
Target Selection for AI Companions in FPS Games

Jonathan Tremblay
School of Computer Science
McGill University, Montréal

Québec, Canada
jtremblay@cs.mcgill.ca

Christopher Dragert
School of Computer Science
McGill University, Montréal

Québec, Canada
chris.dragert@mail.mcgill.ca

Clark Verbrugge
School of Computer Science
McGill University, Montréal

Québec, Canada
clump@cs.mcgill.ca

ABSTRACT
Non-player Characters (NPCs) that accompany the player
enable a single player to participate in team-based experi-
ences, improving immersion and allowing for more complex
gameplay. In this context, an Artificial Intelligence (AI)
teammate should make good combat decisions, supporting
the player and optimizing combat resolution. Here we inves-
tigate the target selection problem, which consists of picking
the optimal enemy as a target in a modern war game. We
look at how the companion’s different strategies can influ-
ence the outcome of combat, and by analyzing a variety of
non-trivial First Person Shooter (FPS) scenarios show that
an intuitively simple approach has good mathematical jus-
tification, improves over other common strategies typically
found in games, and can even achieve results similar to much
more expensive look-up tree approaches. This work has ap-
plications in practical game design, verifying that simple,
computationally efficient target selection can make an ex-
cellent target selection heuristic.

Keywords
Artificial Intelligence, Video Games

1. INTRODUCTION
NPC companions in modern games are intended to im-

prove player experience by augmenting player capability and
acting as a surrogate teammate or co-adventurer. Simple
companion AIs, however, often result in the companion de-
monstrating a poor degree of cooperation [1], failing to rec-
ognize and comport with player intention. This can induce
frustration and break immersion, especially during time-
intensive and stressful situations like combat, where the de-
gree of cooperation can result in significant differences in the
outcome of the battle.

In this work we explore the challenges of cooperation in
terms of target selection for FPS games. Optimal combat
in FPS games relies heavily on AI team members select-
ing appropriate targets, matching or complementing player

choices. Although this is a complex problem in its full
generality, for simple situations the problem can be feasi-
bly expressed and analyzed formally. Using a mathematical
model, we first show that an intuitive, “threat-based” selec-
tion strategy has theoretical justification for being optimal,
at least within a simplified context. We then compare the
results of various common heuristics for target selection in
a number of non-trivial FPS test environments, showing the
relative performance of using a closest, strongest, weakest, or
highest threat enemy, as well as the effect of mimicking the
player’s strategy. This analysis demonstrates relative perfor-
mance of these heuristics, and in conjunction with a further
comparison of threat to the optimal results of a full look-
up tree search, shows that the theoretical basis for a threat
heuristic remains valid in more complex environments.

An efficient means of optimizing AI combat strategy is
important in FPS games, as it enables companions to more
closely model the behaviour of clever teammates, eliminates
the need for extra-narrative control of companions during
combat, and gives another means of controlling game diffi-
culty. More specific contributions of our work include:

• We derive a simple but justified target selection strat-
egy through mathematical analysis of a reduced prob-
lem space. Our approach is similar to prior analytical
work by Churchill et al. and Furtak et al. [3, 2], but
considers scenarios more common to FPS and Role-
Playing Games (RPG) contexts. This analysis verifies
that a “threat ordering,” prioritizing enemies based on
two dimensions (health and attack), is theoretically
optimal.

• Through experimental analysis of several representa-
tive scenarios, we show that threat ordering outper-
forms other commonly used target selection strate-
gies, even when considering the additional complexity
of real-time gameplay, probabilistic hit and damage,
character movement, and physical occlusion.

2. BACKGROUND & RELATED WORK
Our work is motivated by trying to improve the integra-

tion of NPCs within the player game experience, in which
context we specifically concentrate on the combat target se-
lection problem. Below we introduce and discuss related
work in both areas.

Human Player Game Experience - Considerable pre-
vious work exists in trying to understand the gaming ex-
perience [11]. For the purpose of this work, human experi-
ence is modelled in terms of maximizing an economic utility

function, defined as the total team health. This maximiz-
ing function is translatable as finding the highest rewarding
Nash equilibrium [8] in terms of selecting strategies. With
respect to our game set-up, the player has to work with
an NPC as a companion and trust her to make the right
choice. When human players do not trust each other they
never reach an optimal equilibrium [4], and thus to maxi-
mize the value of a companion a player needs to be able to
trust her to make appropriate decisions.

