although there is no probe in set P such that D(p, p) ≤ τc, the similarity of these two distributions
is an indication that there do exist probes that have a high affinity to self-dimerize. Note, however, that
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the minimum �G measured by D(·, ·) over all probes in P is still much higher than the lowest possible
such �G estimates.

Example 3 (Self-dimerization). An example of a probe measured to have low estimates fromD(p, p)

in the case of self-dimerization isp = TGTGTGGCGGTGACACCGTCACCCA with D(p, p) =
−15.6435. In this example, if two copies ofp were to align with each other in opposing directions, they
can hybridize with only four mismatches.

The range of �G estimates for secondary structure formation of a probe differs from the distribution of
�G estimates for hybridizations between a probe and its wc-complement. To examine �G estimates for
secondary structure, we apply S(p) to a set of 108 randomly chosen probes p ∈ 
25

dna and compare the
distribution of the �G estimates with the distribution of �G estimates obtained from computing S(p),
for all p ∈ P from chip C. Figure 3 depicts these two histograms. As is the case with self-dimerization,

✄

✂

�

✁F3
the lowest �G estimate obtained from S(·) over set P is much higher that the lowest �G measured by
S(·) over the random set of probes. We find that −8.678 ≤ S(p′) ≤ 8.525 for all probes p′ ∈ P . This
should be compared with −14.579 ≤ S(p) ≤ 11.335 for the 108 randomly chosen probes p ∈ 
25

dna .

Example 4 (Secondary structure formation). Examples of probes measured to have lowS(·) include
p = GCCACCACACTGGTGTGCTGGCTGT with S(p) = −8.67883 andp′ = GCGAGGAAGC

T TCCTCGCAACT T TG with S(p′) = −7.36687. It is the case that bothp andp′ can form a secondary
structure where only very few base pairs are mismatched.

3.2. Analysis of the conflict graph

Let M be the conflict graph constructed from the HuGeneFL chip C as in Section 2.3. Table 1 displays
✄

✂

�

✁T1
the size of sets S, SD,X,D for various values of τs, τsd , τx and τd . Using Table 1 and the analysis of
the previous subsection, our analysis is done w.r.t. the conflict graph M induced by τs = −6, τsd = −14,
τx = −23, and τd = −33.

For these threshold values, let S′ = {p ∈ V (G) : (p, p) ∈ S} be the set of probes predicted to exhibit
secondary structure, and SD′ = {p ∈ V (G) : (p, p) ∈ SD} be the set of probes predicted to exhibit
self-dimerization. We find that S′ ∩SD′ = ∅, and therefore no single probe is predicted to have an affinity
for both secondary structure formation and self-dimerization. We also find that every probe group Pg ,
g ∈ G contains at most one probe in S′ and one probe in SD′. For probe p ∈ S′ with matching tag t ,
the average over all �G estimates obtained from DP(p, t) is −33.67294. If we consider Fig. 7 of Smith
and Hallett (2004), we see that these probe–tag pairs tend to have low �G estimates that range between
−37.5535 and −29.1635. This indicates that they tend to be strong probe–tag pairs. In fact, the average
over all �G estimates obtained from DP(p, t) for probes p ∈ SD with matching tags t is also very low
at −32.52438 with a range of −35.2135 to −28.6135 (Fig. 8 of Smith and Hallett [2004]).

Similarly, let D′ and X′ be the sets of probes predicted to exhibit dimerization and cross-hybridization,
respectively. Consider a probe group Pg such that there exists a probe p ∈ Pg and p ∈ D′. We find
that any such probe group Pg contains between 3 and 10 probes in D′. The majority of probe groups Pg

with a probe p ∈ Pg such that p ∈ X′ do not contain additional probes in X′. However, a small number
of probe groups do contain as many as six probes in X′. The probe–tag pairs for probes p ∈ D′ with
matching tags t tend to have low �G estimates, as the values of DP(p, t) range between −38.2435 and
−33.0435 with an average value of −34.5052 (Fig. 6 of Smith and Hallett [2004]). Although the average
value of DP(p, t) for probes p ∈ X′ with matching tags t is very low and is close to the average value
for dimerization at −31.6018, the range of values for X′ (−36.1735.. − 25.7035) is much larger (Fig. 4
of Smith and Hallett [2004]).

We now consider vertices incident to cross-hybridization and dimerization edges. Let Mx be subgraph of
M restricted to edges labeled x. Formally, V (Mx) = V (M) and E(Mx) = {(p, p′) ∈ E(M) : κ(p, p′) =
x}. It is the case that the majority of nonzero degree vertices in Mx have degree one, although the maximum
degree of Mx is three. Let Md be M restricted to edges labeled d and excluding self-loops, V (Md) = V (M)

and E(Md) = {(p, p′) ∈ E(M) : κ(p, p′) = d and p �= p′}. For the HuGeneFL chip, all the vertices in
Md have either degree zero or one. There are no vertices in Mxd = Mx ∪Md incident to both x and d

labeled edges. Table 2 displays the number of vertices with degree i in Mx , Md and Mxd.
✄

✂

�

✁T2



QUALITY CONTROL FOR DNA MICROARRAYS 953

FIG. 3. For self-hybridization, histrogram (a) depicts the percentage of �G estimates obtained from S(p) for 108

randomly chosen p ∈ 
25
dna

, and histogram (b) depicts the percentage of �G estimates obtained from S(p) for all
probes p ∈ P .

Table 1. Sizes of Edge Sets from the Conflict Graph M Induced by Various
Threshold Values in kcal/mol for Chip C

τs (kcal/mol) |S| τsd (kcal/mol) |SD| τx (kcal/mol) |X| τd (kcal/mol) |D|
−7 5 −16 2 −30 3 −36 10
−6 33 −14 12 −23 27 −33 87
−5 92 −12 38 −20 83 −30 224
−4 318 −10 114 −18 458 −28 281

−8 325
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Table 2. Number of Vertices with Degree Exactly i and Average �G for Probes
Represented by Vertices with Degree Exactly i for Subgraphs Mx , Md and Mxd

Degree |V (Mx)| Ave.�G |V (Md)| Ave.�G |V (Mxd)| Ave.�G

0 127503 −29.140 127386 −29.134 127329 −29.137
1 53 −31.442 174 −34.50 227 −32.971
2 3 −29.376 0 3 −29.376
3 1 −29.953 0 1 −29.953

4. PATTERNS IN HYBRIDIZATION EXPERIMENTS

This section gives the formal definitions for the pattern of both nondegenerate probes and degenerate
probes over a set of hybridization experiments. We use this framework to examine the sets of probes
predicted to be degenerate and to experimentally examine the Affymetrix HuGeneFL chip in Section 5.

