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Abstract

Bayesian learning methods have recently been shown to provide an elegant solution to
the exploration-exploitation trade-off in reinforcement learning. However most investiga-
tions of Bayesian reinforcement learning to date focus on the standard Markov Decision
Processes (MDPs). The primary focus of this paper is to extend these ideas to the case
of partially observable domains, by introducing the Bayes-Adaptive Partially Observable
Markov Decision Processes. This new framework can be used to simultaneously (1) learn
a model of the POMDP domain through interaction with the environment, (2) track the
state of the system under partial observability, and (3) plan (near-)optimal sequences of
actions. An important contribution of this paper is to provide theoretical results showing
how the model can be finitely approximated while preserving good learning performance.
We present approximate algorithms for belief tracking and planning in this model, as well
as empirical results that illustrate how the model estimate and agent’s return improve as
a function of experience.

Keywords: reinforcement learning, Bayesian inference, partially observable Markov de-
cision processes

1. Introduction

Robust decision-making is a core component of many autonomous agents. This generally
requires that an agent evaluate a set of possible actions, and choose the best one for its
current situation. In many problems, actions have long-term consequences that must be
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considered by the agent; it is not useful to simply choose the action that looks the best in
the immediate situation. Instead, the agent must choose its actions by carefully trading
off their short-term and long-term costs and benefits. To do so, the agent must be able to
predict the consequences of its actions, in so far as it is useful to determine future actions.
In applications where it is not possible to predict exactly the outcomes of an action, the
agent must also consider the uncertainty over possible future events.

Probabilistic models of sequential decision-making take into account such uncertainty
by specifying the chance (probability) that any future outcome will occur, given any current
configuration (state) of the system, and action taken by the agent. However, if the model
used does not perfectly fit the real problem, the agent risks making poor decisions. This is
currently an important limitation in practical deployment of autonomous decision-making
agents, since available models are often crude and incomplete approximations of reality.
Clearly, learning methods can play an important role in improving the model as experience
is acquired, such that the agent’s future decisions are also improved.

In the past few decades, Reinforcement Learning (RL) has emerged as an elegant and
popular technique to handle sequential decision problems when the model is unknown (Sut-
ton and Barto, 1998). Reinforcement learning is a general technique that allows an agent to
learn the best way to behave, that is, such as to maximize expected return, from repeated
interactions in the environment. A fundamental problem in RL is that of exploration-
exploitation: namely, how should the agent chooses actions during the learning phase, in
order to both maximize its knowledge of the model as needed to better achieve the objective
later (i.e., explore), and maximize current achievement of the objective based on what is
already known about the domain (i.e., exploit). Under some (reasonably general) condi-
tions on the exploratory behavior, it has been shown that RL eventually learns the optimal
action-select behavior. However, these conditions do not specify how to choose actions such
as to maximize utilities throughout the life of the agent, including during the learning phase,
as well as beyond.

Model-based Bayesian RL is an extension of RL that has gained significant interest from
the AT community recently as it provides a principled approach to tackle the problem of
exploration-exploitation during learning and beyond, within the standard Bayesian inference
paradigm. In this framework, prior information about the problem (including uncertainty)
is represented in parametric form, and Bayesian inference is used to incorporate any new
information about the model. Thus the exploration-exploitation problem can be handled as
an explicit sequential decision problem, where the agent seeks to maximize future expected
return with respect to its current uncertainty on the model. An important limitation of this
approach is that the decision-making process is significantly more complex since it involves
reasoning about all possible models and courses of action. In addition, most work to date
on this framework has been limited to cases where full knowledge of the agent’s state is
available at every time step (Dearden et al., 1999; Strens, 2000; Duff, 2002; Wang et al.,
2005; Poupart et al., 2006; Castro and Precup, 2007; Delage and Mannor, 2007).

The primary contribution of this paper is an extension of the model-based Bayesian
reinforcement learning to partially observable domains with discrete representations.! In
support of this, we introduce a new mathematical model, called the Bayes-Adaptive POMDP

1. A preliminary version of this model was described by Ross et al. (2008a). The current paper provides
an in-depth development of this model, as well as novel theoretical analysis and new empirical results.
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(BAPOMDP). This is a model-based Bayesian RL approach, meaning that the framework
maintains a posterior over the parameters of the underlying POMDP domain.? We derive
optimal algorithms for belief tracking and finite-horizon planning in this model. However,
because the size of the state space in a BAPOMD can be countably infinite, these are, for all
practical purposes, intractable. We therefore dedicate substantial attention to the problem
of approximating the BAPOMDP model. We provide theoretical results for bounding the
state space while preserving the value function. These results are leveraged to derive a
novel belief monitoring algorithm, which is used to maintain a posterior over both model
parameters, and state of the system. Finally, we describe an online planning algorithm
which provides the core sequential decision-making component of the model. Both the
belief tracking and planning algorithms are parameterized so as to allow a trade-off between
computational time and accuracy, such that the algorithms can be applied in real-time
settings.

An in-depth empirical validation of the algorithms on challenging real-world scenarios
is outside the scope of this paper, since our focus here is on the theoretical properties of the
exact and approximative approaches. Nonetheless we elaborate a tractable approach and
characterize its performance in three contrasting problem domains. Empirical results show
that the BAPOMDP agent is able to learn good POMDP models and improve its return
as it learns better model estimates. Experiments on the two smaller domains illustrate
performance of the novel belief tracking algorithm, in comparison to the well-known Monte-
Carlo approximation methods. Experiments on the third domain confirm good planning
and learning performance on a larger domain; we also analyze the impact of the choice of
prior on the results.

The paper is organized as follows. Section 2 presents the models and methods neces-
sary for Bayesian reinforcement learning in the fully observable case. Section 3 extends
these ideas to the case of partially observable domains, focusing on the definition of the
BAPOMDP model and exact algorithms. Section 4 defines a finite approximation of the
BAPOMDP model that could be used to be solved by finite offline POMDP solvers. Sec-
tion 5 presents a more tractable approach to solving the BAPOMDP model based on online
POMDP solvers. Section 6 illustrates the empirical performance of the latter approach on
sample domains. Finally, Section 7 discusses related Bayesian approaches for simultaneous
planning and learning in partially observable domains.

2. Background and Notation

In this section we discuss the problem of model-based Bayesian reinforcement learning in
the fully observable case, in preparation for the extension of these ideas to the partially
observable case which is presented in Section 3. We begin with a quick review of Markov
Decision Processes. We then present the models and methods necessary for Bayesian RL in
MDPs. This literature has been developing over the last decade, and we aim to provide a
brief but comprehensive survey of the models and algorithms in this area. Readers interested
in a more detailed presentation of the material should seek additional references (Sutton
and Barto, 1998; Duff, 2002).

2. This is in contrast to model-free Bayesian RL approaches, which maintain a posterior over the value
function, for example, Engel et al. (2003, 2005); Ghavamzadeh and Engel (2007b).
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2.1 Markov Decision Processes

We consider finite MDPs as defined by the following n-tuple (S, A, T, R, ):

States: S is a finite set of states, which represents all possible configurations of the
system. A state is essentially a sufficient statistic of what occurred in the past, such
that what will occur in the future only depends on the current state. For example, in
a navigation task, the state is usually the current position of the agent, since its next
position usually only depends on the current position, and not on previous positions.

Actions: A is a finite set of actions the agent can make in the system. These actions may
influence the next state of the system and have different costs/payoffs.

Transition Probabilities: 7' : S x A x S — [0,1] is called the transition function. It
models the uncertainty on the future state of the system. Given the current state
s, and an action a executed by the agent, 7% specifies the probability Pr(s'|s,a)
of moving to state s’. For a fixed current state s and action a, 7% defines a
probability distribution over the next state s’, such that ) ¢ T = 1, for all
(s,a). The definition of T is based on the Markov assumption, which states that
the transition probabilities only depend on the current state and action, that is,
Pr(sty1 = §|ag, st,- .., a0,80) = Pr(siy1 = §'|ag, s¢), where a; and s; denote respec-
tively the action and state at time ¢. It is also assumed that 7' is time-homogenous,
that is, the transition probabilities do not depend on the current time: Pr(s;y; =
s'lay = a, st = s) = Pr(s; = §'|ar—1 = a, s4—1 = ) for all ¢.

Rewards: R: S x A — R is the function which specifies the reward R(s,a) obtained by
the agent for doing a particular action a in current state s. This models the imme-
diate costs (negative rewards) and payoffs (positive rewards) incurred by performing
different actions in the system.

Discount Factor: v € [0, 1) is a discount rate which allows a trade-off between short-term
and long-term rewards. A reward obtained t-steps in the future is discounted by the
factor 4%. Intuitively, this indicates that it is better to obtain a given reward now,
rather than later in the future.

Initially, the agent starts in some initial state, sg € S. Then at any time ¢, the agent
chooses an action a; € A, performs it in the current state s;, receives the reward R(s,a;)
and moves to the next state s;11 with probability T**%+1. This process is iterated until
termination; the task horizon can be specified a priori, or determined by the discount factor.

We define a policy, 7 : S — A, to be a mapping from states to actions. The optimal
policy, denoted 7*, corresponds to the mapping which maximizes the expected sum of dis-
counted rewards over a trajectory. The value of the optimal policy is defined by Bellman’s
equation:

V*(s) = max R(s,a) +~ Z T30 v (s | .
s'esS
The optimal policy at a given state, 7*(s), is defined to be the action that maximizes the
value at that state, V*(s). Thus the main objective of the MDP framework is to accurately
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estimate this value function, so as to then obtain the optimal policy. There is a large
literature on the computational techniques that can be leveraged to solve this problem. A
good starting point is the recent text by Szepesvari (2010).

A key aspect of reinforcement learning is the issue of exploration. This corresponds to
the question of determining how the agent should choose actions while learning about the
task. This is in contrast to the phase called exploitation, through which actions are selected
so as to maximize expected reward with respect to the current value function estimate. The
issues of value function estimation and exploration are assumed to be orthogonal in much
of the MDP literature. However in many applications, where data is expensive or difficult
to acquire, it is important to consider the rewards accumulated during the learning phase,
and to try to take this cost-of-learning into account in the optimization of the policy.

In RL, most practical work uses a variety of heuristics to balance the exploration and
exploitation, including for example the well-known e-greedy and Boltzmann strategies. The
main problem with such heuristic methods is that the exploration occurs randomly and is
not focused on what needs to be learned.

More recently, it has been shown that it is possible for an agent to reach near-optimal
performance with high probability using only a polynomial number of steps (Kearns and
Singh, 1998; Brafman and Tennenholtz, 2003; Strehl and Littman, 2005), or alternately to
have small regret with respect to the optimal policy (Auer and Ortner, 2006; Tewari and
Bartlett, 2008; Auer et al., 2009). Such theoretical results are highly encouraging, and in
some cases lead to algorithms which exhibit reasonably good empirical performance.

