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1. INTRODUCTION 
 
 Computer processors have gotten very sophisticated over the years. One of the 
very first “consumer-grade” processors was the 16-bit Intel 8086, released in 1978, that 
ran on 5MHz clock frequency. With 29,000 transistors it set the standard for future 
processors to come with its x86 architecture. The understanding of the individual 
operations in the processor was much simpler back then, as current-gen processors run 
on clocks literally 3 orders of magnitude higher, have several billions of transistors and 
also benefit from architectural improvements and new features such as speculative 
execution. 
 

 
 

Intel 8086. Picture credit: https://en.wikipedia.org/wiki/Intel_8086#/media/File:Intel_C8086.jpg 



2. GOAL 
 
 The goal of this project to build an 8-bit Turing-complete CPU on an array of 
breadboards. The schematics and tutorials are available on the internet. More about 
those in the Resources section. The processor has several basic instructions, 16 bytes 
of RAM (meaning each program can consist of at most 16 8-bit instructions + data) and 
8-bit bus. First four bits of each instruction will generally be used as an opcode and the 
last four bits can be used for an immediate, address or other necessary information, 
according to the opcode. The clock will allow for a single-step and a normal mode, where 
the frequency will be adjustable by the user, and it will be able to reach up to 450 Hz. 
 Apart from simply building the processor, I am going to challenge myself and will 
try to improve 1 thing about the design. My plan is to improve the power supply because 
the original design uses a simple USB phone charger to provide 5V. However, I am 
estimating that the build may draw up to 1.5A, so a proper buck or DC-DC converter 
should be used for increased stability and thermal performance. 
 
 
3. RESOURCES 
 
 The biggest resource for this project is the website https://eater.net/8bit. The 
creator of this design, Ben Eater, provides the schematics and tutorials, however I am 
imagining I won’t be spared from a lot of troubleshooting and debugging on my side. He 
also sells the parts kits, some of which I purchased. Other tools I will be using: 
 

• Multimeter 
• Oscilloscope 
• Arduino Software 
• Wire strippers 
• Tweezers 

 
 
4. BUILD PROCESS 
  
4.1. CLOCK MODULE 
 
4.1.1. Automatic mode 
 

The heartbeat of the processor is a clock signal. Here we turn to the humble 
LM555, otherwise known as the 555-timer. We are using it in the astable configuration 
with a 1kW resistor, 1MW potentiometer (so that we can adjust the frequency) in series 
with another 1kW resistor and finally a 1µF capacitor. We also added a filtering 0.01µF 
capacitor on pin 5 to ground to help reduce noise and voltage overshooting, per datasheet 
recommendations. This allows us to run the clock at anywhere from 0.25 Hz – 450 Hz. 
 



4.1.2. Manual mode 
 
 It is really handy to have the option to single step the execution of our program. 
We will achieve this by pushing a button, which will act as one clock pulse. The finished 
clock module will have a selector switch and we will be able to select whether we want 
the Automatic mode or the Manual mode. Very quickly we find a big drawback of physical 
buttons – they bounce. Imagine a situation where we are trying to single step our program 
and our 1 push of the button makes it bounce 3 times and we actually send 3 clock cycles. 
That is terrible and unacceptable. To solve this, we are going to use the LM555 again, 
this time in its “debouncing” (monostable) configuration. 
 
 
4.1.3. Clock logic 
 
 We are ready to tie everything together. We can add a selector switch for the 2 
modes and debounce it with another LM555. Lastly, we are going to incorporate a halt 
(HLT) signal. We would like to disconnect the clock when we are done with our 
computation. When HLT is low, the clock propagates to the output and when it is brought 
up, the clock is disconnected. Here are the logic gates to achieve the desired outcome: 
 

 
 
We will use a 74LS08 chip for our 3 AND gates, 74LS32 for our OR gate and 74LS04 for 
our inverter. Since we are only using 1 OR gate and 2 inverters, we could save a chip and 
implement the same logic by only using NOR / NAND gates. Here is the finished module: 
 
 

 



4.2. REGISTER MODULE 
 
4.2.1. Motivation & interfacing with the bus 
 

Our architecture incorporates an 8-bit wide bus. It is crucial that only certain 
modules read from and output to the bus at the same time, otherwise the transistors in 
the chips can behave like current sources / sinks and the bus can have an unpredictable 
behavior. To overcome this problem, we would like to have a 3-state functionality, so we 
need our output to be either zero, one or disconnected (high impedance). Our registers 
should also have a Load option, where we latch the values into the register only on the 
rising edge of the clock signal and when Load is set.  