Let H = {H1, . . . , HK} be the set of hybridization experiments for a chip C. The output of a hybridiza-
tion experiment Hi is simply an intensity value for every probe on chip C. The intensity of probep in
hybridizationHj is represented by Ij (p) ∈ R. An estimate of the intensity for each target g ∈ G is cal-
culated from the members of the probe group of g, Pg . The intensity of targetg ∈ G in experimentHj is
represented by Ij (g) ∈ R. For simplicity, we use an uncorrected quantitative measurement of the intensity

of the target. For our purposes, Ij (g) = 
p∈Pg Ij (p)
|Pg | . Using the minimum and maximum intensity levels

for a probe p (for a target g) over the set of hybridizations, the intensity measurements of a probe (of a
target) for all hybridizations are scaled to the (0 . . . 1] interval. In a standard hybridization experiment, the
expression level of a target is determined via a robust statistical method taking into account, for instance,
discrimination of the probe–tag pair (Affymetrix, 2002; Li and Wong, 2001a, 2001b). We could also make
use of these robust variants for calculating Ij (g). These issues are discussed in greater detail by Smith and
Hallett (2004) where this framework is integrated with the model from Li and Wong (2001a, 2001b).

At each experiment Hi ∈ H and each target g ∈ G, the intensity of each probe p ∈ Pg is rankedrelative
to the intensity of all remaining probes Pg \ {p}. For simplicity of exposition, we assume that all intensity
measurements for a probe group are distinct.

Definition 2 (Rank). The rank of a probep ∈ Pg in experimentHj (written ρj (p, g)) is i iff there
exist exactlyi − 1 distinct elementsp1, . . . , pi−1 ∈ Pg \ {p} s.t. Ij (pk) < Ij (p), for 1 ≤ k ≤ i − 1. When
the probe group is clear from the context, we denote the rank simply asρj (p).

We discretize the hybridization experiments into blocks according to Ij (g) and use b ∈ Z to represent
the desired number of blocks of the (0..1] interval.

Definition 3 (Block). For a geneg in hybridizationHj , we say thatIj (g) is in block b′ iff b′−1
b

<

Ij (g) ≤ b′
b

.

The following definitions relate the rank of a probe p to the intensity of the target of p. We assume
everywhere that the size of all probe groups is l.

Definition 4 (Occurrence). We say that a probep in hybridizationHj is a rank i, block b′ occurrence
iff ρj (p) = i and Ij (g) is in blockb′, wherep ∈ Pg, 1 ≤ i ≤ l and 1 ≤ j ≤ K.

Definition 5 (Pairwise occurrence). We say that a pair of probes(p, p′) in hybridizationHj is a
rank i, block pair (b1, b2) occurrence iff either

(i) p is a rank i, block b1 occurrence and Ij (g
′) is in blockb2, or

(ii) p′ is a rank i, block b1 occurrence and Ij (g) is in blockb2,

wherep ∈ Pg, p′ ∈ Pg′ , 1 ≤ i ≤ l and 1 ≤ j ≤ K.
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We are interested in the number of times a set of probes is observed to have a specific rank over a set
of hybridizations.

Definition 6 (Rank count vector). For P ′ ⊆ P andH ′ ⊆ H let yP
′,H ′

b′ be the rank count vector where

y
P ′,H ′
b′ [i] is the number of ranki, blockb′ occurrences over all probesp ∈ P ′ and all hybridizationsh ∈ H ′.

Definition 7 (Pairwise rank count vector). For P ′ ⊆ P × P andH ′ ⊆ H , let yP
′,H ′

(b1,b2)
be the rank

count vector whereyP
′,H ′

(b1,b2)
[i] is the number of ranki, block pair(b1, b2) occurrences over all probes pairs

(p, p′) ∈ P ′ and all hybridizationsh ∈ H ′.

The rank count vector (or pairwise rank count vector) describes the distribution of ranks for a set of
probes over a set of hybridization experiments. However, we require a family of distributions that allows
us to formally describe behavior such as “the ranks for a set of probes over a set of hybridizations tend to
be uniformly distributed,” or “the ranks for a set of probes tend to always be low.” The beta distribution
with parameters α and β turns out to be very useful for describing this family of distributions, since it is a
very flexible, continuous distribution defined over a fixed range and it has a wide variety of shapes useful
for describing any pattern of ranks.

The probability density function of the beta distribution, the beta density function, with parameters
α, β > 0 is defined as

fα,β(u) = 3(α + β)

3(α)3(β)
uα−1(1− u)β−1, 0 < u < 1

where 3(·) is the Gamma function generalizing the factorial expression for the natural numbers. We define
fα,β as the beta distribution with beta density function fα,β(u). When α = β = 1, fα,β is the uniform
distribution. When α ≤ 1 and β is large (and vice versa), fα,β is an exponential distribution. We fit a beta
distribution to a rank count vector by estimating parameters α and β from the rank count vector. The α

and β parameters for a beta distribution can be estimated from sample x as follows

α̂ = x̄

(
x̄(1− x̄)

s2
− 1

)
and β̂ = (1− x̄)

(
x̄

1− x̄

s2
− 1

)
, (1)

where x̄ is the sample mean and s2 is the unadjusted sample variance.
We also require a measure of how well a particular rank count vector fits a particular beta distribution.

Towards this end, we define a discretization of the continuous beta distribution.

Definition 8 (Discretized probability vector). The lengthl probability vectorφα,β is derived from
fα,β (with beta density functionfα,β(u)) by

φα,β [i] =
∫ i/ l

(i−1)/ l
fα,β(u)du, for 1 ≤ i ≤ l.

We callφα,β the discretized probability vector of fα,β .

Throughout this paper, we plot the discretized probability vectors to ease comparison between distri-
butions. Figure 13 and Example 1 of Smith and Hallett (2004) depict the distribution function of beta
distributions for a variety of parameters α and β and an example of the discretized probability vectors.