2.2 Bayesian Learning

Bayesian Learning (or Bayesian Inference) is a general technique for learning the unknown
parameters of a probability model from observations generated by this model. In Bayesian
learning, a probability distribution is maintained over all possible values of the unknown
parameters. As observations are made, this probability distribution is updated via Bayes’
rule, and probability density increases around the most likely parameter values.

Formally, consider a random variable X with probability density fx|e over its domain
X parameterized by the unknown vector of parameters © in some parameter space P. Let

X1, X2,--+, X, be a random i.i.d. sample from fxjg. Then by Bayes’ rule, the posterior
probability density ge|x, x,...., x, (071, T2, . .., Zn) of the parameters © = 0, after the obser-
vations of X1 = x1, X9 = Lo, -,

X = xp, is:

)  geO) Ty fxje(®il0)
9011 X X 010102 00 00) = 20 (G I o )0

where gg(#) is the prior probability density of © = 6, that is, gg over the parameter space
P is a distribution that represents the initial belief (or uncertainty) on the values of ©. Note
that the posterior can be defined recursively as follows:

L 901X1, X, X (OT1, T2, 1) fxje (0]0)
fp 9@|X1,X2,...,Xn,1(9'|901, L2y ... 7$n71)fx|®($n|9’)d‘9”

9o|X1,X2,.., Xn (mxla Z2,. .. ,l‘n)
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so that whenever we get the n'® observation of X, denoted xz,, we can compute the new
posterior distribution gg|x, x.,,.. x, {from the previous posterior go|x, x,,.. X, .-

In general, updating the posterior distribution gg|x, x.,,.. x, is difficult due to the need
to compute the normalization constant fp ge(0) I, Ix|e(wi]0)dd. However, for conjugate
family distributions, updating the posterior can be achieved very efficiently with a simple
update of the parameters defining the posterior distribution (Casella and Berger, 2001).

Formally, consider a particular class G of prior distributions over the parameter space
P, and a class F of likelihood functions fxg over X parameterized by parameters © € P,
then F and G are said to be conjugate if for any choice of prior go € G, likelihood fx|e € F
and observation X = z, the posterior distribution gg|x after observation of X = x is also
ingG.

For example, the Beta distribution® is conjugate to the Binomial distribution.* Consider
X ~ Binomial(n, p) with unknown probability parameter p, and consider a prior Beta(c, (3)
over the unknown value of p. Then following an observation X = x, the posterior over p is
also Beta distributed and is defined by Beta(a + x, 5+ n — x).

Another important issue with Bayesian methods is the need to specify a prior. While the
influence of the prior tends to be negligible when provided with a large amount of data, its
choice is particularly important for any inference and decision-making performed when only
a small amount of data has been observed. In many practical problems, informative priors
can be obtained from domain knowledge. For example many sensors and actuators used
in engineering applications have specified confidence intervals on their accuracy provided
by the manufacturer. In other applications, such as medical treatment design or portfolio
management, data about the problem may have been collected for other tasks, which can
guide the construction of the prior.

In the absence of any knowledge, uninformative priors can be specified. Under such
priors, any inference done a posteriori is dominated by the data, that is, the influence of
the prior is minimal. A common uninformative prior consists of using a distribution that
is constant over the whole parameter space, such that every possible parameter has equal
probability density. From an information theoretic point of view, such priors have maximum
entropy and thus contain the least amount of information about the true parameter (Jaynes,
1968). However, one problem with such uniform priors is that typically, under different re-
parameterization, one has different amounts of information about the unknown parameters.
A preferred uninformative prior, which is invariant under reparameterization, is Jeffreys’
prior (Jeffreys, 1961).

The third issue of concern with Bayesian methods concerns the convergence of the poste-
rior towards the true parameter of the system. In general, the posterior density concentrates
around the parameters that have highest likelihood of generating the observed data in the
limit. For finite parameter spaces, and for smooth families with continuous finite dimen-
sional parameter spaces, the posterior converges towards the true parameter as long as the
prior assigns non-zero probability to every neighborhood of the true parameter. Hence in
practice, it is often desirable to assign non-zero prior density over the full parameter space.

3. Beta(a, ) is defined by the density function f(p|a,8) o< p*~1(1 — p)?~* for p € [0,1] and parameters
a, > 0.

4. Binomial(n,p) is defined by the density function f(k|n,p) o« p*(1 — p)"~* for k € {0,1,...,n} and
parameters p € [0,1],n € N.
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It should also be noted that if multiple parameters within the parameter space can
generate the observed data with equal likelihood, then the posterior distribution will usually
be multimodal, with one mode surrounding each equally likely parameter. In such cases,
it may be impossible to identify the true underlying parameter. However for practical
purposes, such as making predictions about future observations, it is sufficient to identify
any of the equally likely parameters.

Lastly, another concern is how fast the posterior converges towards the true parameters.
This is mostly influenced by how far the prior is from the true parameter. If the prior is
poor, that is, it assigns most probability density to parameters far from the true parameters,
then it will take much more data to learn the correct parameter than if the prior assigns
most probability density around the true parameter. For such reasons, a safe choice is to
use an uninformative prior, unless some data is already available for the problem at hand.

2.3 Bayesian Reinforcement Learning in Markov Decision Processes

Work on model-based Bayesian reinforcement learning dates back to the days of Bellman,
who studied this problem under the name of Adaptive control processes (Bellman, 1961).
An excellent review of the literature on model-based Bayesian RL is provided in Duff (2002).
This paper outlines, where appropriate, more recent contributions in this area.

As a side note, model-free BRL methods also exist (Engel et al., 2003, 2005; Ghavamzadeh
and Engel, 2007a,b). Instead of representing the uncertainty on the model, these methods
explicitly model the uncertainty on the value function or optimal policy. These methods
must often rely on heuristics to handle the exploration-exploitation trade-off, but may be
useful in cases where it is easier to express prior knowledge about initial uncertainty on the
value function or policy, rather than on the model.

The main idea behind model-based BRL is to use Bayesian learning methods to learn
the unknown model parameters of the system, based on what is observed by the agent in the
environment. Starting from a prior distribution over the unknown model parameters, the
agent updates a posterior distribution over these parameters as it performs actions and gets
observations from the environment. Under such a Bayesian approach, the agent can compute
the best action-selection strategy by finding the one that maximizes its future expected
return under the current posterior distribution, but also considering how this distribution
will evolve in the future under different possible sequences of actions and observations.

To formalize these ideas, consider an MDP (S, A, T, R,~), where S, A and R are known,
and T is unknown. Furthermore, assume that S and A are finite. The unknown parameters
in this case are the transition probabilities, 75, for all s, s’ € S, a € A. The model-based
BRL approach to this problem is to start off with a prior, g, over the space of transition
functions, T. Now let 5, = (s, s1,...,8¢) and a;—1 = (ag,a1,...,a;—1) denote the agent’s
history of visited states and actions up to time ¢. Then the posterior over transition functions
after this sequence is defined by:

g(T|§t7 at—l) X g(T) Hf;é T8i%iSi+1
! Nu ’ 5 77 -
X g(T) HSGS,aeA Hs’eS(Tsas ) .s (5¢,a¢ 1)7
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where N;S,(gt,at_l) = Zz;é I{(s7a75/)}(si,ai,si+1) is the number of times® the transition
(s,a,s’) occurred in the history (8¢, a;—1). As we can see from this equation, the likelihood
[Ticsaca Hs,es(Tsasl)Nis/(St’at”) is a product of |S||A| independent Multinomial® distri-
butions over S. Hence, if we define the prior g as a product of |S||A| independent pri-
ors over each distribution over next states 7°%, that is, g(T') = [[scq 4e4 95,a(T°"), then
the posterior is also defined as a product of |S||A| independent posterior distributions:
9(T|5¢,a4-1) = Hses,aeA 9s,a(T%%|5¢, ar—1), where gg o(T°"|5¢,a4—1) is defined as:

gs,a(Tsa‘ ’5167 C_Lt—l) o gs’a(Tsa-) H (Tsas’)Ng’S/(gt@zfl).
s'eS

Furthermore, since the Dirichlet distribution is the conjugate of the Multinomial, it
follows that if the priors g5 o(7T°*) are Dirichlet distributions for all s, a, then the posteriors
Gs,a(T°%|5¢,a;—1) will also be Dirichlet distributions for all s,a. The Dirichlet distribution
is the multivariate extension of the Beta distribution and defines a probability distribution
over discrete distributions. It is parameterized by a count vector, ¢ = (¢1,..., ¢r), where
¢; > 0, such that the density of probability distribution p = (p1,...,pg) is defined as
f(plp) x Hle pfifl. If X ~ Multinomialg(p, N) is a random variable with unknown
probability distribution p = (p1,...,pr), and Dirichlet(¢,...,¢x) is a prior over p, then

after the observation of X = n, the posterior over p is Dirichlet(¢1+ni, ..., ¢r+ni). Hence,
if the prior gso(7°") is Dirichlet(¢S ;. .. ,<Z>§78|S‘), then after the observation of history

(8t,@t—1), the posterior gsq(T°%|8;,a—1) is Dirichlet(¢g s, + N;Sl(Et,at,l),...,gbg’sls‘ +
Ngs‘s‘(gt,dt,l)). It follows that if ¢ = {¢¢  la € A,s,s' € S} represents the set of all
Dirichlet parameters defining the current prior/posterior over T', then if the agent performs
a transition (s,a, s’), the posterior Dirichlet parameters ¢’ after this transition are simply

defined as:

/ —
/ ’S(?S, _ ?”8/ o "nor /
¢§/7S/u = (z)(sl”,s’”?v(s ,a ,S ) 7é (S,CL,S )

We denote this update by the function U, where U(®, s, a, s') returns the set ¢’ as updated
in the previous equation.

Because of this convenience, most authors assume that the prior over the transition func-
tion T follows the previous independence and Dirichlet assumptions (Duff, 2002; Dearden
et al., 1999; Wang et al., 2005; Castro and Precup, 2007). We also make such assumptions
throughout this paper.

2.3.1 BAYES-ADAPTIVE MDP MODEL

The core sequential decision-making problem of model-based Bayesian RL can be cast as
the problem of finding a policy that maps extended states of the form (s,¢) to actions
a € A, such as to maximize the long-term rewards of the agent. If this decision problem

5. We use I() to denote the indicator function.
6. Multinomialy(p, N) is defined by the density function f(n|p, N) Hle p;t for n; € {0,1,..., N} such
that Zle n; = N, parameters N € N, and p is a discrete distribution over k outcomes.
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can be modeled as an MDP over extended states (s, ¢), then by solving this new MDP, we
would find such an optimal policy. We now explain how to construct this MDP.