This logic can be done discretely, but we will use two 74LS173 4-bit D registers to 
accomplish this same functionality.  Since they have a 3-state output, they could be used 
on their own, but they pose one big disadvantage for this particular project: you cannot 
see what is latched inside them. We would like to have 8 LEDs that depict the stored 8-
bit value. We are going to solve this by always having the output of the registers always 
enabled and going to a 74LS245 8-bit transceiver that does have 3-state outputs. 

 
4.2.2. Building the A register 

 
We start by connecting the outputs of our two 4-bit D registers with the inputs of 

our 8-bit transceiver. It is easy to tap to this connection with 8 red LEDs. Note that most 
of the 74LS type chips, including the 74LS173 4-bit D registers, have internal current 
limiting resistors, so we can connect the diodes directly to ground. With their presence 
we can easily see the stored 8-bit number without outputting onto the bus. Next, we tie 
the output of the 8-bit transceiver to the input of the D registers. This connection will later 
also be used to interface with the bus. It may seem strange that we are essentially 
connecting our output back to the input, but remember that if we do things correctly, we 
will either be reading from the input and having the output disconnected or writing to the 
output ourselves, but never both at the same time.  

 
4.2.3. Other signals 
 
 Both 4-bit registers have 2 separate load signals 𝐺1#### and 𝐺2####  on pins 9 and 10. We 
can tie all four together and temporarily to 5V. This will be later used as the AI (A in) 
signal. They also both have a CLR option on pin 15, so we tie both together and for now 
we hook it to ground.  

Since the transceiver is bidirectional, we set the DIR pin high to choose our 
direction, because we will be using it only in one direction. We will also set the 
transceiver’s 𝑂𝐸#### pin to 5V to disconnect the output (left most orange wire). This will later 
be used as AO (A Output) signal. Here is the finished A register: 
 



 
 
 
4.2.4. Other registers 
 

In the previous part we completed the A register. We will need to build a B register, 
which is identical to the A register and an instruction register, which has a few differences. 
There will be 4 blue and 4 yellow LEDs instead of the 8 red ones. The top four bits (blue 
LEDs) will not go back to the bus, but instead they will go to an instruction decoder, which 
we will build later. The bottom 4 bits (yellow LEDs) can output back to the bus and will 
contain the remainder of the instruction, either a memory address or an immediate. We 
can see that since we can only address 4 bits of memory, our program can have at most 
16 memory addresses for instructions or data. That should still be fine for simple programs 
and adding a JUMP instruction will increase the capability. 
 
 
4.3. ARITHMETIC LOGIC UNIT (ALU) 
 
4.3.1. Motivation and interfacing 
 

ALU is the core of every processor’s core, pardon the pun. It allows is to perform 
fundamental computations of two binary numbers such as addition and subtraction, 
among other things. Registers A and B are the inputs to the ALU in our design and the 
output will use the beloved and previously mentioned 74LS245 8-bit transceiver for the 
same reasons.  

The main operational principle of an ALU stems from the idea of a full binary adder, 
which performs the addition of 2 bits (and a potential carry bit). Even though they can be 
easily chained together, building 8 full binary adders would require a lot of chips. We can 
instead turn to two 74LS283 4-bit binary full adders and cascade them together.  
 
 
4.3.2. Addition vs subtraction 
 

It seems like having both the options for adding and subtracting would be very 
helpful. But how are we going to get subtraction from adders? The answer is by 



representing all our 8-bit numbers in the two’s complement format. If we are going to add 
2 positive numbers, the SU (Subtract) signal will not be set.  