4.1. Estimating statistical significance

We use the following simple method for estimating the statistical significance of the patterns described
below. For a probe p, we assume we know the rank of p within its probe group Pg over a set of k

hybridization experiments. We model this with k independent identically distributed random variables
X1, . . . , Xk with state space [1..l], l = |Pg|. Of course, hybridization experiments in practice may not
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be independent; this is a simplifying assumption. The probability for each state is described by vector
φ = 〈φ1, . . . , φl〉, 
iφi = 1. Let Y = Y1, . . . , Yl be random variables that count the number of times each
of the l values (i.e., the l ranks) occur over X1, . . . , Xk . The probability that Y [i] = y[i] for 1 ≤ i ≤ l is
given by multinomial distribution formula

PY,φ(y) = k!∏
i

(y[i]!)
∏
i

φ[i]y[i],

for a rank count vector y.
At various places throughout the paper, we have two discrete probability vectors θ = 〈θ1, . . . , θl〉 and

φ = 〈φ1, . . . , φl〉. Here, θ is treated as the null hypothesis and typically represents a relevant background
distribution of the rank of a probe over k hybridizations. The second vector φ represents the alternative
hypothesis and typically represents a distribution of the rank of a probe over k hybridizations for probes
known to exhibit a specific type of degenerate behavior (e.g., secondary structure, self-dimerization, cross-
hybridization, dimerization). We ask how often we would expect it to be the case that PY,φ(y) is greater
than PY,θ (y), for a rank count vector y generated randomly according to the distribution θ . Note that for
our test it is always the case that 
iyi = k.

More precisely, let 1Y,φ,θ (y) be the indicator function defined as

1Y,φ,θ (y) =
{

1 if PY,φ(y) > PY,θ (y)

0 otherwise
(2)

where y is a rank count vector generated randomly according to distribution θ . We compute the mean of
1Y,φ,θ , 1̄Y,φ,θ by generating a set of r rank count vectors with 
iyi = k and computing 
y1Y,φ,θ (y)/r ,
for sufficiently large r . If 1̄Y,φ,θ ≥ ε, then we say that the probability distributions represented by θ and
φ are significantly different for ε and k.

4.2. Background distributions: Patterns of nondegenerate behavior

Throughout the following, let C = 〈G,P, {Pg : g ∈ G}, T , {Tg : g ∈ G}〉 represent the Affymetrix
HuGeneFL chip and M be the conflict graph induced by C. Let H = {H1, . . . , HK} be our set of
hybridization experiments.

We assume that the vast majority of probes of a chip exhibit nondegenerate behavior. It follows from
this assumption that if we randomly select a large set of probes from P , then the aggregate distribution of
ranks for this set of probes is a reasonable approximation to the distribution of ranks for nondegenerate
probes. We call the distribution of ranks for nondegenerate probes the background beta distributionof
ranks over the set of all probes P .

Let P ′ be a randomly chosen set of probes from P s.t. it is not the case that p, p′ ∈ Pg for some g,

p �= p′. Let yP
′,H

i be the rank count vector of block i over the set of all hybridizations H for 1 ≤ i ≤ 3.
The background beta distribution of ranks of probe set P for block i is defined by the beta distribution
parameters α̂i , β̂i estimated from y

P ′,H
i (Equations 1).

The discretized probability vector φα̂i ,β̂i is calculated from the resulting background beta distribution
fα̂i ,β̂i for 1 ≤ i ≤ 3 (Definition 8). These discretized probability vectors φα̂i ,β̂i are depicted in Fig. 4. As

✄

✂

�

✁F4
expected, these distributions suggest that the ranks of nondegenerate probes are uniformly distributed. If
we consider a probe p ∈ P ′ that we “knew” somehow was nondegenerate, then we might expect that the
rank of p would be (close to) uniformly distributed over [1 : |Pg|], where p ∈ Pg for some g. Note also
that the distributions do not vary greatly between the different blocks.

It turns out that we can do better than the simple uniform background beta distribution described above.
In particular, we find that the distribution of ranks for a probe p over many hybridization experiments is
dependent on the hybridization strength of p and its matching tag t . The discretized probability vectors
calculated from the background beta distribution of probes for which DP(p, t) is low (little free energy;
strong hybridization) depicted in Fig. 9 of Smith and Hallett (2004) shows that the higher ranks have much
higher probability of occurring than do the low ranks. Therefore, if DP(p, t) is low, then a nondegenerate
probe p should have a tendency to exhibit high ranks over a set of hybridization experiments. Otherwise,
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FIG. 4. Discretized probability vectors φα̂i ,β̂i
calculated from fα̂i ,β̂i

the estimated background beta distribution of
the set of all probes P , for b = 3.

as depicted in Fig. 11 of Smith and Hallett (2004), the discretized probability vectors calculated from
the background beta distribution of probes for which DP(p, t) is high (weak hybridization) show that a
nondegenerate probe p should have a tendency to exhibit low ranks. These results confirm that �G is
correlated with the pattern of ranks for nondegenerate probes. We also find that the rank of a nondegenerate
probe does not vary greatly over different blocks (it is not a function of the intensity of its target). Figures
9 to 11 of Smith and Hallett (2004) depict this for the HuGeneFL chip and three blocks.

We now consider the background distribution of ranks for probes predicted to be degenerate. Let S′ =
{p ∈ V (G) : (p, p) ∈ S} be the set of probes predicted to exhibit secondary structure. Let τmin,S and
τmax,S specify the range of �G values calculated by DP(p, t) over each probe p ∈ S′ with matching
tag t . Let P ′S ⊆ P be the set of probes p ∈ P s.t. τmin,S ≤ DP(p, t) ≤ τmax,S . In other words, P ′S
represents the subset of probe–tag pairs with a �G estimate similar to that for probes in S′. Using the set
P ′S and Equations 1, we compute beta distribution parameters α̂S, β̂S . The resulting discretized probability
vector θS computed from f

α̂S,β̂S
serves as the background distribution for secondary structure. We repeat

this to determine background distributions θSD , θX, and θD for self-dimerization, cross-hybridization, and
dimerization, respectively. These distributions are shown in Figs. 5 and 6.

✄

✂

�

✁F5 & F6

4.3. Patterns for degenerate behavior

We now examine the pattern of ranks of probes predicted to be degenerate. We provide an intuitive
hypothesis for the pattern of ranks of a probe with an affinity for each one of the four types of degeneracy.
We justify these conjectures by showing that the rank count vectors of vertices incident to edges from
the sets S, SD,X,D of conflict graph M do in fact follow these distributions. We use three blocks in
the examination of single probe behavior (secondary structure and self-dimerization) and four blocks in
the examination of pairwise behavior (cross-hybridization and dimerization). Ideally, we would like to use
as many blocks as possible in order to clearly show the difference in intensity between blocks. However,
when b is too large, some blocks are empty.