Consider a new MDP defined by the tuple (S’, A,T', R',~). We define the new set of
states ' = S x T, where T = {¢ € NISPI|y(s,a) € S x A, Yoseg ®ly > 0}, and A is the
original action space. Here, the constraints on the set 7 of possible count parameters ¢ are
only needed to ensure that the transition probabilities are well defined. To avoid confusion,
we refer to the extended states (s, ¢) € S’ as hyperstates. Also note that the next informa-
tion state ¢’ only depends on the previous information state ¢ and the transition (s, a,s")
that occurred in the physical system, so that transitions between hyperstates also exhibit
the Markov property. Since we want the agent to maximize the rewards it obtains in the
physical system, the reward function R’ should return the same reward as in the physical
system, as defined in R. Thus we define R'(s,¢,a) = R(s,a). The only remaining issue is
to define the transition probabilities between hyperstates. The new transition function 7’
must specify the transition probabilities T (s, ¢, a, s, ¢') = Pr(s’, ¢'|s,a,¢). By the chain
rule, Pr(s’, ¢'|s,a,d) = Pr(s'|s,a, ) Pr(¢|s,a,s’,$). Since the update of the information
state ¢ to ¢’ is deterministic, then Pr(¢’|s,a, s’, ¢) is either 0 or 1, depending on whether
¢' = U(¢,s,a,5") or not. Hence Pr(¢'[s,a,s’,¢) = I141(U(9,5,a,5")). By the law of total
probability, Pr(s'|s,a,¢) = [Pr(s'|s,a,T,$)f(T|¢)dT = [T* f(T|¢)dT, where the inte-
gral is carried over transition function 7', and f(7'|¢) is the probability density of transition
function 7' under the posterior defined by ¢. The term [T sas’ £(T |¢)dT is the expecta-

tion of 75" for the Dirichlet posterior defined by the parameters ¢g ., ... ,¢§7S|S‘, which
b5 o . .
corresponds to s T Thus it follows that:
@ !
T,(S) ¢, a, S/a ¢/) = $I{¢’}(u(¢a $,a, 5/))‘

Zs”ES gbg,s’/

We now have a new MDP with a known model. By solving this MDP, we can find the
optimal action-selection strategy, given a posteriori knowledge of the environment. This
new MDP has been called the Bayes-Adaptive MDP (Duff, 2002) or the HyperMDP (Castro
and Precup, 2007).

Notice that while we have assumed that the reward function R is known, this BRL
framework can easily be extended to the case where R is unknown. In such a case, one
can proceed similarly by using a Bayesian learning method to learn the reward function
R and add the posterior parameters for R in the hyperstate. The new reward function R’
then becomes the expected reward under the current posterior over R, and the transition
function 7" would also model how to update the posterior over R, upon observation of any
reward r. For brevity of presentation, it is assumed that the reward function is known
throughout this paper. However, the frameworks we present in the following sections can
also be extended to handle cases where the rewards are unknown, by following a similar
reasoning.

2.3.2 OPTIMALITY AND VALUE FUNCTION

The Bayes-Adaptive MDP (BAMDP) is just a conventional MDP with a countably infinite
number of states. Fortunately, many theoretical results derived for standard MDPs carry
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over to the Bayes-Adaptive MDP model (Duff, 2002). Hence, we know there exists an
optimal deterministic policy 7* : S — A, and that its value function is defined by:

V*(Sa ¢) = maXgecA R/(Sa QS’ (Z) + Y Z(s’,qﬁ’)es’ T/(S, §b, a, 3/7 ¢/)V*(S/> ¢/):|

¢:s’ *
= InaXgecA R(S,(I)-F’}/ZS/GS mv (3/7Z/{(¢,s,a,5’)>} .

(1)

This value function is defined over an infinite number of hyperstates, therefore, in prac-
tice, computing V* exactly for all hyperstates is unfeasible. However, since the summation
over S is finite, we observe that from one given hyperstate, the agent can transit only to
a finite number of hyperstates in one step. It follows that for any finite planning horizon
t, one can compute exactly the optimal value function for a particular starting hyperstate.
However the number of reachable hyperstates grows exponentially with the planning hori-
zon.

2.3.3 PLANNING ALGORITHMS

We now review existing approximate algorithms for estimating the value function in the
BAMDP. Dearden et al. (1999) proposed one of the first Bayesian model-based exploration
methods for RL. Instead of solving the BAMDP directly via Equation 1, the Dirichlet
distributions are used to compute a distribution over the state-action values Q*(s,a), in
order to select the action that has the highest expected return and value of information
(Dearden et al., 1998). The distribution over Q-values is estimated by sampling MDPs
from the posterior Dirichlet distribution, and then solving each sampled MDP to obtain
different sampled Q-values. Re-sampling and importance sampling techniques are proposed
to update the estimated Q-value distribution as the Dirichlet posteriors are updated.

Rather than using a maximum likelihood estimate for the underlying process, Strens
(2000) proposes to fully represent the posterior distribution over process parameters. He
then uses a greedy behavior with respect to a sample from this posterior. By doing so, he
retains each hypothesis over a period of time, ensuring goal-directed exploratory behavior
without the need to use approximate measures or heuristic exploration as other approaches
did. The number of steps for which each hypothesis is retained limits the length of explo-
ration sequences. The results of this method is then an automatic way of obtaining behavior
which moves gradually from exploration to exploitation, without using heuristics.

Duff (2001) suggests using Finite-State Controllers (FSC) to represent compactly the
optimal policy 7* of the BAMDP and then finding the best FSC in the space of FSCs of
some bounded size. A gradient descent algorithm is presented to optimize the FSC and
a Monte-Carlo gradient estimation is proposed to make it more tractable. This approach
presupposes the existence of a good FSC representation for the policy.

For their part, Wang et al. (2005) present an online planning algorithm that estimates
the optimal value function of the BAMDP (Equation 1) using Monte-Carlo sampling. This
algorithm is essentially an adaptation of the Sparse Sampling algorithm (Kearns et al.,
1999) to BAMDPs. However instead of growing the tree evenly by looking at all actions
at each level of the tree, the tree is grown stochastically. Actions are sampled according
to their likelihood of being optimal, according to their Q-value distributions (as defined by
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the Dirichlet posteriors); next states are sampled according to the Dirichlet posterior on the
model. This approach requires multiple sampling and solving of MDPs from the Dirichlet
distributions to find which action has highest Q-value at each state node in the tree. This
can be very time consuming, and so far the approach has only been applied to small MDPs.

Castro and Precup (2007) present a similar approach to Wang et al. However their ap-
proach differs on two main points. First, instead of maintaining only the posterior over mod-
els, they also maintain Q-value estimates using a standard Q-Learning method. Planning is
done by growing a stochastic tree as in Wang et al. (but sampling actions uniformly instead)
and solving for the value estimates in that tree using Linear Programming (LP), instead
of dynamic programming. In this case, the stochastic tree represents sampled constraints,
which the value estimates in the tree must satisfy. The Q-value estimates maintained by
Q-Learning are used as value estimates for the fringe nodes (thus as value constraints on
the fringe nodes in the LP).

Finally, Poupart et al. (2006) proposed an approximate offline algorithm to solve the
BAMDP. Their algorithm, called Beetle, is an extension of the Perseus algorithm (Spaan
and Vlassis, 2005) to the BAMDP model. Essentially, at the beginning, hyperstates (s, ¢)
are sampled from random interactions with the BAMDP model. An equivalent continuous
POMDP (over the space of states and transition functions) is solved instead of the BAMDP
(assuming (s, ¢) is a belief state in that POMDP). The value function is represented by
a set of a-functions over the continuous space of transition functions. Each a-function is
constructed as a linear combination of basis functions; the sampled hyperstates can serve as
the set of basis functions. Dynamic programming is used to incrementally construct the set
of a-functions. At each iteration, updates are only performed at the sampled hyperstates,
similarly to Perseus (Spaan and Vlassis, 2005) and other Point-Based POMDP algorithms
(Pineau et al., 2003).

3. Bayes-Adaptive POMDPs

Despite the sustained interest in model-based BRL, the deployment to real-world applica-
tions is limited both by scalability and representation issues. In terms of representation, an
important challenge for many practical problems is in handling cases where the state of the
system is only partially observable. Our goal here is to show that the model-based BRL
framework can be extended to handle partially observable domains. Section 3.1 provides a
brief overview of the Partially Observable Markov Decision Process framework. In order to
apply Bayesian RL methods in this context, we draw inspiration from the Bayes-Adaptive
MDP framework presented in Section 2.3, and propose an extension of this model, called
the Bayes-Adaptive POMDP (BAPOMDP). One of the main challenges that arises when
considering such an extension is how to update the Dirichlet count parameters when the
state is a hidden variable. As will be explained in Section 3.2, this can be achieved by
including the Dirichlet parameters in the state space, and maintaining a belief state over
these parameters. The BAPOMDP model thus allows an agent to improve its knowledge
of an unknown POMDP domain through interaction with the environment, but also allows
the decision-making aspect to be contingent on uncertainty over the model parameters. As
a result, it is possible to define an action-selection strategy which can directly trade-off
between (1) learning the model of the POMDP, (2) identifying the unknown state, and
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(3) gathering rewards, such as to maximize its future expected return. This model offers
an alternative framework for reinforcement learning in POMDPs, compared to previous
history-based approaches (McCallum, 1996; Littman et al., 2002).

3.1 Background on POMDPs

While an MDP is able to capture uncertainty on future outcomes, and the BAMDP is able
to capture uncertainty over the model parameters, both fail to capture uncertainty that can
exist on the current state of the system at a given time step. For example, consider a medical
diagnosis problem where the doctor must prescribe the best treatment to an ill patient. In
this problem the state (illness) of the patient is unknown, and only its symptoms can be
observed. Given the observed symptoms the doctor may believe that some illnesses are more
likely, however he may still have some uncertainty about the exact illness of the patient.
The doctor must take this uncertainty into account when deciding which treatment is best
for the patient. When the uncertainty is high, the best action may be to order additional
medical tests in order to get a better diagnosis of the patient’s illness.

To address such problems, the Partially Observable Markov Decision Process (POMDP)
was proposed as a generalization of the standard MDP model. POMDPs are able to model
and reason about the uncertainty on the current state of the system in sequential decision
problems (Sondik, 1971).

A POMDP is defined by a finite set of states S, a finite set of actions A, as well as
a finite set of observations Z. These observations capture the aspects of the state which
can be perceived by the agent. The POMDP is also defined by transition probabilities
{TS‘IS’}&S/E&@EA, where 750" = Pr(sit1 = §'|sy = s,a; = a), as well as observation proba-
bilities {O***}scs.aca,zcz where O*** = Pr(z = z|sy = s,a;—1 = a). The reward function,
R: S x A— R, and discount factor, -y, are as in the MDP model.