This problem of trust is found in many modern FPS and
RPG games. In Skyrim, for instance, the NPC companion
often exhibits sub-optimal strategy—targeting inappropri-
ate enemies, entering battle too quickly, and generally in-
terfering with the player’s combat intentions. This results
in less effective combat, or even the death of the compan-
ion. After losing trust in the companion, the player instead
adopts a sub-optimal strategy, such as keeping the compan-
ion out of the combat [5].

Target Selection Problem - The general target selec-
tion problem consists of two teams attacking each other,
with each entity selecting an opponent to fight. The goal is
to maximize the total team health at the end of the combat.
We find this problem in FPS, real-time strategy, adventure,
and other games. Work by others has closely examined the
case of 1 player against n enemies, showing that the prob-
lem of minimizing health loss for even a single player is NP-
Hard [3]. In our case we are interested in the case of a player
and her companion in a FPS or RPG scenario, a (small)
team vs. team approach, which has mainly been previously
addressed through look-up tree search.

Look-up tree search consists of exploring the reachable
state space of the game. The näıve way to do it would
be to explore every possible strategy at every state, reach-
ing all possible end-game states [7]. From there the optimal
choice is the one propagating back from the leaf with the
best solution. Even for small scenarios, however, exponen-
tial growth in the size of the state space makes such an
exhaustive search unrealistic in practice, at least within the
context of real-time commercial games.

Look-up tree search typically assumes that players play in
discrete turns. In a real-time environment this does not hold,
as entities take time to perform actions and may do multiple
actions between opponent moves, magnifying the branching
factor in a tree search. Churchill et al. explored ways to
reduce the space of exploration in real time strategy games
by using an alpha-beta search variant [2]. They were able
to solve an 8 vs. 8 combat using a game abstraction model
that reduces the search space by focusing on important game
features. Although this was done in real-time (50ms), the
relative cost of this approach is still expensive for the rapidly
changing context of FPS games, where high frame-rates are
paramount, and CPU is limited.

Heuristic valued approaches offer a more efficient solu-
tion by attempting to approximate enemy value through a
weighted function of observed data. The enemy with the
highest aggregate score is then selected as a target. In the
game Uncharted 2, for instance, they used a target selecting
system that computed, for each enemy, a weighted function
of distance, cover, whether the enemy shot the player last
time, who the enemy is targeting, close-range radius, and so
on [9]. In general, their NPC would try to target different
enemies by adding a negative weight when multiple entities
target the same enemies, while staying on that enemy us-

ing a sticking factor. This approach can be effective, but as
a complex and highly heuristic measure it must be closely
tuned to a given context, and does not necessarily result in
overall better combat results.

Finally, we note that many games offer some level of man-
ual control over target selection. In Drakensang, a player
may override a companion’s target choice, and direct her to-
ward a specific enemy. Such extra-narrative control avoids
the need for optimal target selection, but requires invok-
ing an out-of-game interface, and if frequently necessary re-
duces companions from teammates to tools. Middle ground
is found in games such as Dragon Age 2, which lets the player
choose very high-level strategies for her companion(s), tog-
gling between aggressive or defensive mode. This reduces
the interaction complexity by hiding detail, but also makes it
less obvious to the player what the companion will do, with-
out giving confidence that the best results will be achieved.

3. MOTIVATING ANALYSIS
The target selection problem exists in general within (Ba-

sic) Attrition Games, games wherein two sides, players and
enemies, seek to eliminate the other. It has been previ-
ously shown that solving Basic Attrition Games is exponen-
tial (i.e., BAGWIN ∈ EXPTIME) [3], while the decision
problem is PSPACE-hard, and is therefore not feasible in
real-time. Rather than solve the general form of the prob-
lem, we aim instead to explore the faster heuristics that can
easily be computed in polynomial time and which are typi-
cally applied in a FPS setting.