4.3.1. Secondary structure.Consider a target g ∈ G with corresponding probe group Pg = {p, p1, . . . ,

pl−1} and suppose that it is known that p has a high affinity to form secondary structure. Furthermore,
suppose that p is the only degenerate probe in Pg . We conjecture that the intensity of p w.r.t. Pg will
follow two principles. First, if the target g is highly expressed in hybridization experiment Hj , the intensity
of probes Ij (pi), 1 ≤ i ≤ l − 1, will be higher than the intensity of p, Ij (p). This is due to the fact
that tag t is not hybridizing with p during the experiment at the same rate as other nondegenerate tags
hybridize with members of Pg . Therefore, the rank of p in this experiment, ρj (p), is expected to be very
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FIG. 5. Discretized probability vectors θS and θSD calculated from the estimated background beta distribution for
the set of probes P ′

S
⊆ P such that for p ∈ P ′

S
with matching tag t , τmin,S ≤ DP(p, t) ≤ τmax,S and from the

estimated background beta distribution for the set of probes P ′
SD

⊆ P such that for p ∈ P ′
SD

with matching tag t ,
τmin,SD ≤ DP(p, t) ≤ τmax,SD .

 

FIG. 6. Discretized probability vectors θX and θD calculated from the estimated background beta distribution for
the set of probes P ′

X
⊆ P such that for p ∈ P ′

X
with matching tag t , τmin,X ≤ DP(p, t) ≤ τmax,X and from the

estimated background beta distribution for the set of probes P ′
D
⊆ P such that for p ∈ P ′

D
with matching tag t ,

τmin,D ≤ DP(p, t) ≤ τmax,D .

low. Second, if the target g is lowly expressed in hybridization experiment Hj , the difference in intensity
between members of Pg will be small.

Let S′ = {p ∈ V (G) : (p, p) ∈ S} be the set of probes predicted to exhibit secondary structure. Let
G′ ⊆ G be the set of targets induced by S′. We bin the intensity values for all targets g ∈ G′ into b

blocks (Definition 3). For S′ and hybridization set H , let yi = y
S′,H
i be the rank count vector as defined in

Definition 6, for each i, 1 ≤ i ≤ b. Using Equation 1, we compute parameters α̂i , β̂i for a beta distribution.
The resulting discretized probability vectors φ

α̂i ,β̂i
calculated from f

α̂i ,β̂i
for 1 ≤ i ≤ b = 3 depicted

in Fig. 7 reaffirm our intuition. When i = 1 (the targets are lowly expressed), the beta distribution is near
✄

✂

�

✁F7
uniform α = 1.392, β = 1.4247 (the ranks are almost uniformly distributed). When i = 2 (the targets are
moderately expressed), the beta distribution is now nonuniform α = 1.037, β = 1.3645 (the ranks tend to
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FIG. 7. Estimated discretized probability vectors φ
α̂i ,β̂i

for 1 ≤ i ≤ b for the set of probes S′ predicted to have an

affinity to form secondary structure for τs = −6, b = 3.

be lower). Finally, when i = 3 (the targets are highly expressed), the beta distribution has negative slope
α = 0.98862, β = 1.5201 (the ranks tend to be extremely low and almost no high ranking probes). More
formally, φα̂1,β̂1

has a nearly uniform distribution, and φα̂i ,β̂i has a distribution that approaches exponential
with φα̂i ,β̂i [j ] > φα̂i ,β̂i [j + 1], as i approaches b.

Recall the discussion concerning the background beta distribution for probes with hybridization strength
within the �G range of probes in S′ in Section 4.2. If the probes in S′ were nondegenerate, they would be
expected to follow the background beta distribution depicted by θS in Fig. 5. In fact, the curves for i = 2
and i = 3 in Fig. 7 contradict this.

Let θS be the discretized probability vector for the background beta distribution (here, α = 1.3166 and
β = 0.8805) for probes with hybridization strength within the �G range of probes in S′ as described in
Section 4.2. We estimate the mean 1̄Y,φi ,θS as specified in Equation 2 for θ and φi = φα̂i ,β̂i with a set of
r = 10,000 rank count vectors and with the same sample size as rank count vector yi , for 1 ≤ i ≤ b. In
fact, we find that 1̄Y,φi ,θS = 0.0 for all values of i. We conclude that each of the probability distributions
represented by θS and φi are significantly different.

4.3.2. Self-dimerization. We conjecture that probes with an affinity to self-dimerize exhibit the same
pattern of ranks as the pattern used for secondary structure. We test the conjecture by examining the set
of probes SD′ = {p ∈ V (G) : (p, p) ∈ SD} predicted to exhibit self-dimerization. Let yi = y

SD′,H
i be

the observed count vector as defined in Definition 6 for each i, 1 ≤ i ≤ b. As with secondary structure,
we use Equation 1 to compute estimate parameters α̂i , β̂i for a beta distribution.

Figure 8 depicts the discretized probability vectors φ
α̂i ,β̂i

calculated from the resulting f
α̂i ,β̂i

for 1 ≤
✄

✂

�

✁F8
i ≤ 3. These distributions reaffirm our intuition of the pattern of ranks of self-dimerizing probes, although
the evidence is not as strong as evidence for secondary structure. Note that when i = 3 (targets are more
highly expressed), the number of high ranks is lower than when i = 1 (targets are more lowly expressed).
Furthermore, the probability of low ranks is higher when i = 3 than when i = 1.

Additional evidence supporting the conjecture that self-dimerizing probes are behaving according to
our pattern is obtained by considering the background beta distribution θSD for probes with hybridization
strength within the �G range of probes in SD′ as discussed in Section 4.2 (here α = 1.2836 and
β = 0.887). We estimate the expected value 1̄Y,φi ,θSD as specified in Equation 2 for θSD , and φi = φα̂i ,β̂i ,
for 1 ≤ i ≤ b. For these estimates, we use a set of r = 10,000 rank count vectors and with the same
sample size as rank count vector yi , for 1 ≤ i ≤ b. Here we find that 1̄Y,φ1,θSD = 0.013, 1̄Y,φ2,θSD = 0.003,
and 1̄Y,φ3,θSD = 0.133. Therefore, we conclude that the the probability distributions represented by θSD
and φi are significantly different. The sample sizes and values of 1̄Y,φi ,θSD are available in Table 4 of Smith
and Hallett (2004).
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FIG. 8. Estimated discretized probability vectors φ
α̂i ,β̂i

for 1 ≤ i ≤ b for the probes belonging to self-dimerization

set SD′ for τsd = −14, b = 3.