Since the state is not directly observed, the agent must rely on the observation and action
at each time step to maintain a belief state b € AS, where AS is the space of probability
distributions over S. The belief state specifies the probability of being in each state given
the history of action and observation experienced so far, starting from an initial belief by.
It can be updated at each time step using the following Bayes rule:

Oslatzt+l z cs Tsats’bt(s)
s
ZSNES OS//atZt+1 ZSES Tsats”bt(s) '

A policy 7 : AS — A indicates how the agent should select actions as a function of the
current belief. Solving a POMDP involves finding the optimal policy 7* that maximizes the
expected discounted return over the infinite horizon. The return obtained by following 7*
from a belief b is defined by Bellman’s equation:

bet1(s') =

V*(b) = max b(s)R(s,a) + Pr(z|b,a)V*(r(b,a, z))| ,
() = s |3 HOR(:0)+ 3 PHGlb V(70 0,2)
where 7(b, a, z) is the new belief after performing action a and observation z,and v € [0,1)
is the discount factor.
A key result by Smallwood and Sondik (1973) shows that the optimal value function for
a finite-horizon POMDP is piecewise-linear and convex. It means that the value function
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V; at any finite horizon ¢ can be represented by a finite set of |S|-dimensional hyperplanes:
I't = {ap, a1, ...,an}. These hyperplanes are often called a-vectors. Each defines a linear
value function over the belief state space, associated with some action, a € A. The value of
a belief state is the maximum value returned by one of the a-vectors for this belief state:

The best action is the one associated with the a-vector that returns the best value.

The Enumeration algorithm by Sondik (1971) shows how the finite set of a-vectors,
T4, can be built incrementally via dynamic programming. The idea is that any t-step
contingency plan can be expressed by an immediate action and a mapping associating a
(t-1)-step contingency plan to every observation the agent could get after this immediate
action. The value of the 1-step plans corresponds directly to the immediate rewards:

F% = {aa|aa(s) - R(S,CL)},
Fl = UaeA F(II
Then to build the a-vectors at time ¢, we consider all possible immediate actions the agent

could take, every observation that could follow, and every combination of (¢-1)-step plans
to pursue subsequently:

TP = {am]a"(s) =7 Lyes T 0750/ ("), 0/ € Ty ),
Iy = el ely?e.. o,

ry = UaeArgv

where @ is the cross-sum operator.”

Exactly solving the POMDP is usually intractable, except on small domains with only
a few states, actions and observations (Kaelbling et al., 1998). Various approximate al-
gorithms, both offline (Pineau et al., 2003; Spaan and Vlassis, 2005; Smith and Simmons,
2004) and online (Paquet et al., 2005; Ross et al., 2008c), have been proposed to tackle in-
creasingly large domains. However, all these methods require full knowledge of the POMDP
model, which is a strong assumption in practice. Some approaches do not require knowledge
of the model, as in Baxter and Bartlett (2001), but these approaches generally require some
knowledge of a good (and preferably compact) policy class, as well as needing substantial
amounts of data.

3.2 Bayesian Learning of a POMDP model

Before we introduce the full BAPOMDP model for sequential decision-making under model
uncertainty in a POMDP, we first show how a POMDP model can be learned via a Bayesian
approach.

Consider an agent in a POMDP (S, A, Z,T,0, R,~), where the transition function T
and observation function O are the only unknown components of the POMDP model. Let
zZt = (21, 22, - . ., 2t) be the history of observations of the agent up to time ¢. Recall also that
we denote §; = (sg, $1,...,5;) and a;—1 = (ag, a1, ...,a;—1) the history of visited states and

7. Let A and B be sets of vectors, then A® B = {a+ bla € A,b € B}.
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actions respectively. The Bayesian approach to learning 7" and O involves starting with a
prior distribution over 1" and O, and maintaining the posterior distribution over T" and O
after observing the history (as—1,%;). Since the current state s; of the agent at time ¢ is
unknown in the POMDP, we consider a joint posterior g(s¢, T',O|a;—1,z) over s, T', and
O. By the laws of probability and Markovian assumption of the POMDP, we have:

9(st, T, 0la—1, %) Pr(z, s¢|T,0,a;-1)g(T, 0, a4-1)
ZEt,lest Pr(iﬁ gt‘Ta OJ at—l)g(T) O)

XX

X

x T res 000, T O) [y om0

X Z§t_1€St 9(80? T, O) [Hs,a,s’(TSCLS/)NZSI(gt’atil)} X
Lo (00N Ceme 20|

where g(sp, T, O) is the joint prior over the initial state sy, transition function 7', and ob-
servation function O; N, (5¢,a1—1) = ZE;(I) I{(s,a,5')} (815 @iy $i41) is the number of times the
transition (s, a,s’) appears in the history of state-action (¢, a;—1); and N& (8¢, ai—1,2;) =
Zle If(s,a,2)} (86, @i—1, 2;) is the number of times the observation (s, a, z) appears in the his-
tory of state-action-observations (8¢, a;—1, z;). We use proportionality rather than equality
in the expressions above because we have not included the normalization constant.

Under the assumption that the prior g(sg, T, O) is defined by a product of independent
priors of the form:

g(SO’ T7 O) = g(so) H gsa(Tsa')gsa(Osa')a
S,a

and that gsq(7T°*) and gs,(O®*) are Dirichlet priors defined Vs, a, then we observe that the
posterior is a mixture of joint Dirichlets, where each joint Dirichlet component is parame-
terized by the counts corresponding to one specific possible state sequence:

9(st, T, Olat—1,2t) o< g cge 9(S0)c(Bt, Gr—1, 2t) X
NYNE (5t,@-1)+62, 1
Hs,a,s’(TsaS) 58 (8.e-1) P X (2)

H&ayz(osaz)Ngz(a,&t_l,Zt)+wngl

Here, ¢2 are the prior Dirichlet count parameters for gsq(7%%), ¢ are the prior Dirichlet
count parameters for gs,(O%"), and ¢(S¢, ai—1,2;) is a constant which corresponds to the
normalization constant of the joint Dirichlet component for the state-action-observation
history (8¢, a¢—1, z¢). Intuitively, Bayes’ rule tells us that given a particular state sequence,
it is possible to compute the proper posterior counts of the Dirichlets, but since the state
sequence that actually occurred is unknown, all state sequences (and their corresponding
Dirichlet posteriors) must be considered, with some weight proportional to the likelihood
of each state sequence.

In order to update the posterior online, each time the agent performs an action and gets
an observation, it is more useful to express the posterior in recursive form:

g(St,T,O|(_It71,Zt)O( Z TstflatflstOstatflztg(stfl,T,O|(_Lt72,5t71).
st_1€S

Hence if g(st—1, T, Olar—2,Zt-1) = X (g pyec(s,_y) W(st—1, ¢, V) f (T, Ol¢, ) is a mixture
of |C(s¢—1)| joint Dirichlet components, where each component (¢, ) is parameterized by
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the set of transition counts ¢ = {¢%, € N|s,s’ € S,a € A} and the set observation counts
Y ={vY3, €N|se€ S,a € A,z e Z}, then g(s;, T,O|as—1, %) is a mixture of [], ¢ |C(s)| joint
Dirichlet components, given by:

9(st, T, Olar-1,2) o< Y5, gD (o)ec(sr) W(St—1, &, V)e(St-1, @11, 51, 21, 6, )
f(T7 O’u(¢7 St—1, Ag—1, St)a u(d}? Sty At—1, Zt))a

where U(¢, s,a, s’) increments the count ¢, by one in the set of counts ¢, U(, s, a, 2)
increments the count ¢, by one in the set of counts v, and c(si—1, at—1, S¢, 2e—1, ¢, ) is
a constant corresponding to the ratio of the normalization constants of the joint Dirichlet
component (¢,1)) before and after the update with (s;—1,a¢—1, S¢, 2¢—1). This last equation
gives us an online algorithm to maintain the posterior over (s,7,0), and thus allows the
agent to learn about the unknown 7" and O via Bayesian inference.

Now that we have a simple method of maintaining the uncertainty over both the state
and model parameters, we would like to address the more interesting question of how to
optimally behave in the environment under such uncertainty, in order to maximize future
expected return. Here we proceed similarly to the Bayes-Adaptive MDP framework defined
in Section 2.3.

First, notice that the posterior g(s;, T, Ola;—1, Z:) can be seen as a probability distribu-
tion (belief) b over tuples (s, ¢, 1), where each tuple represents a particular joint Dirichlet
component parameterized by the counts (¢, 1) for a state sequence ending in state s (i.e., the
current state is s), and the probabilities in the belief b correspond to the mixture weights.
Now we would like to find a policy 7 for the agent which maps such beliefs over (s, ¢, )
to actions a € A. This suggests that the sequential decision problem of optimally behaving
under state and model uncertainty can be modeled as a POMDP over hyperstates of the
form (s, ¢, ).

Consider a new POMDP (S, A, Z, P', R',~), where the set of states (hyperstates) is for-
mally defined as &' = S x T x O, with 7 = {¢ € NSPMI|v(s,a) € S x A, 3,50, >0}
and O = {y € NBIAIZl|\y(s,.a) € S x A, 3, ,¢% > 0}. As in the definition of
the BAMDP, the constraints on the count parameters ¢ and 1 are only to ensure that
the transition-observation probabilities, as defined below, are well defined. The action
and observation sets are the same as in the original POMDP. The rewards depend only
on the state s € S and action a € A (but not the counts ¢ and 1), thus we have
R'(s,¢,9,a) = R(s,a). The transition and observations probabilities in the BAPOMDP
are defined by a joint transition-observation function P’ : S’ x A x S’ x Z — [0, 1], such that
P'(s,p,0,a,8,¢ 9, 2) =Pr(s, ¢, 9, z|s, ¢,1,a). This joint probability can be factorized
by using the laws of probability and standard independence assumptions:

PT(S,’ ¢,7 QP,, Z|S7 (,25, 1/}5 (Z)
= PT(SI‘S, ¢7 1[)7 a) PI‘(Z|S, ¢7 ¢7 a, 5/) Pr(gb/’Sa ¢7 wv a, Slv Z) PT(W\& ¢7 wa a, Sla ¢/a Z)
= Pr(S,‘SJ a? ¢) Pr(z’a7 8,7 w) Pr(¢/‘¢7 87 a? 8/) Pr(wl‘/(/}, a? 8,7 Z)‘

As in the Bayes-Adaptive MDP case, Pr(s'|s, a, ¢) corresponds to the expectation of
Pr(s’|s, a) under the joint Dirichlet posterior defined by ¢, and Pr(¢'|#, s, a, s’) is either 0 or
1, depending on whether ¢’ corresponds to the posterior after observing transition (s, a, s’)
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P

from prior ¢. Hence Pr(s'|s,a,®) = S and Pr(¢'|p, s, a,s") = L1y (U(@, 5,0, 5")).
s'e vy
Similarly, Pr(z|a, s, ) =

fOS/“Zf(OW)dO, which is the expectation of the Dirichlet posterior for Pr(z|s’,a), and
Pr(¢'|¢,a,s', 2), is either 0 or 1, depending on whether 1’ corresponds to the posterior

after observing observation (s',a,z) from prior ¢. Thus Pr(z|a,s,v) = %, and
2lez Pgry

Pr(¢/|¢),a,5',2) = Iy (U, 8',a,2)). To simplify notation, we denote Tgas/ =

B ZS”ESSS (b';s//
and O;‘Z ez — w;jﬁa . It follows that the joint transition-observation probabilities in the
2le s!z!
BAPOMDP are defined by:

PI‘(SI, d)ly d)/) Z|Sa ¢, 1, a) = T(zS)aS/Ofp/aZI{¢’}(u(¢a S, @, 8’))I{¢/}(Z/[(w, 5,7 a, Z))

Hence, the BAPOMDP defined by the POMDP (S, A, Z, P', R',~v) has a known model
and characterizes the problem of optimal sequential decision-making in the original POMDP
(S,A,Z,T,0,R,~) with uncertainty on the transition 7" and observation functions O de-
scribed by Dirichlet distributions.