The goal of such heuristics is to find an enemy attack order
that maximizes total remaining player health without evalu-
ating the entire combat tree (state space). A näıve heuristic
might be to have all players attack the enemy with the low-
est health, or target the enemy with highest attack, or even
attack the enemy with the highest health. However, any of
these obvious heuristics will fare poorly under different sce-
narios. For instance, attacking the enemy with the lowest
health is a poor choice when there is an enemy with only
slightly greater health but much greater attack power. In-
tuitively, we should target enemies that are easy to kill and
which may cause lots of damage first, and enemies which
are hard to kill but induce low player damage last. The
former represent high threat enemies, while the latter have
less priority. Below we demonstrate that this simple model
actually has a well justified mathematical basis, describing
first a discrete time context, and then extending the result
to a more realistic real-time environment. Note that this
formulation builds on the mathematical analyses found in
work by others, but deviates in order to accommodate our
context and goals.

Discrete Time - The following combat scenario will be
used to define our basic attrition game. We begin with a set
P of players (1 human and some companions) that are fight-
ing a set E of enemies, where |P | = n, and |E| = m. Each
entity p ∈ P and e ∈ E has attack a and health h where
a, h ∈ N+. Fighting occurs in rounds, where the players and
enemies each select an opposing entity to attack. A player’s
attack is resolved by deducting pa from an enemy’s health
eh. If this leaves eh ≤ 0, the enemy is killed. Players hit
first, meaning that a defeated enemy will not attack during
the round in which it is killed. Any attack exceeding the
health of the target is wasted. The game ends when either
all players or enemies have been killed. Enemies will choose

their targets randomly, and for convenience, ph � ea, sim-
ulating role playing games where players typically have an
advantage in order to ensure continued gameplay.

An enemy will deal damage each round until it is dead, so
health savings for the player are maximized when the enemy
is killed as quickly as possible. We express the maximum
health savings S(e) for an enemy e as

S(e) = ea · (Tactual − Tα(e)) (1)

where T is the length of combat, and Tα(e) is the minimum
length of time needed to kill e. Unfortunately, Tactual and
Tα(e) are variable based on target assignment and the de-
gree of overkill (when pa > eh). We can lower-bound Tactual
as

Tactual ≥
⌈
Eh
Pa

⌉
(2)

where Pa is the players total attack, and Eh is the enemies
total attack. However, the possibility of overkill means the
actual combat length may exceed T . For instance, consider
the sitation where n = 1. It will take at least m turns to
defeat m enemies, regardless of Eh and Pa. Instead, we
approximate Tactual using

T '
∑
e∈E

⌈
eh
Pa

⌉
(3)

This provides a reasonable estimate since it accounts for
the number of enemies. It does allow for overestimation
of Tactual (e.g., in the case where every player can kill any
enemy in a single attack and n ≥ m), but this overestima-
tion turns out to be necessary. Consider the situation where
T = Tα(e) = 1. This means that S(e) = 0 for all e ∈ E.
If there is overkill, Tactual could be greater than T , yet our
savings estimates are all zero, providing no guidance. Over-
estimating guarantees that we maintain information about
enemy attacks and thus can still differentiate targets even
in the presence of overkill.

In Eq. (1), we also need Tα(e), which is given by

Tα(e) ≥
⌈

eh
Pe,a

⌉
(4)

where Pe,a is the total attack of the subset of players target-
ing e. We use this subset of attack values to reduce overkill.
If pa > eh, then it would not make sense to consider all
Pa, so using this reduced attack value allows us to take into
account the effects of spreading out attacks among enemies.
With values for T and Tα(e), we now expand Eq. (1) to get
our final equation for savings

S(e) = ea ·

(∑
e∈E

⌈
eh
Pa

⌉
−
⌈

eh
Pe,a

⌉)
(5)

Target selection proceeds by summing S(e) over all ene-
mies for every possible pairing, C, of P on E, which has mn

possibilities since an enemy can be targeted by more than
one player:

max
c∈C

[∑
e∈E

S(e)

]
(6)

The pairing c that gives us the maximum savings is our
target selection. Evaluating Eq. (6) takes O(mn), and re-
quires no manipulation or transformation from the basic pa-
rameters of the problem. As combat proceeds, we reevaluate

Figure 1: Plot of equation (7), showing threat order for
different combinations of enemy health and attack

each round to determine the optimal savings given that en-
emies have had their health reduced and may have died.