4.3.3. Cross-hybridization. Consider two distinct targets g, g′ ∈ G with corresponding probe groups
Pg = {p, p1, . . . , pl−1}, and Pg′ = {p′, p′1, . . . , p′l−1}, and suppose that the tags t, t ′ have high affinities
to cross-hybridize with p′ and p, respectively. We say that the probe p gains tags from p′, as some of
the t ′ tags will not hybridize with p′ but with p. Alternatively, the probe p loses tags to p′, as some of
the t tags will hybridize with p′ but not with p. If g is lowly expressed and g′ is highly expressed in
hybridization Hj , then probe p will gain tags from p′ but p′ is not likely to gain tags from p. Therefore,
p is expected to have a high rank w.r.t. the other elements of Pg , and p′ is expected to have low rank w.r.t.
the other elements of Pg′ . Similarly, if g′ is lowly expressed and g is highly expressed in hybridization
Hj , then p′ is expected to have a high rank w.r.t. the other elements of Pg , and p is expected to have low
rank w.r.t. the other elements of Pg′ . If both targets are equally expressed, then ρj (p) and ρj (p

′) are both
expected to behave as the ranks of nondegenerate probes.

Let X′ = {p, p′ : (p, p′) ∈ X} be the set of probe pairs predicted to exhibit cross-hybridization. We bin
the intensity values for each of the targets g into b blocks (Definition 3). For X′ and hybridization set H ,
let y(i,j) = y

X′,H
(i,j) be the observed pairwise rank count vector for each block pair as defined in Definition 7.

Using Equation (1), we compute estimate parameters α̂i,j , β̂i,j for a beta distribution, 1 ≤ i, j ≤ b. Figure 9
depicts the a subset of discretized probability vectors φ

α̂i,j ,β̂i,j
calculated from estimated beta distributions

✄

✂

�

✁F9
f
α̂i,j ,β̂i,j

, for 1 ≤ i, j ≤ b where b = 4. The discretized probability vector φα̂i,j ,β̂i,j is labeled by block i, j .
We argue that discretized probability vectors confirm that probes predicted to exhibit cross-hybridization

have rank patterns that follow the pattern described above. Figure 9(a) depicts block pairs i, j where i is
high (i = 3 or i = 4) and the value of j varies. That is, targets g are highly expressed, and targets g′ have
different expression levels.

Block pairs (3, 1) (and (4, 2)) in Fig. 9 are sets of hybridizations where p is expected to lose tags to p′,
since g is highly expressed and g′ is lowly expressed. When we compare the solid curve for block 3, 3 to
the bold dashed curve for block 3, 1, we see a strong difference in the distribution of high ranks that is in
accordance with the intuition described above. Also in accordance with the pattern is the fact that there is

✄

✂

�

✁AU2
a higher number of low ranks for probes for block 3, 1.

Conversely, Fig. 9(b) depicts block pairs when i is fixed at a low value i = 1 or i = 2 and the value
of j varies. The pattern for cross-hybridization is not confirmed for low ranks: in this case, the number of
low ranks for blocks 1, 3 and 2, 4 is higher than the number of low ranks for block 1, 1. The pattern for
cross-hybridization is also not confirmed for high ranks: in this case, the number of high ranks for block
1, 3 is lower than the number of high ranks for block 1, 1. If instead we compare blocks 2, 4 and 1, 1, this
pattern is verified. We note, however, that the evidence for cross-hybridization is weaker than for the other
types of degenerate behavior. The estimated parameters α̂i,j , β̂i,j , 1 ≤ i, j ≤ b for all b2 block pairs are
included in Table 1 of Smith and Hallett (2004).
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FIG. 9. Estimated discretized probability vectors φ
α̂,β̂

for the set of probe pairs X′ predicted to have an affinity to

cross-hybridize with τx = −23 and b = 4. (a) Block pairs (values of i, j ) when i is fixed at a high value (i ≈ b).
(b) Block pairs when i is fixed at a low value (i ≈ 1).

Additional evidence supporting the conjecture that cross-hybridizing probes are behaving according
to our pattern is obtained by estimating the expected value 1̄Y,φi,j ,θX as specified in Equation 2, where
θX is the discretized probability vector for the background distribution for cross-hybridizing probes and
φi,j = φα̂i,j ,β̂i,j , for 1 ≤ i, j ≤ b. For these estimates, we use a set of r = 10,000 rank count vectors
and with the same sample size as rank count vector y(i,j), for 1 ≤ i ≤ b. The maximum value over all
1̄Y,φi,j ,θX is 0.137; therefore, we conclude that the the probability distributions represented by θX and φi,j

are significantly different. The complete set of sample sizes and values of 1̄Y,φi,j ,θX are available in Table 5
of Smith and Hallett (2004).

4.3.4. Dimerization. Consider two distinct targets g, g′ ∈ G with corresponding probe groups Pg =
{p, p1, . . . , pl−1} and Pg′ = {p′, p′1, . . . , p′l−1} and suppose that the corresponding tags t, t ′ have high a
affinity to dimerize with each other. If both g and g′ are highly expressed in hybridization Hj , then, since
both t and t ′ are present in the sample, both p and p′ will have fewer than expected tags hybridize with
them. Therefore, p and p′ are expected to have low ranks w.r.t. the other elements of Pg and Pg′ . If it



962 SMITH AND HALLETT

FIG. 10. Estimated discretized probability vectors φ
α̂,β̂

for the set of probe pairs D′ predicted to have an affinity

to dimerize with τd = −33 and b = 4. (a) Block pairs where dimerization does not occur. (b) Block pairs where
dimerization occurs.

is the case that (i) neither g nor g′ is highly expressed or (ii) exactly one of g or g′ is highly expressed
but the other is not expressed, then, since only one of t or t ′ is present, the number of tags hybridizing to
their respective probe will be as though no degeneracy existed. Therefore, the ranks ρj (p) and ρj (p

′) are
both expected to behave as the ranks of nondegenerate probes.