An alternative interpretation of the BAPOMDP is as follows: given the unknown state
sequence that occurred since the beginning, one can compute exactly the posterior counts
¢ and 1. Thus there exists a unique (¢,7) reflecting the correct posterior counts according
to the state sequence that occurred, but these correct posterior counts are only partially
observable through the observations z € Z obtained by the agent. Thus (¢, ) can simply
be thought of as other hidden state variables that the agent tracks via the belief state, based
on its observations. The BAPOMDP formulates the decision problem of optimal sequential
decision-making under partial observability of both the state s € S, and posterior counts
(6,1).

The belief state in the BAPOMDP corresponds exactly to the posterior defined in
the previous section (Equation 2). By maintaining this belief, the agent maintains its
uncertainty on the POMDP model and learns about the unknown transition and ob-
servations functions. Initially, if ¢9 and 1y represent the prior Dirichlet count param-
eters (i.e., the agent’s prior knowledge of 7' and O), and by the initial state distribu-
tion of the unknown POMDP, then the initial belief b, of the BAPOMDP is defined as
bo (s, 9, 0) = bo(5) {43 (@) 1y} (). Since the BAPOMDP is just a POMDP with an infi-
nite number of states, the belief update and value function equations presented in Section
3.1 can be applied directly to the BAPOMDP model. However, since there is an infinite
number of hyperstates, these calculations can be performed exactly in practice only if the
number of possible hyperstates in the belief is finite. The following theorem shows that this
is the case at any finite time t:

Theorem 1 Let (S',A,Z, P',R',v) be a BAPOMDP constructed from the POMDP
(S,A,Z,T,0,R,v). If S is finite, then at any time t, the set S’2 ={o € S|bj(c) > 0} has
size \S’;| < S|ttt

Proof Proof available in Appendix A. |
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function 7(b,a, 2)
Initialize b’ as a 0 vector.
for all (s,¢,1) € S} do
for all s’ € S do
QS/ — u(¢7 $,a, S/)
W U, a,2)
V(s ¢, ) (s, ¢, ) + b(s, 6, ) T3 03
end for
end for
return normalized b’

Algorithm 1: Exact Belief Update in BAPOMDP.

The proof of Theorem 1 suggests that it is sufficient to iterate over S and S/, in order
t—1

to compute the belief state b} when an action and observation are taken in the environment.
Hence, we can update the belief state in closed-form, as outlined in Algorithm 1. Of course
this algorithm is not tractable for large domains with long action-observation sequences.
Section 5 provides a number of approximate tracking algorithms which tackle this problem.

3.3 Exact Solution for the BAPOMDP in Finite Horizons

The value function of a BAPOMDP for finite horizons can be represented by a finite set I"
of functions « : " — R, as in standard POMDPs. This is shown formally in the following
theorem:

Theorem 2 For any horizon t, there ewists a finite set Iy of functions S’ — R, such that
Vi (b) = maxaer, 3 e (0)b(0).

Proof Proof available in the appendix. |

The proof of this theorem shows that as in any POMDP, an exact solution of the
BAPOMDP can be computed using dynamic programming, by incrementally constructing
the set of a-functions that defines the value function as follows:

M = {a%a%(s,6,0) = R(s, )},
Iy = {a®?|a®*(s,,1) =7 Y ges T;“SlOfplaza’(s’,U(@s,a, s, U, s, a,z)),
o €Ty 1},
@ = DRI T2 @ ... aT77 (where @ is the cross sum operator),
Ft UaEA Fg

However in practice, it will be impossible to compute o;(s,$,v) for all (s,¢,9) €
S’ unless a particular finite parametric form for the a-functions is used. Poupart and
Vlassis (2008) showed that these a-functions can be represented as a linear combination
of product of Dirichlets and can thus be represented by a finite number of parameters.
Further discussion of their work is included in Section 7. We present an alternate approach
in Section 5.
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4. Approximating the BAPOMDP by a Finite POMDP

Solving the BAPOMDP exactly for all belief states is often impossible due to the dimen-
sionality of the state space, in particular because the count vectors can grow unbounded.
The first proposed method to address this problem is to reduce this infinite state space
to a finite state space, while preserving the value function of the BAPOMDP to arbitrary
precision. This allows us to compute an e-optimal value function over the resulting finite-
dimensional belief space using standard finite POMDP solvers. This can then be used to
obtain an e-optimal policy to the BAPOMDP.

The main intuition behind the compression of the state space presented here is that,
as the Dirichlet counts grow larger and larger, the transition and observation probabilities
defined by these counts do not change much when the counts are incremented by one. Hence,
there should exist a point where if we simply stop incrementing the counts, the value function
of that approximate BAPOMDP (where the counts are bounded) approximates the value
function of the BAPOMDP within some € > 0. If we can bound above the counts in such
a way, this ensures that the state space will be finite.

In order to find such a bound on the counts, we begin by deriving an upper bound on
the value difference between two hyperstates that differ only by their model estimates ¢
and 1. This bound uses the following definitions: given ¢, ¢’ € 7, and v¥,¢’ € O, define

DE(6.6) = Ses |15 — T3, DR ) = ey [0 = 03], N3 = S
and Nj* =3 ..

Theorem 3 Given any ¢, ¢ € T, ¥, € O, and v € (0,1), then for all t:
sup_Jau(s,6,0) —auls, @', 0)| < Bz sup [Dg(9,0) + Dy (v, )

at €Tt ,s€S s,s'€S,a€A

+ 4 ZS//€S|¢ZSN7¢ISZN| + ZZ€Z|¢:’27¢;§12’
In(y=) \ WGTHDWGTHD) T (W e+ 1) (Ve +1)

Proof Proof available in the appendix. |

We now use this bound on the a-vector values to approximate the space of Dirichlet
parameters within a finite subspace. We use the following definitions: given any € > 0, define

r_ =% o _ (1= In(37%) are _ [S](1+e) 1 € _ [Z](A+e) 1
€ = SRI= € = 3R~ , N§ = max 7y — 1 and N5, = max T — 1),

Theorem 4 Given any € > 0 and (s,¢,v¥) € S" such that Ja € A,3s' € S, ./\/'(;la > N§ or
Nj'® > Ng, then 3(s, ¢/, ¢') € & such that Ya € A,Vs' € S, N5e < N§, N2 < Nf and
lag (s, d,1) — (s, @', 9")| < € holds for all t and oy € T.

Proof Proof available in the appendix. |

Theorem 4 suggests that if we want a precision of € on the value function, we just need
to restrict the space of Dirichlet parameters to count vectors ¢ € 7, = {¢ € NIS ‘2‘A||Va €
As€80< /y;a < Ng}, and ¢ € O, = {¢ € NSIIZl|vg € 4,5 € 5,0 < Nj* < Ng}.
Since 7. and O, are finite, we can define a finite approximate BAPOMDP as the tuple
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(5’€,A, Z, JSE,Rg,’y), where S, = S x 7, x O, is the finite state space, and P. is the joint
transition-observation function over this finite state space. To define this function, we need
to ensure that whenever the count vectors are incremented, they stay within the finite space.
To achieve this, we define a projection operator P, : S' — S, that simply projects every
state in S’ to their closest state in Sﬁ.

Definition 1 Let d: S’ x S — R be defined such that:

B sup  [DF(6,0) + DE (W)
s,s’€S,acA

ifs=s
4 N = 4 Zs” S ‘¢§S//*¢;Z//| Zz 4 Iw;’/z* ;(/12|
d(s: &%, ¢ 9) Ty < (N“65+1)(Ngf+1) * (N,gjﬂ)wi,s/ﬂ)ﬂ ’
89| Rl|oo 2||Rl|oo .
-2 <1 + e e)> + = otherwise.

Definition 2 Let P, : S’ — S, be defined as Pc(s) = argmin d(s,s').
s'ESe
The function d uses the bound defined in Theorem 3 as a distance between states that
only differ in their ¢ and i vectors, and uses an upper bound on that value when the states
differ. Thus P, always maps states (s, ¢,1) € S’ to some state (s,#',1') € S.. Note that
if o € S,, then P. (o) = 0. Using Pe, the joint transition-observation function can then be
defined as follows:

P€<8, ¢, 9, a, 3/7 (b/? W, ) Tsas OS 1 {(s’,¢’,w’)}(7)€(sl7u(¢7 S, Qy 8’),“(1% 3,7 a, Z)))

This definition is the same as the one in the BAPOMDP, except that now an extra
projection is added to make sure that the incremented count vectors stay in S.. Finally,
the reward function R, : S. x A — R is defined as R((s,¢,%),a) = R(s,a). This defines
a proper finite POMDP (S., A, Z, P., R.,~), which can be used to approximate the original
BAPOMDP model.

Next, we are interested in characterizing the quality of solutions that can be obtained
with this finite model. Theorem 5 bounds the value difference between a-vectors computed
with this finite model and the a-vector computed with the original model.