Real-Time Problem - The real-time formulation allows
for entities to evaluate the best target at every moment.
This means that players can react to changes in game state,
such as an enemy dying, and change their attack instead of
wasting it. By eliminating the possibility of overkill, Eq. (2)
becomes exact. Thus, we can evaluate exactly which enemy
offers the highest savings. The priority of all targets de-
creases in linear proportion to time, and so relative priority
ranking remains constant over time. Eliminating targets in
priority order thus guarantees an optimal outcome in real-
time scenarios. We reach the same conclusion as [6], and find
that changing targets is suboptimal as it guarantees that the
optimal savings will not be reached. In general, all players
should always be attacking the same enemy.

Using this knowledge we can rewrite Eq. (5). Here, Pe,a
is equal to Pa as the players will all pick the same enemy.
Using that knowledge we can drop Pa and get

max
e∈E

[e.a · (dEh − ehe)] (7)

What this means is that targets combining low health and
high attack are preferred. We call this strategy threat or-
dering. Figure 1 plots Eq. (7) for varying combinations of
ea and eh while Eh is kept constant. The scale on the right
shows relative threat order for different enemy statistics.

4. SIMULATION
A theoretical explication necessarily abstracts over many

details, such as variant firepower, entity movement, physical
occlusion (cover), and so forth. It is possible that in more
complex contexts the threat-based heuristic we justified and
found mathematically optimal is not in fact much better
than other common and even more trivial heuristics that
greedily focus on enemy health, proximity, or other one-
dimensional factors. We thus here explore the relative value
of these heuristics in practice by applying them to a game
context representative of typical FPS games, built using the
Unity 3D game development framework. In this we consider
4 common targeting strategies within 4 varied scenarios (sets
of enemies), as well as the impact of imperfect information
due to the existence of cover, and the result when companion
and player strategies are perfectly aligned.

Simulation Set Up - The simulation consists of a ba-
sic Third-Person Shooter game where the player has to ex-
plore a level by reaching goal locations while eliminating
encountered enemies. The game is over when the player has
eliminated all enemies and reached all goals. The player is
accompanied by a single companion; the companion follows
the player around and will engage combat when she sees an
enemy. Every NPC in the game is given a health and attack
value.

The human player in the game is played by an NPC in or-
der to simplify testing. We are interested in the influence of
the companion’s behaviour over the outcome of the game,
and by simulating the human player with artificial intelli-
gence we assure that her behaviour will not be evolving over
time and she will act in the same manner for all simulations.
In the simulation the human player’s behaviour is described
using a behaviour tree. She will explore the space to reach
all goals and engage combat with every enemy she sees. En-
emy detection is also facilitated by sound—when she hears
gun fire, she will investigate the situation by walking to-
wards the sound. The level is designed in such way that all
enemies are near goals to ensure the occurrence of combat.

The companion’s behaviour is supportive; she will closely
follow the player during exploration. She will engage in com-
bat with every enemy she sees and, like the player, is aware of
sounds. Enemy behaviour reflects game industry standards;
if NPCs do not see any enemies, they will patrol around
using pre-determined waypoints. When they hear fire they
will move towards that position. If they see an enemy they
will engage in combat by firing upon the closest target. Any
agent in the simulation will shoot for 2-3 seconds and will
then move to the left or the right; this behaviour simulates
dodging.

Target Selection Strategies - In order to fully test NPC
targeting action, we implemented 4 different strategies in-
spired by modern FPS games. In each case, the selection is
constrained to visible enemies, and the human player uses
the threat ordering strategy.

• Closest strategy will pick the closest enemy using Eu-
clidean distance.

• Highest Attack strategy will pick the enemy with the
highest attack.

• Lowest health strategy will pick the enemy with the
lowest health .

• Threat ordering strategy will pick the enemy that has
the highest priority according to equation 7.

Note that the closest strategy is strongly affected by the
level design. Through careful placement of enemies, a de-
signer could set up the level in a way that the companion
choice will match other strategies, at least initially. We thus
randomize enemy starting positions, and so closest acts more
like a random selection.

Scenarios and Levels - Four scenarios inspired by ac-
tual game situations were developed in order to compare the
different strategies.

• Uniform scenario is composed of six enemies with the
same attack and health value.

• Boss scenario is composed of five enemies with the
same attack and health value, and a boss with high
attack and health.

• Medley scenario is composed of two enemies with low
health and high attack value, two enemies with high
health and low attack, and one enemy with medium-
high attack and high health.

