
Jigsaw Image Mosaics
(JIM)

Based on the paper ‘Jigsaw Image Mosaics’ by
Junhwan Kim and Fabio Pellacini, SIGGRAPH

2002

April 1, 2004
Presentation by Kaleigh Smith

Outline
 Description of JIM, artistic inspiration and

related work
 Definition of JIM Energy Framework
 Input Preparation and Active Contours
 Mosaic Algorithm
 Algorithm Optimizations
 JIM Results
 Comments on JIM

JIM: Jigsaw Image Mosaic
Junhwan Kim
Fabio Pellacini

SIGGRAPH
2002

Arcimboldo
1527-1593

Summer,
1573

Photomosaic

Robert
Silvers and
Michael
Hawley

1997

Photomosaic
 Fixed container shape (rectangular)
 Fixed tile shape (rectangular)
 Fixed packing (grid)

Photomosaic
 Fixed container shape (rectangular)
 Fixed tile shape (rectangular)
 Fixed packing (grid)

 Match the intensity of the tile texture to the
underlying image intensity. No special packing.

Simulated
Decorative
Mosaic

Alejo
Hausner

SIGGRAPH
2001

Simulated Decorative
Mosaic

 Fixed container shape (rectangular)
 Fixed tile shape (rectangular or elliptical)
 Important image edges represented by user-

specified feature curves.

Simulated Decorative
Mosaic

 Fixed container shape (rectangular)
 Fixed tile shape (rectangular or elliptical)
 Important image edges represented by user-

specified feature curves.

 Determines best packing of tiles in container and
orients tiles to feature curves to preserve edges
from the source image.

 Allows tile configuration to have gaps and
overlapped tiles.

Outline
 Description of JIM, artistic inspiration and

related work
 Definition of JIM Energy Framework
 Input Preparation and Active Contours
 Mosaic Algorithm
 Algorithm Optimizations
 JIM Results
 Comments on JIM

JIM: Jigsaw Image Mosaic
 Properties of a JIM - arbitrarily shaped container,

arbitrarily shaped tiles of textures.

Container

Input tiles

JIM: Jigsaw Image Mosaic
 Properties of a JIM - arbitrarily shaped container,

arbitrarily shaped tiles of textures.
 Tiles packed arbitrarily and allows for gaps and

overlaps of tiles.

Container

Input tiles

Resulting JIM

JIM: Jigsaw Image Mosaic
 JIM approaches problem as an energy

minimization problem, where the energy of a
mosaic is a sum of mosaic-related energy terms.

JIM: Jigsaw Image Mosaic
 JIM approaches problem as an energy

minimization problem, where the energy of a
mosaic is a sum of mosaic-related energy terms.

 Claim that JIM generalizes mosaics by creating a
generalized framework.

 “Energy-based framework for the mosaicing
problem which generalizes on known algorithms”

 Question: is this claim true or proven true by the
paper?

JIM: Jigsaw Image Mosaic
 Tile Configuration: subset of input tiles with

repetition, along with their associated
transformations (orientation, translation,
deformation).

JIM: Jigsaw Image Mosaic
 Tile Configuration: subset of input tiles of the

input tiles with repetition, along with their
associated transformations.

 JIM: a tile configuration that minimizes energy E.

E = WC EC + WG EG + WO EO + WD ED

colour gap overlap deformation

JIM: Energy Framework
 Tile Configuration: subset of input tiles of the

input tiles with repetition, along with their
associated transformations.

 JIM: a tile configuration that minimizes energy E.

E = WC EC + WG EG + WO EO + WD ED

colour gap overlap deformation

• How to produce photomosaic or decorative mosaic?

JIM: Energy Framework

 The energy of a tile configuration is the sum of
each weighted energy term.

 Each term is the sum of the energy term
measured for each tile in the configuration.

E = WC EC + WG EG + WO EO + WD ED

colour gap overlap deformation

JIM: Energy Framework

 Terms can be added or removed (flexible and
scalable framework).

 Terms can be measured with different metrics.