Theorem 5 Given any ¢ > 0, (s,¢,¢) € S" and oy € Ty computed from the infinite

BAPOMDP. Let &y be the a-vector representing the same conditional plan as oy but com-

puted with the finite POMDP (Se, A, Z,Tc, O, Re,7), then |G (Pe(s, d,1)) — au(s, d,9)| <
€

1—v-

Proof Proof available in the appendix. To summarize, it solves a recurrence over the
1-step approximation in Theorem 4. |

Such bounded approximation over the a-functions of the BAPOMDP implies that the
optimal policy obtained from the finite POMDP approximation has an expected value close
to the value of the optimal policy of the full (non-projected) BAPOMDP:

Theorem 6 Given any e > 0, and any horizont, let 7 be the optimalt-step policy computed
from the finite POMDP (SE,A Z, Te,Oe,Re,fy) then for any initial belief b the value of

executing policy 7y in the BAPOMDP Vz, (b) > V*(b) — 275
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Proof Proof available in the appendix, and follows from Theorem 5. |

We note that the last two theorems hold even if we construct the finite POMDP with
the following approximate state projection P, which is more easy to use in practice:

Definition 3 Let P, : S’ — S, be defined as 756(3, b, ) = (s, b, zﬁ) where:

ég’ sl = ¢Z’7S// ! qg! Z-.fN(;/a S Ng
: LNngas ] zf/\/(‘;“>N§
o { e, if N < Ng
IN5O5% ] if N3 > Ny
This follows from the proof of Theorem 5, which only relies on such a projection, and not
on the projection that minimizes d (as done by P.).

Given that the state space is now finite, offline solution methods from the literature on fi-
nite POMDPs could potentially be applied to obtain an e-optimal policy to the BAPOMDP.
Note however that even though the state space is finite, it will generally be very large for
small €, such that the resulting finite POMDP may still be intractable to solve offline, even
for small domains.

An alternative approach is to solve the BAPOMDP online, by focusing on finding the
best immediate action to perform in the current belief of the agent, as in online POMDP
solution methods (Ross et al., 2008c¢). In fact, provided we have an efficient way of updating
the belief, online POMDP solvers can be applied directly in the infinite BAPOMDP without
requiring a finite approximation of the state space. In practice, maintaining the exact belief
in the BAPOMDP quickly becomes intractable (exponential in the history length, as shown

in Theorem 1). The next section proposes several practical efficient approximations for both
belief updating and online planning in the BAPOMDP.

5. Towards a Tractable Approach to BAPOMDPs

Having fully specified the BAPOMDP framework and its finite approximation, we now turn
our attention to the problem of scalable belief tracking and planning in this framework.
This section is intentionally briefer, as many of the results in the probabilistic reasoning
literature can be applied to the BAPOMDP framework. We outline those methods which
have proven effective in our empirical evaluations.

5.1 Approximate Belief Monitoring

As shown in Theorem 1, the number of states with non-zero probability grows exponentially
in the planning horizon, thus exact belief monitoring can quickly become intractable. This
problem is not unique to the Bayes-optimal POMDP framework, and was observed in the
context of Bayes nets with missing data (Heckerman et al., 1995). We now discuss different
particle-based approximations that allow polynomial-time belief tracking.

Monte-Carlo Filtering: Monte-Carlo filtering algorithms have been widely used for
sequential state estimation (Doucet et al., 2001). Given a prior belief b, followed by action
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function WD(b,a, z, K)

b — 7(b,a,z)

Initialize b” as a 0 vector.

(87 ¢7 '(/)) — argmax(s/7¢/7¢/)esg, b/(8/7 é/v W)

for i =2 to K do
(S, d)a 1/’) — argmax(s/,qﬁ/,w’)esg), b/(3/7 d)/a 1//) min(s”,qy/,w”)esz'),, d(s/a ¢I7 1/)/» 8//7 d)//a ’ll}//)
V' (s, ¢, 10) < (s, 0,9)

end for

return normalized b”

Algorithm 2: Weighted Distance Belief Update in BAPOMDP.

a and observation z, the new belief b’ is obtained by first sampling K states from the
distribution b, then for each sampled s a new state s’ is sampled from 7%*. Finally, the
probability O%'%* is added to /(s') and the belief ¥’ is re-normalized. This will capture at
most K states with non-zero probabilities. In the context of BAPOMDPs, we use a slight
variation of this method, where (s, ¢,%) are first sampled from b, and then a next state
s’ € S is sampled from the normalized distribution 7' ;a'O,'L/‘}Z . The probability 1/K is added
directly to b'(s',U(¢, s,a,s"), U, s,a,s")).

Most Probable: Another possibility is to perform the exact belief update at a given
time step, but then only keep the K most probable states in the new belief ¢/, and re-
normalize b’. This minimizes the L1 distance between the exact belief b’ and the approximate
belief maintained with K particles.® While keeping only the K most probable particles
biases the belief of the agent, this can still be a good approach in practice, as minimizing
the L, distance bounds the difference between the values of the exact and approximate
belief: that is, |V*(b) — V*(¥')| < L= jp — '],

Weighted Distance Minimization: Finally, we consider an belief approximation
technique which aims to directly minimize the difference in value function between the
approximate and exact belief state by exploiting the upper bound on the value difference
defined in Section 4. Hence, in order to keep the K particles which best approximate the
exact belief’s value, an exact belief update is performed and then the K particles which
minimize the weighted sum of distance measures, where distance is defined as in Definition 1,
are kept to approximate the exact belief. This procedure is described in Algorithm 2.

5.2 Online Planning

As discussed above, standard offline or online POMDP solvers can be used to optimize
the choice of action in the BAPOMDP model. Online POMDP solvers (Paquet et al.,
2005; Ross et al., 2008c) have a clear advantage over offline finite POMDP solvers (Pineau
et al., 2003; Spaan and Vlassis, 2005; Smith and Simmons, 2004) in the context of the
BAPOMDP as they can be applied directly in infinite POMDPs, provided we have an
efficient way to compute beliefs. Hence online POMDP solvers can be applied directly to
solve the BAPOMDP without using the finite POMDP representation presented in Section
4. Another advantage of the online approach is that by planning from the current belief,

8. The L, distance between two beliefs b and b’, denoted ||b — b'||1, is defined as - [b(0) — (o).
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for any finite planning horizon ¢, one can compute exactly the optimal value function, as
only a finite number of beliefs can be reached over that finite planning horizon. While the
number of reachable beliefs is exponential in the horizon, often only a small subset is most
relevant for obtaining a good estimate of the value function. Recent online algorithms (Ross
et al., 2008¢) have leveraged this by developing several heuristics for focusing computations
on only the most important reachable beliefs to obtain a good estimate quickly.

Since our focus is not on developing new online planning algorithms, we hereby simply
present a simple online lookahead search algorithm that performs dynamic programming
over all the beliefs reachable within some fixed finite planning horizon from the current
belief. The action with highest return over that finite horizon is executed and then planning
is conducted again on the next belief.

To further limit the complexity of the online planning algorithm, we used the approx-
imate belief monitoring methods detailed above. The detailed procedure is provided in
Algorithm 3. This algorithm takes as input: b is the current belief of the agent, D the
desired depth of the search, and K the number of particles to use to compute the next
belief states. At the end of this procedure, the agent executes action bestA in the environ-
ment and restarts this procedure with its next belief. Note here that an approximate value
function V can be used to approximate the long term return obtained by the optimal policy
from the fringe beliefs. For efficiency reasons, we simply defined V(b) to be the maximum
immediate reward in belief b throughout our experiments. The overall complexity of this
planning approach is O((|A||Z|)PCy), where Cy is the complexity of updating the belief.

function V(b,d, K)
if d =0 then
return f/(b)
end if
marQ «— —oo
for all a € A do
4= X(s.ppyes; b(s, 0, V) R(s, a)
for all z € Z do
by — f—(b7 a,z, K)
q— q+vPr(z]b,a)V(t,d—1,K)
end for
if ¢ > mazQ then
max@) «— q
maxA — a
end if
: end for
if d = D then
bestA — mazA
: end if
: return mazQ

I T o e T e T e S S e
Q@O PP RO

Algorithm 3: Online Planning in the BAPOMDP.
In general, planning via forward search can be improved by using an accurate simulator,

a good exploration policy, and a good heuristic function. For example, any offline POMDP
solution can be used at the leaves of the lookahead search to improve search quality (Ross
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et al., 2008c). Additionally, more efficient online planning algorithms presented in Ross
et al. (2008¢c) could be used provided one can compute an informative upper bound and
lower bound on the value function of the BAPOMDP.

6. Empirical Evaluation

The main focus of this paper is on the definition of the Bayes-Adaptive POMDP model, and
examination of its theoretical properties. Nonetheless it is useful to consider experiments
on a few sample domains to verify that the algorithms outlined in Section 5 produce reason-
able results. We begin by comparing the three different belief approximations introduced
above. To do so, we use a simple online d-step lookahead search, and compare the overall ex-
pected return and model accuracy in three different problems: the well-known Tiger domain
(Kaelbling et al., 1998), a new domain called Follow which simulates simple human-robot
interactions and finally a standard robot planning domain known as RockSample (Smith
and Simmons, 2004).

Given T°%" and O the exact probabilities of the (unknown) POMDP, the model
accuracy is measured in terms of the weighted sum of L1-distance, denoted W L1, between
the exact model and the probable models in a belief state b:

WLLb) = Y(suwes, b(s: 6 ¥)L1(6,)
LU¢¥) = Xaea2ves [Zses |T<;a8/ =T 43y ’Ozsp/az — 0%

6.1 Tiger

The Tiger problem (Kaelbling et al., 1998) is a 2-state POMDP, S = {tiger_le ft, tiger_right},
describing the position of the tiger. The tiger is assumed to be behind a door; its location is
inferred through a noisy observation, Z = {hear_right, hear_left}. The agent has to select
whether to open a door (preferably such as to avoid the tiger), or listen for further informa-
tion,

A = {open_left,open_right,listen}. We consider the case where the transition and re-
ward parameters are known, but the observation probabilities are not. Hence, there are
four unknown parameters: Op;, Or,, Ori, Ogr, (Or, stands for Pr(z = hear_right|s =
tiger_left,a = listen)). We define the observation count vector, ¥ = (Y11, ¥rr, YR, URr),
and consider a prior of ¥y = (5,3,3,5), which specifies an expected sensor accuracy of
62.5% (instead of the correct 85%) in both states. Each simulation consists of 100 episodes.
Episodes terminate when the agent opens a door, at which point the POMDP state (i.e.,
tiger’s position) is reset, but the distribution over count vectors is carried over to the next
episode.

Figure 1 shows how the average return and model accuracy evolve over the 100 episodes
(results are averaged over 1000 simulations), using an online 3-step lookahead search with
varying belief approximations and parameters. Returns obtained by planning directly with
the prior and exact model (without learning) are shown for comparison. Model accuracy is
measured on the initial belief of each episode. Figure 1 also compares the average planning
time per action taken by each approach. We observe from these figures that the results for
the Most Probable and Weighted Distance approximations are similar and perform well even
with few particles. On the other hand, the performance of the Monte-Carlo belief tracking
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is much weaker, even using many more particles (64). The Most Probable approach yields
slightly more efficient planning times than the Weighted Distance approximation.
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Figure 1: Tiger: Empirical return (top left), belief estimation error (top right), and planning
time (bottom), for different belief tracking approximation.