• Tank scenario is composed of five enemies with the
same attack and health value, and an enemy with very
high health value but only slightly higher attack.

Each combination of scenario and strategy was tested in
two environments. Simple level: an obstacle-free, open field
with no geometry blocking NPC vision. This is an optimal
situation for our threat ordering strategy, as it was designed
with access to perfect information in mind. Pillar level:
a high-occlusion environment, with pillars blocking vision.
Vision constraints increase the problem complexity in ways
not accounted for in Eq. 7, limiting target choices (in our
experiments entities just pick a new target when the lose
sight of their initial target), and making movement time a
significant cost.

Figure 2 shows a top-down view and in-game, playtime
screen-shots of the pillar level (simple level is the same with
no pillars). Red circles represent the enemies, the blue circle
is the human player and the green circle the companion.

Figure 2: Top-down view and in-action playtime screenshot
of the pillar level

A final set of experiments was also done having the com-
panion make the same target choices as the player (Mimic
Behaviour), as the player uses different target selection
strategies in the simple level. This experiment gives insights
into how the player’s behaviour could be destructive when
the companion does not make her own decisions.

5. RESULTS
For each combination of strategy, scenario, and level, and

again for the mimicking situation, we ran 31 simulations.
This was sufficient to show trends in the data, while still re-
sulting in a feasible experimental approach. From the data
we plotted average final team health and standard devia-
tion. Results can be seen in figures 3 to 14, where we plot
player+companion health over the duration of combat (in
seconds) for the different combinations.

Simple Level - Figure 3 shows results for all the strate-
gies given the uniform enemy scenario. Since the enemies
are identical in terms of attack and health, any target is
a good target. Therefore any strategy is good as long as
the players do not deviate between the enemies, giving us a
baseline for variance and sanity check for our simulation. It
is interesting to point out that with respect to our theoreti-
cal justification, all enemies would sit at one point in figure
1, emphasizing the lack of need for specialized strategies.

0 10 20 30 40
time

110

120

130

140

150

160

170

180

190

200
T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 3: Simple Level Uniform

0 5 10 15 20 25 30 35 40
time

110

120

130

140

150

160

170

180

190

200

T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 4: Pillar Level Uniform

0 5 10 15 20 25 30 35 40
time

110

120

130

140

150

160

170

180

190

200

T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 5: Mimic Level Uniform

0 10 20 30 40 50
time

110

120

130

140

150

160

170

180

190

200

T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 6: Simple Level Boss

0 5 10 15 20 25 30 35 40
time

110

120

130

140

150

160

170

180

190

200

T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 7: Pillar Level Boss

0 10 20 30 40
time

110

120

130

140

150

160

170

180

190

200

T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 8: Mimic Level Boss

0 10 20 30 40 50 60
time

110

120

130

140

150

160

170

180

190

200

T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 9: Simple Level Medley

0 10 20 30 40 50
time

110

120

130

140

150

160

170

180

190

200

T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 10: Pillar Level Medley

0 10 20 30 40 50
time

110

120

130

140

150

160

170

180

190

200

T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 11: Mimic Level Medley

0 5 10 15 20 25 30
time

110

120

130

140

150

160

170

180

190

200

T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 12: Simple level Tank

0 5 10 15 20 25 30 35
time

110

120

130

140

150

160

170

180

190

200

T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 13: Pillar Level Tank

0 5 10 15 20 25 30 35
time

110

120

130

140

150

160

170

180

190

200

T
o
ta

lH
e
a
lt

h

Threat Ordering
Closest
Lowest Health
Highest Attack

Figure 14: Mimic Level Tank

In the boss and medley scenarios, figures 6 and 9, highest
attack outperforms lowest health as a strategy, and matches
our threat ordering approach. This is not always an ideal
choice, however, as shown in the tank scenario, figure 12.
In this case highest attack is actually the worst strategy; it
picks the tank (high health enemy) first because it also has

slightly higher attack, and thus spends a long time receiving
non-negligible damage from the other enemies. Threat or-
dering, as well as the lowest health strategy, do not fall into
the same trap, prioritizing instead enemies that are more
quickly eliminated and thus reducing total health loss.

Pillars - The addition of pillars to the level design reduces

visibility, preventing entities from seeing all targets in gen-
eral, and dynamically changing the set of available targets
as entities move.