E = WC EC + WG EG + WO EO + WD ED

colour gap overlap deformation

JIM: Energy Terms Evaluation

 Colour: random locations on each tile, L2
differences.

E = WC EC + WG EG + WO EO + WD ED

colour gap overlap deformation

JIM: Energy Terms Evaluation

 Colour: random locations on each tile, L2
differences.

 Gap and Overlap: “spring energy formulation”.
 Use the boundary shapes of the tiles and the

container to determine the signed distance
between each tile and the nearest tile or container
edge.

E = WC EC + WG EG + WO EO + WD ED

colour gap overlap deformation

JIM: Energy Terms Evaluation

 Colour: random locations on each tile, L2
differences.

 Gap and Overlap: “spring energy formulation”.
 Use the boundary shapes of the tiles and the

container to determine the signed distance
between each tile and the nearest tile or container
edge.

 Deformation: difference between original tile
shape and deformed tile shape.

E = WC EC + WG EG + WO EO + WD ED

colour gap overlap deformation

Outline
 Description of JIM, artistic inspiration and

related work
 Definition of JIM Energy Framework
 Input Preparation and Active Contours
 Mosaic Algorithm
 Algorithm Optimizations
 JIM Results
 Comments on JIM

JIM: Preparation of Input
 JIM works on arbitrarily shaped containers and

tiles.
 The container and tile shapes are determined and

represented using Active Contours.

 Also, active contours are used to segment a
source image into a set of arbitrarily shaped
containers.

JIM: Shapes by Active
Contours
 Active Contours are a classic shape model

described by Kass, Witkin and Terzopoulos,
‘Snakes: Active Contour Models’ (1987).

 Contour = vertices (control points) connected by
edges.

Source: Philip Lau and Katia Hristova

JIM: Shapes by Active
Contours
 Contour is controlled by minimizing an energy

function of properties: snake continuity, snake
curvature and image gradient.

 We use them to find image boundary.

 Also used to deform image boundaries.

Source: Philip Lau and Katia Hristova

Outline
 Description of JIM, artistic inspiration and

related work
 Definition of JIM Energy Framework
 Input Preparation and Active Contours
 Mosaic Algorithm
 Algorithm Optimizations
 JIM Results
 Comments on JIM

JIM: Mosaic Algorithm
 1. Prepare input tiles, segment source image and

treat each container separately.

JIM: Mosaic Algorithm
 1. Prepare input tiles, segment source image and

treat each container separately.
 2. Pack the container with tiles from tile set.

JIM: Mosaic Algorithm
 Best first search for creating the packing.

 1. Find a suitable position in container – this gives
a container region.

 2. Search for tile to use and register tile to the
determined container region.

 3. Subtract tile shape from the container to get
new container shape to pack.

JIM: Mosaic Algorithm
 Best first search for creating the packing.

 1. Find a suitable position in container – this gives
a container region.

 2. Search for tile to use and register tile to the
determined container region.

 3. Subtract tile shape from the container to get
new container shape to pack.

If can’t find a tile to finish filling a container, backtrack to last
configuration with minimal energy.

JIM: Mosaic Algorithm
 1. Prepare input tiles, segment source image and

treat each container separately.
 2. Pack the container with tiles from tile set.
 3. Refine the packing by deforming the tiles.

JIM: Mosaic Algorithm
 Refine the tile shapes. Reduce gap or overlap.

 Use a set of active contours and minimize energy
according to forces that:
 maintain contour original shape
 repulse between two overlapping contours
 attract two contours if they are separated by a gap.

JIM: Mosaic Algorithm
 Refine the tile shapes. Reduce gap or overlap.

 Use a set of active contours and minimize energy
according to forces that:
 maintain contour original shape
 repulse between two overlapping contours
 attract two contours if they are separated by a gap.

 This minimizes over all four energy terms, and
must not increase energy of a configuration.

JIM: Mosaic Algorithm
 1. Prepare input tiles, segment source image and

treat each container separately.
 2. Pack the container with tiles from tile set.
 3. Refine the packing by deforming the tiles.