We can then load two numbers into our A and B registers and the addition will be 
performed. If we set the SU signal, the number in the B register will be converted into its 
two’s complement and we can use the same addition hardware to perform the effective 
subtraction. That means that we will have to design a logic that converts a regular positive 
number into a negative number. The algorithm for converting is to invert all bits and add 
1. For example, +310 = 000000112. To get -3, we first invert all bits to 111111002 and then 
add one to get 111111012, which equals -3 in two’s complement. 
 
 
4.3.3. Subtraction hardware 
 

Let’s remind ourselves with a truth table for an XOR gate: 
 
A B A⊕B 
0 0 0 
0 1 1 
1 0 1 
1 1 0 
 
Thinking of A as our SU signal gives us exactly what we need. When A is 0, the output is 
the same as B and when A is 1, the output is 𝐵#. But remember the to fully invert we have 
to also add one at the end. That is not a problem, we can have branch of SU going into a 
carry in pin of our adder. Here is a block diagram of the logic: 
 

 
 



4.3.4. Building the ALU 
 

We have outlined all components already; we just have to put it together. We 
connect the output of the B register into two 74LS86 Quad XOR Gate and we tie all the 
other inputs into the XOR gate together to form our SU signal. We also branch into the 
carry in pin of our lower 4-bit adder, as described above. The output of the XOR gates 
goes into the B1-B4 inputs of both of our adders. The A1-A4 inputs will be connected 
directly to the output of the A register. We can connect the S1-S4 outputs of the adders 
into the octagonal transceiver for our 3-state functionality and have some LEDs present 
to see the intermediate result. As we did with the other registers, we will mark the output 
enable of the transceiver, which will later be used as our SO (SUM out) signal. Here is 
the finished part: 

 

 
 
 
4.4. RANDOM ACCESS MEMORY (RAM) 
 
4.4.1. Design overview 

 
We already built two general purpose registers A and B, but we would like to have 

some storage as well. As described before, our instruction will consist of a 4-bit opcode 
and a 4-bit value. This value can for example be an address that we have to retrieve data 
from. Since we can use only four bits for our address, it gives us a maximum of 16 
addressable bytes. We could build 16 copies of the general-purpose registers, but to save 
on parts, complexity, and repetitiveness and power draw, we are going to use a chip, the 
74LS189 64-bit random access memory organized as a 16-word 4-bit array. To be 
precise, we need two of them to store 16 bytes, which will be our static RAM. It also 
already contains a 4-bit address decoder and some useful signals. 

A REGISTER: 
000110012 = 25 

B REGISTER: 
010001112 = 71 

ALU OUT: 
011000002 = 96 



For a weird historical reason, the 74LS189 inverts its contents. It is an interesting 
design fluke of how TTL-logic transistors used to be manufactured in the 80s and 90s, 
and how it was sometimes practical for driving LEDs directly without current limiting 
resistors, but for our purpose we will have to add two 74LS04 hex inverting gates to get 
back our original data.  

There actually exists a similar version to our RAM chip, the 74LS219 that doesn’t 
invert the outputs, but is more expensive and much harder to find, so we will not use that 
one in this build. 

 
 

4.4.2. Build process 
 

We start by connecting the outputs of the RAM chips to the inverters. We will use 
four out of six inverters on each 74LS04 for equal load balance and leave 2 unused. This 
should help with wear and tear and with heat dissipation. After connecting power and 
ground to everything we will also tie the 𝐶𝑆#### on pin 2 low for both RAM chips, because we 
want to have our chip always enabled. Similarly, since we would like to write to both chips 
at the same time, we join pins 3 together, which will form our write enable (𝑊𝐸#####) signal. 
For the 3-state functionality we are going to add another 74LS245, as we have done for 
all modules that need to connect to the bus. Then we connect the output from the inverters 
to the input of the 74LS245. Next, we tie our four address lines A1-A4 together on both 
chips, because they will both accept the same address, but one RAM chip will store the 
lower 4 bits and the other the upper 4 bits of our byte. Here is the finished RAM module: 

 
 

 
 

 
4.4.3. Program mode & Run mode 

 
It might be a good time to explain how we are going to insert data into our memory. 