In general having subsets of enemies adds more noise to
the simulation, and results are largely similar to the sim-
ple level, but with larger variance. This is evident in the
uniform scenario, figure 4, and especially in the medley ex-
periment, figure 10. Most evident in the uniform scenario,
however, is that total health tends to be higher in the pillar
versions. This is due to the enemies queueing behind each
other because of the limited room between pillars, thus re-
ducing their visibility and allowing only a subset to shoot
at the players. With less shots fired at them, overall player
health ends up greater, and this argument holds for every
pillar scenario.

For the tank level, figure 13, we see a small but inter-
esting change in the relative difference between strategies.
The highest attack strategy is still the worst, but the gap
between it and other strategies is not as big as in the simple
level scenario. Repeated occlusion in the pillar level reduces
the ability of the companion to stay focused on their sub-
optimal choice, ameliorating the otherwise negative impact
of this strategy. This is further verified by measuring and
comparing the number of times the companion targets an
enemy with respect to the number of times she would target
the ideal target for her strategy; in this case the companion
is able to choose her intended but sub-optimal target only
around 1/3 of the time.

Companion Mimicking the Player - Since optimal
theoretical solutions suggest that concentrating attacks on
one enemy is optimal, a trivial strategy for companions is to
simply mimick whatever the human player does. The suc-
cess of this approach, however, depends very much on the
strategy the player chooses. The medley scenario, figure 11
betters our understanding of the context. With a more inde-
pendent companion we had at least one player selecting an
optimal choice, decreasing the impact of any wrong choices
on part of the other player. With mimicking, however, a
wrong choice ends up multiplying the negative impact, and
sub-optimal strategies such as lowest health and closest end
up with dramatically lower team health values. This is also
evident in the highest attack strategy of the tank scenario,
figure 14.

Of course when the player is an expert at picking the
right target, mimicking performs well, as both players coop-
erate and use good strategies. However, given that this will
also occur if the companion makes an independent choice to
use threat order, and that will still imply generally better
outcomes if the human player is not an expert, mimicking
seems like an overall poor approach. We note that this is
not necessarily the case for every game or game context, and
mimicking has been explored and shown to an effective ap-
proach in more complex contexts where learning from the
player is worthwhile, such as in fighting combat games [10].

Look-up Tree Search - The heuristics we examine of-
fer simplicity and efficiency advantages over look-up tree
searches, but even the overall best, threat ordering, due
to its inherent abstraction is not always necessarily opti-
mal. We thus also compare performance with search based
targeting to see how far from optimal threat ordering ends
up being. For this we used a non-graphical, discrete-time
simulation, allowing us to explore a large number of scenar-
ios, and avoiding any concerns with perturbing the real-time

simulation. Note that even this reduced problem is still NP-
hard as shown by Furtak et al. [3].

Figure 15: Cumulative histogram, showing how close to op-
timal threat ordering performs (discrete context).

Figure 16: Cumulative histogram, showing how highest at-
tack, lowest health, and random targeting fare in comparison
to threat ordering. Note that the x-axis scale differs from
figure 15.

We ran 500000 simulations in the discrete world with 2
players against 2 to 5 enemies. We compared a full look-
up tree search with the discrete form of the threat ordering
heuristic, given as equation 6. The players in this simula-
tion have attack 3 and health 500 each, with enemy attack
varying from 1 to 10 and health from 1 to 9. Although these
are fairly arbitrary values, there exists 6 billion ways to ar-
range the enemies with a large variety of difficulty. Results
are shown in figure 15. We can see that threat ordering
finds the optimal solution 50% of the time, is usually within
around 1% of optimal, and never results in a total team
health less than 8% of the optimal.

Figure 16 compares the behaviour of highest attack, low-
est health, and random targeting strategies to threat order-
ing at each trial; this experiment used 50000 simulations,

and 2–10 enemies (other parameters are the same). Note
that in this discrete simulation we do not represent geomet-
ric constraints, and so random replaces closest. In no cases
did these two strategies exceed threat ordering, but highest
attack is clearly the better of the two, matching threat order-
ing about 25% of the time, and being within 50% of threat
ordering over 97% of the time. Lowest health, however, only
barely improves over random.