Let D′ = {p, p′ : (p, p′) ∈ D} be probes predicted to exhibit dimerization. We bin the intensity values
for each of the targets g into b blocks (Definition 3). Let y(i,j) = y

D′,H
(i,j) be the observed count vector

for each block pair as defined in Definition 7. Using Equations (1), we compute estimate parameters
α̂(i,j), β̂(i,j) for a beta distribution, 1 ≤ i, j ≤ b. Figure 10 depicts a subset of discretized probability

✄

✂
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✁F10
vectors φ

α̂i,j ,β̂i,j
calculated from estimated beta distributions f

α̂i,j ,β̂i,j
for 1 ≤ i, j ≤ b = 4. Discretized

probability vector φ
α̂i,j ,β̂i,j

is labeled block i, j .
Figure 10(a) depicts block pairs where at least one of i or j is approximately equal to 1. Here we do

not expect dimerization to effect the rank of the probes. Figure 10(b), however, depicts block pairs where
both i and j are approximately equal to b. Here, we expect dimerization to raise the probability of low
ranks and to decrease the probability of high ranks. It is important to recall that the probes in set D′ tend
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to have low �G estimates (Section 4.2) and are therefore expected to have rank distributions similar to
the background beta distribution depicted by discretized probability vectors in Fig. 6. With the exception
of block 3, 4, the distributions depicted in Fig. 10(b) show that the ranks are not following the background
beta distribution and are consistent with the pattern for dimerization. Figures 10(a) and (b) together do
give evidence that this behavior is occurring.

For both cross-hybridization and dimerization degeneracies, we give our results for b = 4. Other rea-
sonable values of b gave similar results. The estimated parameters α̂i,j , β̂i,j , 1 ≤ i, j ≤ b for all b2 block
pairs are available in Table 2 of Smith and Hallett (2004).

We again determine the difference between the probability distributions represented by θD , the discretized
probability vector for the background beta distribution for probes predicted to dimerize, and the probability
distributions estimated from D′ shown by discretized probability vectors in Fig. 10. We find that the
maximum value over all 1̄Y,φi,j ,θD is 0.405, where φi,j = φα̂i,j ,β̂i,j , for 1 ≤ i, j ≤ b. The high values of

1̄Y,φi,j ,θD occur in block pairs when dimerization should not be occurring and the probes are expected to be
behaving as nondegenerate probes. With the exception of block pair (3, 4), we find that 1̄Y,φi,j ,θD = 0.0 in
block pairs when dimerization is expected to occur. These values for 1̄Y,φi,j ,θD over all block pairs (i, j),
1 ≤ i, j,≤ b confirm that the distribution of ranks of probes in D′ and the background beta distribution
are very different when dimerization is expected to occur and are more similar when dimerization is not
expected to occur. The complete set of sample sizes and values of 1̄Y,φi,j ,θD are available in Table 6 of
Smith and Hallett (2004).

5. IDENTIFYING DEGENERATE PROBES

Consider any one of the probability vectors φα,β = φ = 〈φ1, . . . , φl〉 derived in Section 4.2 (nondegener-
ate behavior), or Sections 4.3.1, 4.3.2, 4.3.3, or 4.3.4 (degenerate behaviors). Here φi is the probability that
a probe p with an affinity for the particular nondegenerate or degenerate behavior is a rank i occurrence
in a hybridization, 1 ≤ i ≤ l. We use this probability vector φ to answer the following natural question:
what is the probability of a rank count vector y = 〈y1, . . . , yl〉 computed from a set of hybridization
experiments, given that p is a probe with rank pattern described by φ? If φ corresponds to the probability
vector for nondegenerate probes, then the above question asks for the probability of the rank counter vector
y when p is assumed to be a nondegenerate probe. Otherwise, if φ is a probability vector for any of the
degenerate behaviors, then we ask for the probability of the rank count vector when p is a degenerate probe.

The remainder of this section develops a set of support functions that determine whether a rank count
vector is more likely to be distributed according to a pattern of degenerate behavior or more likely to be
distributed according to a pattern for nondegenerate behavior. Such functions are important, since they
would allow us to “learn” suspect probe–tag pairs from hybridization data (independently or together with
theoretical models for hybridization). As the number of hybridization experiments increases for a particular
chip, our ability to estimate the probability that a probe has an affinity for a particular type of degenerate
behavior increases. This allows us to weight the intensity of such probes accordingly in the analysis of
data from future experiments.

5.1. Support functions

5.1.1. Secondary structure.The secondary structure support function Ŝ is the sum, over all blocks, of
✞

✝

�

✆
QU3

the log ratio of the probability of seeing the rank count vector given that the probe is prone to secondary
structure and of the probability of seeing the rank count vector given that the probe is nondegenerate. Let
φi , 1 ≤ i ≤ b, be the discretized probability vector of fα̂i ,β̂i from Section 4.3.1. Let θ be the discretized
probability vector for nondegenerate probes with �G estimates in the same �G range as DP(p, t) for
probe p with matching tag t as discussed in Section 4.2. Here, θ is the discretized probability vector for
the background beta distribution for p. Given the collection of count vectors y = 〈y1 . . . yb〉 for p obtained
from the set of hybrizations H , let

Ŝ(p) =
b∑

i=1

log

(
PYi,φi (yi)

PYi ,θ (yi)

)
.
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5.1.2. Self-dimerization. The self-dimerization support function ŜD(·) is defined as the sum of the log
ratio of the probability a rank count vector is seen, assuming the probe is prone to self-dimerization, and
of the probability the probe is nondegenerate. Let φi , 1 ≤ i ≤ b, be the discretized probability vector
for fα̂i ,β̂i . As with secondary structure, let θ be the discretized probability vector for the background beta
distribution of ranks for probe p. Given the collection of count vectors y = 〈y1 . . . yb〉 for probe p obtained
from the set of hybrizations H , let

ŜD(p) =
b∑

i=1

log

(
PYi,φi (yi)

PYi ,θ (yi)

)
.

5.1.3. Cross-hybridization. Let φi,j be the discretized probability vector fα̂(i,j),β̂(i,j) for cross-hybridiza-
tion from Section 4.3.3 for 1 ≤ i, j ≤ b. Let θ be the discretized probability vector for nondegenerate probes
with �G estimates in the same �G range as DP(p, t) and DP(p′, t ′) for probes p, p′ with matching
tags t, t ′ as discussed in Section 4.2. Here, θ is the discretized probability vector for the background
beta distribution for p and p′. We calculate the support X̂ that (p, p′) is a probe pair exhibiting cross-
hybridization as follows:

X̂ (p, p′) =
∑

1≤i,j≤b
log

(
PY(i,j),φ(i,j)(y(i,j))

PY(i,j),θ (y(i,j))

)
.