6.2 Follow

We also consider a new POMDP domain, called Follow, inspired by an interactive human-
robot task. It is often the case that such domains are particularly subject to parameter
uncertainty (due to the difficulty in modeling human behavior), thus this environment mo-
tivates the utility of Bayes-Adaptive POMDP in a very practical way. The goal of the
Follow task is for a robot to continuously follow one of two individuals in a 2D open area.
The two subjects have different motion behavior, requiring the robot to use a different
policy for each. At every episode, the target person is selected randomly with Pr = 0.5
(and the other is not present). The person’s identity is not observable (except through
their motion). The state space has two features: a binary variable indicating which per-
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son is being followed, and a position variable indicating the person’s position relative to
the robot (5 x 5 square grid with the robot always at the center). Initially, the robot and
person are at the same position. Both the robot and the person can perform five motion
actions {NoAction, North, East, South, West}. The person follows a fixed stochastic pol-
icy (stationary over space and time), but the parameters of this behavior are unknown.
The robot perceives observations indicating the person’s position relative to the robot:
{Same, North, East, South, West,Unseen}. The robot perceives the correct observation
Pr = 0.8 and Unseen with Pr = 0.2. The reward R = +1 if the robot and person are at
the same position (central grid cell), R = 0 if the person is one cell away from the robot,
and R = —1 if the person is two cells away. The task terminates if the person reaches a
distance of 3 cells away from the robot, also causing a reward of -20. We use a discount
factor of 0.9.

When formulating the BAPOMDP, the robot’s motion model (deterministic), the ob-
servation probabilities, and the rewards are all assumed to be known. However we con-
sider the case where each person’s motion model is unknown. We maintain a separate
count vector for each person, representing the number of times they move in each di-
rection, that is, ¢' = (¢ph 4. ONs 5, Bk, D), B2 = (P4, DX D%, 0%, ¢%). We assume
a prior ¢§ = (2,3,1,2,2) for person 1 and ¢2 = (2,1,3,2,2) for person 2, while in re-
ality person 1 moves with probabilities Pr = (0.3,0.4,0.2,0.05,0.05) and person 2 with
Pr =(0.1,0.05,0.8,0.03,0.02). We run 200 simulations, each consisting of 100 episodes (of
at most 10 time steps). The count vectors’ distributions are reset after every simulation,

and the target person is reset after every episode. We use a 2-step lookahead search for
planning in the BAPOMDP.

Figure 2 shows how the average return and model accuracy evolve over the 100 episodes
(averaged over the 200 simulations) with different belief approximations. Figure 2 also
compares the planning time taken by each approach. We observe from these figures that the
results for the Weighted Distance approximations are much better both in terms of return
and model accuracy, even with fewer particles (16). Monte-Carlo fails at providing any
improvement over the prior model, which indicates it would require much more particles.
Running Weighted Distance with 16 particles require less time than both Monte-Carlo
and Most Probable with 64 particles, showing that it can be more time efficient for the
performance it provides in complex environment.

6.3 RockSample

To test our algorithm against problems with a larger number of states, we consider the
RockSample problem (Smith and Simmons, 2004). In this domain, a robot is on an n x n
square board, with rocks on some of the cells. Each rock has an unknown binary quality
(good or bad). The goal of the robot is to gather samples of the good rocks. Sampling a
good rock yields high reward (+10), in contrast to sampling a bad rock (-10). However a
sample can only be acquired when the robot is in the same cell as the rock. The number
of rocks and their respective positions are fixed and known, while their qualities are fixed
but unknown. A state is defined by the position of the robot on the board and the quality
of all the rocks. With an n x n board and k rocks, the number of states is then n22F.
Most results below assume n = 3 and k = 2, which makes 36 states. The robot can choose
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Figure 2: Follow: Empirical return (top left), belief estimation error (top right), and plan-
ning time (bottom), for different belief tracking approximation.

between 4 (deterministic) motion actions to move to neighboring cells, the Sample action,
and a Sensor action for each rock, so there are k45 actions in general. The robot is able to
acquire information on the quality of each rock by using the corresponding sensor action.
The sensor returns either GOOD or BAD, according to the quality of the rock. The sensor can
be used when the robot is away from the rock, but the accuracy depends on the distance d
between the robot and the rock. As in the original problem, the accuracy n of the sensor is
given by n = 2-4/do

6.3.1 INFLUENCE OF LARGE NUMBER OF STATES

We consider the case where transition probabilities are known, and the agent must learn its
observation function. The prior knowledge over the structure of the observation function is
as follows:
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e the probability distribution over observations after performing action CHECK; in state
s depends only on the distance between the robot and the rock i;

e at a given distance d, the probability of observing GOOD when the rock is a good
one is equal to the probability of observing BAD when the rock is a bad one. This
means that for each distance d, the robot’s sensor has a probability to give incorrect
observations, which doesn’t depend of the quality of the rock.

These two assumptions seem reasonable in practice, and allow the robot to learn a model
efficiently without having to try all CHECK actions in all states.

We begin by comparing performance of the BAPOMDP framework with different belief
approximations. For the belief tracking, we focus on the Most Probable and Weighted
Distance Minimization approximations, knowing that the Monte Carlo has given poor results
in the two smaller domains. Each simulation consists of 100 episodes, and the results are
averaged over 100 simulations.

As we can see in Figure 3(left), the Most Probable approximation outperforms Weighted
Distance Minimization; in fact, after only 50 iterations, it reaches the same level of perfor-
mance as a robot that knows the true model. Figure 3(right) sheds further light on this
issue, by showing, for each episode, the maximum L distance between the estimated belief
b(s) = > .6 0(s,0,9), and the correct belief b(s) (assuming the model is known a priori).
We see that this distance decreases for both approximations, and that it reaches values close
to 0 after 50 episodes for the Most Probable approximation. This suggests that the robot
has reached a point where it knows its model well enough to have the same belief over the
physical states as a robot who would know the true model. Note that the error in belief
estimate is calculated over the trajectories; it is possible that the estimated model is wrong
in parts of the beliefs which are not visited under the current (learned) policy.
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Figure 3: RockSample: Empirical return (left) and belief estimation error (right) for differ-
ent belief tracking approximation.

To further verify the scalability of our approach, we consider larger versions of the
RockSample domain in Figure 4. Recall that for k£ rocks and an n xn board, the domain has
state space |S| = n?2% and action space |A| = 5+ k. For this experiment, and all subsequent
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ones, belief tracking in the BAPOMDP is done with the Most Probable approximation (with
K = 16). As expected, the computational time for planning grows quickly with n and k.
Better solutions could likely be obtained with appropriate use of heuristics in the forward
search planner (Ross et al., 2008c).
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Figure 4: RockSample: Computational time for different values of £ and n. All results are
computed with K = 16 and a depth=3 planning horizon.

6.3.2 INFLUENCE OF THE PRIORS

The choice of prior plays an important role in Bayesian Learning. As explained above, in
the RockSample domain we have constrained the structure of the observation probability
model structural assumptions in the prior. For all results presented above, we used a prior
made of 4 ¢-vectors with probability % each. Each of those vectors ¢; is made of coeflicients
(¢ij), where ¢;; is the probability that the sensor will give a correct observation at distance
j. For each of the 4 vectors ¢;, we sample the coefficients ¢;; from an uniform distribution
between 0.45 and 0.95. We adopt this approach for a number of reasons. First, this prior
is very general, in assuming that the sensor’s probability to make a mistake is uniformly
distributed between 0.05 and 0.55, at every distance d. Second, by sampling a new prior for
every simulation, we ensure that the results do not depend closely on inadvertent similarities
between our prior and the correct model.

We now consider two other forms of prior. First, we consider the case where the coef-
ficients ¢;; are not sampled uniformly from Uy 45 0.95, but rather from Z/{[(b;is], where ¢7 is
the value of the true model (that is, the probability that the true sensor gives a true ob-
servation at distance j). We consider performance for various levels of noise, 0 < & < 0.25.
This experiment allows us to measure the influence of prior uncertainty on the performances
of our algorithm. The results in Figure 5 show that the BAPOMDP agent performs well
for various levels of initial uncertainty over the model. As expected, the fact that all the
priors have ¢;; coefficients centered around the true value ¢7 carries in itself substantial
information, in many cases enough for the robot to perform very well from the first episode
(note that the y-axis in Fig. 5 is different than that in Fig. 3). Furthermore, we observe
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that the noise has very little influence on the performances of the robot: for all values of ¢,
the empirical return is above 6.3 after only 30 episodes.
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Figure 5: Performance of BAPOMDP with centered uniform priors in RockSample domain,
using the Most Probably (K=16) belief tracking approximation. Empirical return
(left). Belief state tracking error (right).
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Figure 6: Performance of BAPOMDP with Beta priors in RockSample domain, using the
Most Probable (K=16) belief tracking approximation. Empirical return (left).
Belief state tracking error (right).

Second, we consider the case where there is only one ¢-vector, which has probability
one. This vector has coefficients ¢;, such that for all j, ¢; = k—;l, for different values of
k. This represents a beta distribution of parameters (1, k), where 1 is the count of wrong
observations, and k the count of correct observations. The results presented in Figure 6
show that for all values of k, the rewards converge towards the optimal value within 100
episodes. We see that for high values of k, the robot needs more time to converge towards
optimal rewards. Indeed, those priors have a large total count (k+41), which means their
variance is small. Thus, they need more time to correct themselves towards the true model.
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In particular, the (1,16) is very optimistic (it considers that the sensor only makes an error
with probability %7), which causes the robot to make mistakes during the first experiments,
thus earning poor rewards at the beginning, and needing about 80 episodes to learn a
sufficiently good model to achieve near-optimal performance. The right-side graph clearly
shows how the magnitude of the initial k£ impacts the error in the belief over physical states
(indicating that the robot doesn’t know the quality of the rocks as well as if it knew the
correct model). The error in belief state tracking is significantly reduced after about 80
iterations, confirming that our algorithm is able to overcome poor priors, even those with
high initial confidence.

Finally, we consider the case where the true underlying POMDP model is changed such
that the sensor has a constant probability € of making mistakes for all distances; the prior
is sampled as for the results of Figure 3. This makes the situation harder for the robot,
because it increases its sensor’s overall probability of making mistakes, including at distance
zero (i.e., when the robot is on the same cell as the rock). The empirical results presented
in Figure 7 show a decrease in the empirical return as ¢ increases. Similarly, as shown in the
right graph, the learning performance suffers with higher values of €. This is not surprising
since a higher ¢ indicates that the robot’s CHECKs are more prone to error, which makes
it more difficult for the robot to improve its knowledge about its physical states, and thus
about its model. In fact, it is easy to verify that the optimal return (assuming a fully known
model) is lower for the noisier model. In general, in domains where the observations are
noisy or aliased, it is difficult for the agent to learn a good model, as well as perform well
(unless the observations are not necessary for good performance).
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Figure 7: Performance of BAPOMDP with varying observation models in RockSample do-
main. Empirical return (left). Belief error (right).