These discrete, analytical results largely mirror the re-
sults shown in the more complex, real-time data given in
figures 3 to 14. In general, focusing on high attack ene-
mies is most important, eliminating weaker individuals is
next, and a weighted combination of these results is close
to optimal prioritization. Physical proximity has relatively
little relevance, although this is likely also an artifact of our
combat simulation; as future work it would be interesting
to see how close-combat versus distance weapons alter the
weighting of proximity.

6. CONCLUSION
Optimal solutions to enemy target selection in combat

games are complex, and ideally solved through expensive
state-space searches that are not practical in game contexts.
Designers thus frequently resort to simple, but fast and easy
to compute heuristics such as choosing the closest enemy,
strongest enemy, mimicking the player, and so forth. In
this work we explored and compared several such common
heuristics, showing that a slight variant (threat ordering)
can be mathematically justified, and also performs notably
better than other simple heuristics in realistic simulation.
We also compared this result to a simplified, but exhaustive
state space analysis to verify that this approach is not only
relatively better, but also demonstrably close to the theoret-
ical optimum. Understanding and validating these kinds of
targeting heuristics is important in terms of building inter-
esting and immersive gameplay where companions behave
sanely and can perform effectively.

There are a number of interesting extensions to this work.
Combat complexity, for instance, is often increased in RPGs
by giving characters a variety of special attacks, greatly lim-
ited attack resources (as with magic), or by introducing spe-
cific enemy weaknesses or strengths. We are interested in
seeing if threat ordering or other simple, perhaps higher di-
mension heuristics would still perform well in such complex
environments. In more long-lasting or difficult combats, the
availability of defensive cover and resource restoration adds
even more factors that should be considered in optimizing
combat behaviour [12]. Our main interest, however, is in
exploring how to improve the value of companions to the
player by maximizing their utility and ensuring appropri-
ate, human-like combat behaviours, as well as in using the
flexibility of companion choices to help games adapt to dif-
ferent player skills.

7. ACKNOWLEDGEMENTS
This research was supported by the Fonds de recherche du

Québec - Nature et technologies, and the Natural Sciences
and Engineering Research Council of Canada.

8. REFERENCES
[1] S. Bakkes, P. Spronck, and E. O. Postma.

Best-response Learning of Team Behaviour in Quake

III. In Workshop on Reasoning, Representation, and
Learning in Computer Games, pages 13–18, 2005.

[2] D. Churchill, A. Saffidine, and M. Buro. Fast heuristic
search for RTS game combat scenarios. In AAAI
Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2012.

[3] T. Furtak and M. Buro. On the complexity of
two-player attrition games played on graphs. In AAAI
Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2010.

[4] J. K. Goeree and C. A. Holt. Ten little treasures of
game theory and ten intuitive contradictions.
American Economic Review, pages 1402–1422, 2001.

[5] F. W. P. Heckel and G. M. Youngblood. Multi-agent
coordination using dynamic behavior-based
subsumption. In AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment,
2010.

[6] A. Kovarsky and M. Buro. Heuristic search applied to
abstract combat games. In Advances in Artificial
Intelligence, Lecture Notes in Computer Science,
pages 66–78. Springer Berlin Heidelberg, 2005.

[7] I. Millington and J. Funge. Artificial Intelligence for
Games. Morgan Kaufmann, second edition, 2009.

[8] N. Nisan, T. Roughgarden, É. Tardos, and V. V.
Vazirani, editors. Algorithmic Game Theory.
Cambridge University Press, 2007.

[9] B. Russell. The Secrets Of Enemy AI In Uncharted 2 .
http://www.gamasutra.com/view/feature/134566/

the_secrets_of_enemy_ai_in_.php, 2010.

[10] S. Saini, P. Chung, and C. Dawson. Mimicking human
strategies in fighting games using a data driven finite
state machine. In Information Technology and
Artificial Intelligence Conference (ITAIC), 2011 6th
IEEE Joint International, volume 2, pages 389–393,
2011.

[11] K. Salen and E. Zimmerman. Rules of Play: Game
Design Fundamentals. The MIT Press, 2003.

[12] Y. Shi and R. Crawfis. Optimal cover placement
against static enemy positions. In Proceedings of the
8th International Conference on Foundations of
Digital Games, FDG 2013, pages 109–116, 2013.