JIM: Mosaic Algorithm
 The algorithm:

 Number of vertices per tile.
 Number of tiles.
 Number of vertices per container.
 Number of tiles in the container.
 Branching overhead for backtracking in search.

O((Vtile)(Ntile)(Vcontainer)(NtilesInContainer)(1+b))

Outline
 Description of JIM, artistic inspiration and

related work
 Definition of JIM Energy Framework
 Input Preparation and Active Contours
 Mosaic Algorithm
 Algorithm Optimizations – i.e. GOOD IDEAS
 JIM Results
 Comments on JIM

JIM: Optimization 1
 REDUCE: Branching overhead for backtracking in

search.

 Want to place tiles so that it is easy to fill container
shape at each iteration of algorithm (no protrusions and
container shape is convex).

JIM: Optimization 1
 REDUCE: Branching overhead for backtracking in

search.

 Want to place tiles so that it is easy to fill container
shape at each iteration of algorithm (no protrusions and
container shape is convex).

 Fill areas with least number of neighbours first. Use
Centroidal Voronoi Diagram (CVD).

 Add Lookahead energy term to energy formula that
penalizes tiles that make container shape difficult to fill at
next iteration.

JIM: Optimization 2
 REDUCE: Number of vertices representing container

shape.

 At each iteration of the algorithm, the container shape
changes due to the removal of the added tile.

 Results in jagged edges and container fragments.
 If fragment is smaller than smallest tile, treat as a gap and

remove from resulting container shape.

JIM: Optimization 3
 REDUCE: Number of tiles to be searched.

 At each iteration of the algorithm must search all tiles to
find the tile which best fits into the container region to be
filled (the predetermined best location to be filled).

 Use Geometric Hashing so that the algorithm does not
consider tiles that are bad fits for the container region.

JIM: Optimization 3
 Geometric Hashing reduces

number of tiles to search.

 Create grid of squares in plane.
Each square corresponds to hash
table entry.

 Place each tile and orientation
over the grid and keep track of all
tiles and their orientations that
cross each square of the grid.

JIM: Optimization 3
 Take boundary of container

region to be filled and align over
grid.

 For every grid square crossed
by container region, have a list
of all tiles and orientations that
also crossed that square.

 Candidates for best fitting tile:
the tiles that share the most
crossed squares with the
container region.

JIM: Mosaic Algorithm
 So that’s how they optimize the straightforward

mosaic algorithm.

Outline
 Description of JIM, artistic inspiration and

related work
 Definition of JIM Energy Framework
 Input Preparation and Active Contours
 Mosaic Algorithm
 Algorithm Optimizations
 JIM Results – acronym, panda and parrot
 Comments on JIM

Outline
 Description of JIM, artistic inspiration and

related work
 Definition of JIM Energy Framework
 Input Preparation and Active Contours
 Mosaic Algorithm
 Algorithm Optimizations
 JIM Results
 Comments on JIM

JIM: Comments
 “Energy-based framework for the mosaicing

problem which generalizes on known algorithms”

 Is this true?

 There are no examples of a JIM that reproduces a
simulated decorative mosaic.

 Styles seem intuitively different, especially with
respect to the tile orientation.

 The framework has little to do with the actual
physical process of creating a mosaic.

JIM: Comments
 “deforming them slightly to achieve a more

visually-pleasing effect”

 Again, subjective.

 Does smooshing together really create a better
mosaic?

 Tile deformation increases the computer-created
look of JIM but does not make it look more like a
mosaic.

References
 “Jigsaw Image Mosaics”, Junhwan Kim and Fabio

Pellacini, 2002.
 “Simulated Decorative Mosaics”, Alejo Hausner,

2001.
 Photomosaics, Robert Silvers and Michael

Hawley, 1997.
 "Snake: Active contour model", M. Kass, A.

Witkin and D.Terzopoulos, Int. J. Computer
Vision, 1987.

 Philip Lau and Katia Hristova, Student Project
implementation of JIM
http://www.ic.sunysb.edu/Stu/pwlau/