We would like to have 2 modes of operation: program mode and run mode. When we are 
in program mode, we will use a 4-way dip switch to manually select an address and an 
8-way dip switch for our instruction. We will have to manually insert instruction at address 
0, then at address 1 and so on. When we flip a switch to enter run mode, the CPU starts 
executing instructions starting at address 0 and disregards any input from the switches. 
That means that we will have to build some selection logic that allows us to choose 



between the input from the dip switches or from the bus. Basic logic for selecting one out 
of 2 bits can be described with the following logic: 

 

 
 

When SELECT is high, the OUT º A and similarly when SELECT is low, OUT º B. 
This logic gives us what we want, but we would need 12 copies (4 address lines + 8 data 
lines), each having 4 gates, so 48 gates in total, which would be about 15 chips. We are 
going to choose a more practical approach and use the 74LS157 Quad 2-Line to 1-Line 
Data Selectors/Multiplexers. The logic diagram in the datasheet of this chip has basically 
four identical copies of the diagram above, so we will need 3 of these chips in total, which 
is much less than 15.  

 
 

4.4.4. Adding selection logic 
 
We start with a previously used 74LS173 4-bit D-type register. This will store the 

address from the bus that can be fed to the address lines of our RAM upon request. Its 
4-line output will be connected to the B input of our 74LS157 selector. The A input of the 
selector will go to the 4-way dip switch. Here is an alternation to Ben Eater’s design. He 
explains that the selector has internal pull up resistors, so we can just selectively connect 
the dip switches to ground. If the switch is on, it connects to ground and if the switch is 
off, the selector pulls the voltage up for logical high. Well, this didn’t work for me at all. I 
spent several hours troubleshooting and I realized that when the switch was in its off 
position, the voltage was floating, and I was getting random values that were changing 
when I was waving my hands close to the circuit. I had to add my own 1kW pull up 
resistors, because the ones in the selector just weren’t enough. Here is a block diagram: 

 

 



Now we can add a single pole double throw switch that will toggle between the A and B 
inputs of the selector. We are going to add a green LED to denote Run mode (B input 
active) and red LED to denote Program mode (A input active). 
 This principle is then repeated for our 8 data lines with a few minor differences. 
We need to use an 8-way dip switch and 8 1kW pull up resistors in the same configuration 
to avoid floating voltage. Instead of the 74LS173 register we will use the 74LS245 8-bit 
transceiver. We didn’t have to use it for the address because the address was only read 
from the bus, but here we will need to also write on the bus. Next addition is to add a 
button that will toggle our memory write. After we program the address and our instruction 
on the dip switches, we press a button, and the byte long instruction saves to our RAM. 
In the Run mode, this write enable signal will be supplied from our signal logic. However, 
we want to write only on the rising edge of the clock, so we will use a 74LS00 NAND gate 
to combine those two. The reason for using a NAND gate is that our write enable signal 
is an active low, so we won’t have to invert it afterwards. Here is the finished RAM module 
with the selector logic: 
 
 

 
 
 
 
 



4.5. PROGRAM COUNTER 
 

We have to have a notion of which instruction we are about to execute. This is the 
job for a program counter, which we can alternatively name Instruction Pointer, as their 
function is identical. Our program will start executing instructions from address 0 and after 
we are done, we will increment our counter and then fetch the next instruction from 
address 1. During a jump instruction, we will set the program counter to a specific 
address, so that we fetch our next instruction from that memory place.  