5.1.4. Dimerization. Let φ(i,j) be the discretized probability vector fα̂(i,j),β̂(i,j) for dimerization from
Section 4.3.4 for 1 ≤ i, j ≤ b. Let θ be the discretized probability vector for the background beta distribu-
tion of probes p and p′. We compute the b2 rank count vectors and denote these by y = y(1,1) . . . y(b,b).
The dimerization support function D̂ for a probe pair (p, p′) is defined as follows:

D̂(p, p′) =
∑

1≤i,j≤b
log

(
PY(i,j),φ(i,j) (y(i,j))

PY(i,j),θ (y(i,j))

)
.

5.2. Experimental testing of support functions

To test how well these four support functions discriminate between nondegenerate and degenerate probes,
the support scores for each set of degenerate probes (predicted by the theoretical models of hybridization)
are compared with the support scores for a large randomly chosen set of probes. In total, we used 126
hybridizations from three different laboratories for the HuGeneFL chip. It is expected that the experimental
support functions should assign large support values to probes (or probe pairs) predicted to be degenerate
in the conflict graph M (probe sets S′, SD′, X′,D′). However, Fig. 11 of this paper and Figs. 15, 16,

✄

✂

�

✁F11
and 17 of Smith and Hallett (2004) indicate that the support functions do not discriminate very well, since
the support values measured for these probes (and probes pairs) appear random. Furthermore, the mean
support score for eachof the four support functions is significantly above zero. Several conclusions are
possible from this. This may indicate that a large number of probes are degenerate. This seems, however,
unlikely. It seems more likely that the support scores are calculated from simply too few hybridizations
(i.e., |H | is not sufficiently large).

We conjecture that our initial experiments here yield poor results due to the limited amount of data we
used. The experimental support functions did not succeed in finding individual probes (or probe pairs) at
a given block (or block pair), as there were simply too few hybridizations within the block (or block pair)
to ensure that each of the element of the rank count vector has a sufficiently large frequency. One need
consider that H contains only 126 hybridization experiments. For a probe p, this set of hybridizations is
partitioned into b = 3 blocks. Some partitions had as few as five hybridization experiments.

We experimented with several other log-likelihood goodness-of-fit tests including adding pseudo-counts
to the rank count vectors with these support functions. None of the alternative formulations resulted in
significantly better results. For a chi-square test to succeed, it is best that each element of the rank count
vector (i.e., each possible rank) be ≥ 5 (Moore et al., 1995). For |H | = 126 and b = 3, most of the 20
individual elements of the rank count vectors have magnitude ≤ 5, and many are in fact 0. Using this lower
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FIG. 11. Histograms of secondary structure formation support values measured by Ŝ for (a) the set of probes P and
(b) the set of probes S′.

bound on the magnitude of each element of the vector, it is possible to estimate the minimum required size
of the hybridization set H . Essentially, in our estimated probability distributions of degenerate probes and
nondegenerate probes, the probability of a rank may be as low as 0.01. Therefore, some 500 hybridizations
per block would be a very liberal estimate on the number of hybridizations required. Recall that the entire
set of hybridizations must be partitioned into b blocks (or b2 block pairs). For b = 3, we would require
some 1,500 hybridizations for secondary structure and self-dimerization and some 1,500·32 for the pairwise
tests of cross-hybridization and dimerization.

We attain more conservative estimates for the required number of hybridizations by calculating the mean
of the indicator function 1̄Y,φ,θ (y) from Equation 2 with increasing sample sizes k. We find that 1̄Y,φ,θ (y)
converges on ε, the expected value of 1̄Y,φ,θ (y), when k ≈ 300. Therefore, we can determine the number
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of hybridization experiments required to ensure that each rank count vector is generated from a sample
size of at least 300. Such data now exists for some Affymetrix GeneChips, and our software has been
designed to handle this magnitude of data.

6. AFFYMETRIX DISCRIMINATION

This section incorporates Affymetrix’s discrimination into our framework, and we investigate the re-
lationships between it and free-energy calculations. The discrimination property measures the ability of
the intensity for a probe to represent the true amount of target mRNA transcripts in the sample. For each
probe p in an Affymetrix GeneChip, there exists a so-called mismatch (mm-) probep′ (p is referred to
as the perfect match [pm-] probe). The mm-probe p′ differs from p by exactly one base pair (the base in
the middle of the olignonucleotide). A hybridization experiment Hj ∈ H returns both a measure of the
intensity of probe p ∈ P , Ij (p) and a measure of the intensity of the mm-probe p′, written Ij (p).

The intensity analysis of probes in Affymetrix GeneChips is performed by one of several statistical
detection algorithms. In essence, the detection algorithms combine “votes” from each probe in a probe
group to assign a call of present, marginal, or absentto the target of the probe group (Affymetrix, 2002).
The vote of each probe at hybridization Hj ∈ H is simply the discrimination score Rj (p) defined as
follows:

Rj (p) = Ij (p)− Ij (p)

Ij (p)+ Ij (p)
.

The detection algorithm calculates a detection p-valueaccording to the discrimination score of each probe
p in the probe group Pg . If the majority of probes in Pg have Rj (p) ≈ 1, then the detection p-value
is significant and the transcript is likely assigned a call of present. Otherwise, if the majority of probes
p ∈ Pj have Rj (p) near or below zero, then the detection p-value is not significant and the transcript
is assigned a call of absent. If the detection p-value is above or below user-defined thresholds, then the
transcript receives a marginal call.

Let Rj (p) be the discrimination of each probe p ∈ P at hybridization Hj ∈ H , and let R(p) =
1
|H | ·

∑
Hj∈H Rj (p) be the average discrimination of probe p over all hybridizations. We now compare

R(p) of probe p ∈ P to the free energy �G measured by DP(p, t) of probe–tag pair (p, t). Figure 12(a)
depicts a scatterplot of R(p) versus �G for all probes of the HuGeneFL chip. As shown in this figure,

✄

✂

�

✁F12
we find that for probes p with matching tags t , R(p) varies between −0.8 and 1 if DP(p, t) ≤ −22. We
find that R(p) ≈ 0 and varies between −0.219 and 0.099 if DP(p, t) > −22. It must be the case that
either (i) such probe–tag pairs have near zero average discrimination scores simply because the targets of
these probes have not been differentially expressed over the > 120 experiments (in other words, there is a
lack sufficient biological diversity), or (ii) such probe–tag pairs of HuGeneFL are too weak to discriminate
between expressed and non-expressed states (and therefore should be removed from the chip or ignored).
To rule out case (i) for the majority of such probe–tag pairs, we focus on the set of targets G′ ⊆ G such
that if g ∈ G′, then there exists a distinct probe p′ ∈ Pg with DP(p′, t ′) > −22 for matching tag t ′ ∈ T .
For g ∈ G′, if each probe p ∈ Pg has R(p) ≈ 0, then we could conclude that the target g was not
differentially expressed over the hybridization experiments. However, we find this is not the case since for
the majority of targets g ∈ G′, at least one third of the probes p ∈ Pg have R(p) much greater or much
less than 0. Figure 12(b) depicts R(p) of all probes p ∈ P such that p ∈ Pg and g ∈ G′. The range of
R(p) in Fig. 12(b) shows that many probes belonging to groups in G′ exhibit average discriminations that
are both much greater and much less than 0.