Binary counters are relatively easy to implement in hardware, all we need is to 
cascade some JK flip flops. In our design we are going to use a 74LS161 Synchronous 
4-bit counter alongside the 74LS245. Similarly to previous register designs (the program 
counter is sort of a register itself), we will put 4 LEDs in between the chips so we can see 
the value of the counter at all times. We are interested in a few signals that these chips 
provide us: we need to load the value from the bus into the counter (for jumping) and the 
74LS161 has a Load signal. We will also need to isolate the Counter Enable signal, 
because we do not want to increment on every clock signal, only sometimes. Finally, we 
will use the Counter Out signal to output the counter value onto the bus, which will later 
become a part of our instruction fetching. 

 
 

4.6. OUTPUT MODULE  
 
4.6.1. Design overview & motivation 
 

Our 8-bit computer needs to display 8-bit numbers, ideally in decimal form, not 
binary. Here we are going to implement 2 display modes – signed and unsigned numbers. 
In the signed range we are going to output numbers from the closed interval [-128; 127] 
and in the unsigned range from [0; 255]. We should also have an easy way to switch from 
one mode to the other. We can see that we will need 4 seven segment displays – one for 
the optional sign and three for the three digits. One way to do this is to have one EEPROM 
for each segment. This naïve approach is the simplest, but also the most wasteful and 
we can do better. Instead, we are going to use only one EEPROM and multiplex through 
it. That means we will need a 2-bit counter. Our EEPROM input will then consist of this 
multiplexed counter and the number to display and output the corresponding signals for 
each seven-segment display. Here is an example for number 123 (011110112): 

 
A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  D7 D6 D5 D4 D3 D2 D1 D0 

0 0 0 0 1 1 1 1 0 1 1  0 1 0 0 1 1 1 1 
0 0 1 0 1 1 1 1 0 1 1  0 1 0 1 1 0 1 1 
0 1 0 0 1 1 1 1 0 1 1  0 0 0 0 0 0 1 1 
0 1 1 0 1 1 1 1 0 1 1  0 0 0 0 0 0 0 0 

 
We can see that the EEPROM replaces a gigantic combination logic table that in 

principle could be represented by other logic gates. The first line of the table corresponds 
to digit 3, the second to digit 2, the third to digit 1 and the last one to sign, which we don’t 
need in this case.  



The 28C16AN EEPROM supports 11 address lines, and we will use all of them. 
The first 8 lines (A0-A7) will represent the binary number to output, in our case 123. The 
address lines A8 and A9 represent the multiplexed 2-bit counter and the address line A10 
will signal whether we want to treat the output as signed or unsigned. In the case of 123 
it will make no difference, because it would be displayed the same in both cases. The 
outputs D0-D7 correspond to which segments need to be turned on to represent the digit.  
To make it all work we need one more addition – we need to select which display we want 
to output to. If we only have what I described before, our 4 displays would all display 3 – 
2 – 1 – (blank) in a cycle, from the least significant digit to the most significant one. That 
is not quite what we want, we want only one display to be active at the time. We will fix 
this problem by decoding the multiplexed counter with a 74LS139 decoder and use it to 
drive the cathode of the seven segment displays. This way only one digit will be shown 
at a time and the other 3 displays will be off. Even though we are showing one digit at a 
time, if we make our output module clock fast enough, the persistence of vision will ensure 
that we will see a 3-digit number without any flicker. Don’t forget that this clock will be 
independent of the actual CPU clock and will be in the order of a few kilohertz. 

 
 

4.6.2. Building the output module 
 
 We are going to start with the 555-timer for our clock in the astable configuration. 
To set our clock frequency we are going to put 0.01 µF capacitors on pins 2 and 5 to 
ground. We will connect pins 6 and 2 together and put a 100k resistor across pins 6 and 
7. Finally we are going to put a 1k resistor between pin 7 and 5V to obtain the desired 
timing. Pin 3 of the timer will drive our 2-bit counter, which we decided to implement by 
using a 74LS109 Dual Master-Slave JK Flip-Flops. The output of the chip will split; one 
part goes to the EEPROM and connects to our A8 and A9 datelines and the other part 
will go into the 74LS139 decoder. The 4 decoded outputs will respectively drive the 
cathodes (pin 3) on each seven-segment display. The rest of pins are connected to the 
EEPROM outputs D0-D7.  

Next addition is to make our output module behave like a register, since we would 
like to remember the value and keep displaying it as long as we are requested to display 
some other value. To change things up a little bit, instead of using two 74LS173 and a 
74LS245, we are going to use one 74LS273 Octal D Flip-Flop chip. The biggest reason, 
apart from saving on parts, is that we will only be reading the value from the bus and 
storing it in the output register, we will not need to output back onto the bus. The purpose 
is exactly the same, to latch the value from the bus.  

Finally, we need to tie the 𝑊𝐸##### of our EEPROM to 5V since we never want to write 
to it. We also must set the output enable and chip enable pins to ground since we want 
to always output and always have the EEPROM enabled. Here is the finished module:  

 

 



4.7. CONTROL LOGIC  
 

4.7.1. Design Overview 
 

Let’s have a look at the block diagram of what we have built so far (note that some 
arrows are unidirectional, and some are bidirectional – they represent the possible data 
flow in our design): 

 

 
 

 We have isolated the necessary signals from each module. We can manually set 
them high and low and manually pulse the clock to get an idea of how we can execute 
simple programs. Ideally, we would like to automate this process. This is where the 
Control Logic comes into play. It will consist of an instruction decoder, combination logic 
and a stepping counter for microinstructions. For each instruction (like LDA, SUB and so 
on) we will execute several microinstructions. In this design we will have 5 
microinstruction (steps) per instruction, but we could accommodate up to 8 if we decide 
to enhance the capabilities. One step corresponds to one clock pulse. 
The first two microinstructions will always be the same and will perform fetching from 
RAM into the Instruction Register. From there we can determine the Execute part (last 3 
steps), which will depend on the actual instruction. Each microinstruction just sets 
different combination of our signals high and low, so we will be reading to and from 
different modules, depending on the instruction. Here is a table of all supported 
instructions. We have a space to add 2 more if we desire. 
 



 
 
 
4.7.2. Normalizing Signals 
 
 Some of our signals are active high and some of them are active low. This design 
includes a blue LED that indicates whether the signal is active. It also makes our code to 
program the EEPROMs easier, since we can then assume that high means active and 
low means not active. That’s why we will need two 74LS04 Hex inverters, because out of 
our 16 signals, 11 of them are active low. We are going to label each signal, have a 
corresponding diode for it and if it is an active low, we will run it through the inverter. 
The finished signals look like this: 
 

 
 
 
4.7.3. Step counter and EEPROMs 
 
 As mentioned in the Output Module part, the 2816AN EEPROM has 11 input 
address lines and 8 output lines. That means it can store 211 8-bit words. Since we have 
16 signals, we will need two EEPROMs for our Control Logic. One of them will drive the 
first 8 signals and the other one the remaining 8. We will not need all 11 inputs – in this 
design we only need 9: 4 bits that correspond to the instruction opcode, 3 bits that 
correspond to our multiplexed step and 2 bits for 2 flags from the flags register that we 
are going to build in the future. That still leaves us with 2 more unused inputs that we can 



take advantage of in the future. The EEPROMs again just replace a gigantic 
combinational logic table and they directly translate the input state into an output state. 
After connecting 5V and ground we need to tie the 𝑊𝐸##### of our EEPROMs to 5V since we 
never want to write to them. We also must set the output enable and chip enable pins to 
ground since we want to always output and always have the EEPROM enabled, exactly 
as we did in the Output Module. 
 For the counter we are using 74LS161 Synchronous 4-bit counter alongside a 
74LS139 3-to-8-line demultiplexer. We are using the decoder to have some green LEDs 
that display the current step, otherwise it is not needed. When we count to 5, we reset the 
counter back to zero. The reason for doing so is that none of our instructions needs more 
than 5 steps. If we design more complex instructions, we can have more steps per 
instruction. Here is the finished counter, decoder and EEPROMs: 
 

 
 
(Note that this picture has more things in it than just the counter, decoder and EEPROMs. The 4 blue LEDs correspond 
to the instruction opcode, 4 yellow LEDs correspond to the instruction payload and together they form the instruction 
register. They all have a 220-ohm current limiting resistor to ground. There is also a row of 8 red LEDs that correspond 
to the current value on the bus, again with 220-ohm current limiting resistors. The 3 red LEDs in the top left denote the 
multiplexed counter and the 5 green LEDs represent the demultiplexed counter. The 2 EEPROMs are in the middle.) 
 