As depicted in Fig. 13, we find that over all hybridization experiments, the discrimination Rj (p) of all
✄

✂

�

✁F13
probes p ∈ P with DP(p, t) > −22 for matching tag t does not deviate greatly from R(p) ≈ 0, for
all Hj ∈ H . Notice that the deviation of Rj (p) from R(p) increases as DP(p, t) decreases, indicating
that probes become more discriminatory as their hybridization strength increases. We conclude that the
hybridization between a probe p and its matching tag t where DP(p, t) > −22 is too weak for p to have
a significant detection p-value (p is not able to discriminate).



QUALITY CONTROL FOR DNA MICROARRAYS 967

FIG. 12. (a) A scatterplot of R(p) versus DP(p, t) of all probes in p ∈ P for HuGeneFL. (b) A scatterplot of
R(p) against DP(p, t) of all probes p ∈ Pg such that there exists a distinct probe p′ ∈ Pg with DP(p′, t ′) > −22,
for matching tag t ′.

7. OPEN PROBLEMS AND FUTURE DIRECTIONS

We present a framework for detecting degenerate probes in Affymetrix oligonucleotide microarrays. The
predictions are based on a nearest neighbor model of hybridization. We show that the �G estimates from
this theoretical model are strongly correlated with the distribution of ranks for a probe within its probe
group over a large set of hybridization experiments. Each of four types of degenerate behavior induce four
distinct distribution of ranks. The structural analysis of the conflict graph for the Affymetrix HuGeneFL
chip produced several key insights that give us better prediction strategies. We find that very strong probe–
tag pairs (low �G estimates) are more frequently predicted to be degenerate than are mid-range or weak
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FIG. 13. This figure depicts R(p) and the standard deviation of R(p) against DP(p, t) of all probes in p ∈ P with
DP(p, t) > −22, for matching tag t .

probe–tag pairs (higher �G estimates). We see that the distribution of ranks of a probe is dependent on
the hybridization strength between the probe and the matching tag.

We also give support functionsfor detecting whether a probe has an affinity for a particular degenerate
behavior. These support functions do not make use of the theoretical models for hybridization but instead
examine the distribution of ranks over a large set of hybridization experiments alone. These functions
will better discriminate between degenerate and nondegenerate probes as the number and diversity of the
hybridization experiments increases. A wide range of conditions guarantees a high degree of biological
diversity (the expression of each target represented on the chip varies due to changes caused by the
conditions under which the hybridization was performed). When high biological diversity is present for
each probe in a set of hybridizations, there will be a large number of hybridizations in each block. This will
lead to fewer zero values in elements of the rank count vectors. The experiments contained in this paper
were carried out with a relatively small set of 126 hybridizations. A significantly larger (but manageably
large) collection of hybridizations would ensure that sufficient biological diversity exists so that each probe
is expressed (either highly or lowly) a substantial number of times.

An online resource containing additional results is publicly available (Smith and Hallett, 2004), and we
will make our software freely available at this same location. Our software is sufficiently robust as to carry
out these experiments with a ten-fold increase in the number of hybridization experiments.

Lastly, we show a strong correlation between the Affymetrix discrimination and �G estimates from
the nearest neighbor model for a probe. In particular, we show that probes with high free energy (weak
hybridization) have almost always a discrimination of 0. That is, their perfect match and mismatch probes
intensities are the same, and hence, the probe is not informative.

Beyond simply increasing the number and diversity of hybridization experiments, it would of course be
interesting to design better support functions that require fewer data. There is also the option of employing
an alternative test statistic. In designing these experiments, we experimented with a chi-square test to
determine the goodness of fit between the estimated background probability distribution and the observed
data. The chi-square test gave no better results than the log likelihood ratio test statistic. We hope to refine
our current test statistic and research other nonparametric methods for determining an underlying pattern
from an observed rank count vector.

The focus of Smith and Hallett (2004b) is the integration of our framework with the model-based analysis
of oligonucleotide arrays from Li and Wong (2001). Li and Wong give a simple model for determining
the intensity measurement for a target as a nonlinear combination of the probe intensities from the probe
group and parameters that specify the quality (sensitivity) of each probe. Both the theoretical model of
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hybridization and the support functions based on the distribution of rank patterns presented in our paper can
be modified to give a score for the quality of a probe. In this way, our framework provides an alternative,
possibly better avenue for estimating parameters for use in the Li and Wong model.

This paper is primarily concerned with detecting patterns in hybridization experiments corresponding to
degenerate probes. One can imagine several other useful patterns that would be of interest. For instance,
a pattern could be designed for detecting correlation or causation in gene expression experiment data by
examining the intensities of probe groups over the set of hybridizations. This approach could be used
for network inference and finding network motifs (building blocks) of transcriptional regulation networks
(Shen-Orr et al., 2002).

Although we describe only an application of the model to the Affymetrix HuGeneFL chip, the model has
been designed to be universal, so that it can be used to analyze the quality of any existing oligonucleotide
microarray or microarray design. We are currently comparing several different Affymetrix GeneChips
(Smith and Hallett, 2004b) in order to determine whether there is quantitative evidence that these chips are
gradually minimizing the amount of degenerate behavior. Ultimately, to validate the model, the candidate
degenerate probes and probes pairs must be verified in a wet-lab to conclude whether they are truly
degenerate. We are currently designing a chip containing a wide variety of degenerate and nondegenerate
probes and probe pairs in such a way that very few hybridization experiments will be necessary to validate
the model.
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AU1
Change okay: “is that probe”?

AU2
Change okay: “that there is a higher number”?

QU3
Okay to number level 3 headings in Section 5.1 per style of other sections?