4.7.4. Flags Register 
 
 To make our CPU fully Turing Complete, we only need to add one more thing – 
conditional jump. We only need to implement one type, but we are going to implement 
two anyways: jump on carry and jump on zero, since they are both really easy. We already 
have the carry flag CY from the ALU. For the zero flag we could use an 8-input NAND 
gate, but they are hard to find. Instead, we are going to use two 74LS02 Quad NOR gates 
and one 74LS08 Quad AND gate to represent the same logic – we want the flag to be 
active only when all 8 bits from the A register are zero. To store these flags, we put them 
into 74LS173 and since we are only using two bits, we have room for expansion. This flag 
register with added LEDs is then part of the input for the EEPROM, as described above. 



5. FINISHED BUILD 
 
 
 

 
 
 



5.1. IMPROVEMENTS DONE  
 

My original goal was to improve the power supply. I tried many different 
approaches. At first, I tried using the LM7805 Voltage regulator with a heatsink, since I 
had a 9V power supply at home. However, during the build I discovered that it couldn’t 
maintain 5V when all components were connected. It should be noted that this design 
draws about 12W of power (so about than 2.2A of current), which the regulator couldn’t 
handle. I also tried using a USB phone charger with a USB breakout board, but the 
charger I had at home again couldn’t supply the amperage needed. In the end I decided 
to simply buy a 5V 3A barrel jack power supply and I had no power issues whatsoever. I 
added many wires to distribute the voltage to all parts of the build. Since I didn’t improve 
the power supply, I decided to improve many small things: 

 
• I added a lot of filtering bypass capacitors across power rails and across 

chips to help smooth out the current draw, since this many bread boards have 
a non-negligible resistance 

• I added several ceramic capacitors to help with ringing, especially on the chips 
in the clock module and other critical parts 

• I added many pull resistors to help with floating voltages, which the original 
design omits 

• I added 3 instructions that the original design doesn’t have 
• I wrote an assembler in C that converts the instructions into the machine code: 

https://github.com/TheTask/8Bit-Assembler 
• I wrote several programs of my own that fit into the 16B of memory 
• I slightly improved the power distribution module 

 
 
5.2. SAMPLE PROGRAMS  
 
Computing and displaying the Fibonacci’s sequence: 
 
LDI 1 
STA 14 
LDI 0 
STA 15 
OUT 
LDA 14 
ADD 15 
STA 14 
OUT 
LDA 15 
ADD 14 
JC 0 
JMP 3 
HLT 

 
Here is a video of this program: https://www.youtube.com/watch?v=TjeFRSD93Ko 
 
 



Computing and displaying powers of 2: 
 
LDI 1 
STA 15 
LDA 15 
OUT 
ADD 15 
JC 0 
JMP 1 
 

Multiplying X and Y and displaying the result (as long as the product is less than 256): 
 
LDA 14 
SUB 12 
JC 6 
LDA 13 
OUT 
HLT 
STA 14 
LDA 13 
ADD 15 
STA 13 
JMP 0 
- 
ONE 
ZERO 
X 
Y 
 

 
 
 
6. CONCLUSION 
 

This project taught me a lot. I improved my knowledge of electronics, learnt how 
to troubleshoot with a multimeter and solidified my understanding of low-level assembly. 
It also taught me a lot of patience with wire cutting, stripping, measuring, and connecting 
everything. It took about 150 hours to complete. 

I would like to thank my supervisor Prof. Joseph Vybihal for the support and for the 
supervision. Even though this project has limited memory, it performs exactly as a modern 
CPU within its constraints. It is a great introduction into low-level architectures and a great 
learning resource with an active community.  