7. Related Work

A few recent approaches have tackled the problem of joint planning and learning under
partial (state and model) observability using a Bayesian framework. The work of Poupart
and Vlassis (2008) is probably closest to the BAPOMDP outlined here. Using a similar
Bayesian representation of model uncertainty, they proposed an extension of the Beetle al-
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gorithm (Poupart et al., 2006) (original designed for fully observable domains) to compute
an approximate solution for BAPOMDP-type problems. Their work is presented in the
context of factored representations, but the model learning is done using similar Bayesian
mechanisms, namely by updating a posterior represented by a mixture of Dirichlet distri-
butions. They outline approximation methods to maintain a compact belief set that are
similar to the Most Probably and Monte-Carlo methods outlined in Section 5.1 above. Pre-
sumably our Weighted Distance minimization technique could be extended to their factored
representation, assuming one can compute the distance metric. Finally, they propose an
offline planning algorithm, similar to the literature on point-based POMDP solvers, to find
a policy. However we are not aware of any empirical validation with this approach, thus
scalability and expressivity in experimental domains remains to be determined.

Jaulmes et al. (2005) have for their part considered active learning in partially observ-
able domains where information gathering actions are provided by oracles that reveal the
underlying state. The key assumption of this approach, which is not used in other model-
free approaches, concerns the existence of this oracle (or human) which is able to correctly
identify the state following each transition. This makes it much easier to know how to up-
date the prior. In the same vein than Jaulmes and colleagues, Doshi et al. (2008) developed
an approach for active learning in POMDPs that can robustly determine a near-optimal
policy. To achieve that, they introduced meta-queries (questions about action) and a risk-
averse action selection criterion that allows agents to behave robustly even with uncertain
knowledge of the POMDP model. Finally, Doshi-Velez (2010) proposed a Bayesian learn-
ing framework for the case of POMDPs where the number of states is not known a prior,
thus allowing the number of states to grow gradually as the agent explores the world, while
simultaneously updating a posterior over the parameters.

The work on Universal Artificial Intelligence (Hutter, 2005) presents an interesting al-
ternative to the framework of BAPOMDPs. It tackles a similar problem, namely sequential
decision-making under (general) uncertainty. But Hutter’s AIXI framework is more general,
in that it allows the model to be sampled from any computable distribution. The learning
problem is constrained by placing an Occam’s razor prior (measured by Kolmogorov com-
plexity) over the space of models. The main drawback is that inference in this framework
is incomputable, though an algorithm is presented for computing time/space-bounded solu-
tions. Further development of a general purpose AIXI learning/planning algorithm would
be necessary to allow a direct comparison between AIXI and BAPOMDPs on practical
problems. Recent results in Monte-Carlo Planning provide a good basis for this (Silver and
Veness, 2010; Veness et al., 2011).

A number of useful theoretical results have also been published recently. For the specific
case of exploration in reinforcement learning, Asmuth et al. (2009) presented a fully Bayesian
analysis of the performance of a sampling approach. Subsequently, Kolter and Ng (2009)
clarified the relation between Bayesian and PAC-MDP approaches and presented a simple
algorithm for efficiently achieving near-Bayesian exploration.

Finally, it is worth emphasizing that Bayesian approaches have also been investigated in
the control literature. The problem of optimal control under uncertain model parameters
was originally introduced by Feldbaum (1961), as the theory of dual control, also sometimes
referred to as adaptive dual control. Extensions of this theory have been developed for time-
varying systems (Filatov and Unbehauen, 2000). Several authors have studied this problem
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for different kinds of dynamical systems : linear time invariant systems under partial ob-
servability (Rusnak, 1995), linear time varying Gaussian models under partial observability
(Ravikanth et al., 1992), nonlinear systems with full observability (Zane, 1992), and more
recently a non linear systems under partial observability (Greenfield and Brockwell, 2003).
All this work is targeted towards specific classes of continuous systems, and we are not
aware of similar work in the control literature for discrete (or hybrid) systems.

8. Conclusion

The problem of sequential decision-making under model uncertainty arises in many prac-
tical applications of Al and decision systems. Developing effective models and algorithms
to handle these problems under realistic conditions—including stochasticity, partial state
observability, and model inaccuracy—is imperative if we hope to deploy robots and other
autonomous agents in real-world situations.

This paper focuses in particular on the problem of simultaneous learning and decision-
making in dynamic environments under partial model and state uncertainty. We adopt a
model-based Bayesian reinforcement learning framework, which allows us to explicitly target
the exploration-exploitation problem in a coherent mathematical framework. Our work is a
direct extension of previous results on model-based Bayesian reinforcement learning in fully
observable domains.

The main contributions of the paper pertains to the development of the Bayes-Adaptive
POMDP model, and analysis of its theoretical properties. This work addresses a number
of interesting questions, including:

1. defining an appropriate model for POMDP parameter uncertainty,
2. approximating this model while maintaining performance guarantees,
3. performing tractable belief updating, and

4. optimizing action sequences given a posterior over state and model uncertainty.

From the theoretical analysis, we are able to derive simple algorithms for belief tracking
and (near-)optimal decision-making in this model. We illustrate performance of these algo-
rithms in a collection of synthetic POMDP domains. Results in the Follow problem showed
that our approach is able to learn the motion patterns of two (simulated) individuals. This
suggests interesting applications in human-robot interaction, where we often lack good mod-
els of human behavior and where it is imperative that an agent be able to learn quickly,
lest the human user lose interest (this is in contrast to robot navigation tasks, for which we
often have access to more precise dynamical models and/or high-fidelity simulators). For
their part, results of RockSample problem shows how one should take into account prior
knowledge on agent’s sensors when this knowledge is available.

While the BAPOMDP model provides a rich model for sequential decision-making under
uncertainty, it has a number of important limitations. First, the model and theoretical
analysis are limited to discrete domains. It is worth noting however that the approximate
algorithms extend quite easily to the continuous case (Ross et al., 2008b), at least for some
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families of dynamical systems. Other related references for the continuous case are available
in the control literature, as described in Section 7.

Another limitation is the fact that the model requires specification of a prior. This
is standard in the Bayesian RL framework. The main concern is to ensure that the prior
assigns some weight to the correct model. Our empirical evaluation shows good performance
for a range of priors; though the issue of choosing good priors in large domains remains
a challenge in general. Our empirical results also confirm standard Bayesian intuition,
whereby the influence of the prior is particularly important for any inference and decision-
making performed when only a small amount of data has been observed, but the influence
becomes negligible as large amounts of data are acquired.

As a word of caution, problems may arise in cases where Bayesian RL is used to infer
both transition and observation probabilities simultaneously, while the rewards are not
explicitly perceived through the observations (even if the rewards are known a priori). In
this challenging setting, the Bayes-Adaptive POMDP framework as outlined above might
converge to an incorrect model if the initial priors on the transition and observation model
are non-informative. This is mainly due to the fact that many possible parameters may
correctly explain the observed action-observation sequences. While the agent is able to
predict observations correctly, this leads to poor prediction of rewards and thus possibly sub-
optimal long-term rewards. However if the rewards are observable, and their probabilities
taken into account in the belief update, such problems do not arise, in the sense that the
agent learns an equivalent model that correctly explains the observed action-observation-
reward sequence and recovers a good policy for the unknown POMDP model. In the latter
case, where rewards are observable, the framework presented in this paper can be used with
only minor modifications to also learn the reward function.

Finally, it is worth pointing out that Bayesian RL methods in general have not been
deployed in real-world domains yet. We hope that the work presented here will motivate
further investigation of practical issues pertaining to the application and deployment of this
class of learning approaches.
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Appendix A. Theorems and Proofs

This appendix presents the proofs of the theorems presented throughout this paper. The-
orems 1 and 2 are presented first, then some useful lemmas, followed by the proofs of the
remaining Theorems.
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Theorem 1 Let (S, A, Z,T',0',R',v) be a BAPOMDP constructed from the POMDP
(S,A,Z,T,0,R,~). If S is finite, then at any time t, the set SI/); = {o € S'|bj(c) > 0} has
size |S],| < |S|HHL.

t

Proof Proof by induction. When ¢ = 0, bj(s, ¢,v) > 0 only if ¢ = ¢¢ and ¢ = ¢y. Hence
IS/, | < |S|. For the general case, assume that |S;, | < |S|'. From the definitions of the
0 t—1

belief update function, b;(s’, ¢’, ") > 0 iff 3(s, ¢, 1)) such that b;_, (s, $,v) > 0, ¢’ = ¢+ 0%,

and ' =1 + 6% . Hence, a particular (s, ¢,v) such that b;_,(s, ¢,¥) > 0 yields non-zero

probabilities to at most |S| different states in b}. Since |S;, | < |S|' by assumption, then
t—1

if we generate |S| different probable states in b}, for each probable state in S{)t_l it follows
that |S],| < |S[t*1. u
t

Theorem 2 For any horizon t, there exists a finite set T'y of functions S’ — R, such that
Vi (b) = maxaer, 3 es (0)b(0).

Proof Proof by induction. This holds true for horizon ¢ = 1, since V{*(b) =

maXeeA D (s ¢.) 0(S: @, ¥) (s, a). Hence by defining I't = {aa|aa(s, ¢,v¥) = R(s,a),a € A},
V" (b) = maxaer, ) g b(0)a(o). By induction, we assume that there exists a set I'; such
that V;*(b) = maxaer, D cq b(0)(0).

Now V%, 1(b) = maxaea |:Z(s,¢,z/1) b(s, ¢, ) R(s,a) + 3 ez Pr(z|b,a) Vi (b%%)|. Hence:

Vi (b) = maxaea | D (g4 008, @, ) R(s,a) +30.c 5 Pr(z|b, a) maxaer, 3 cq b**(0)(0)
= maxee | S g D5 6 OIR(5,0) + ey maxaer, Xy cq Pr(aIb, a)b (o)a(0)
= MaXaeA | D (s ) 0, O, V) R(s, a)+

> rez MAXael, D (s.6.p)es 2oses O(S, D, ¢)T£“8/Oi“2a(s’,?/{(¢, s,a,8), U1, s a,z2))].

Q

Thus if we define:

Ft+1 = {aa,f|aa,f(5) (Z)v 1/})/ = IR(S7 CL)+
ZzGZ ZS’GS T(Zas Oi;azf(z)(sl’u((ﬁ’ S, a, S,),Z/{(dJ, 5,5 a, Z))a ac Aa f € [Z - Ft]}a

then V% 1 (b) = maxaer,,, Y ,ecg b(0)a(o) and I'yyy is finite since [T'yyq] = |A[|T¢|!4!, which
is finite by assumptions that A, Z and I'; are all finite. |

For some of the following theorems, lemmas and proofs, we will sometime denote the
Dirichlet count update operator U, as defined for the BAPOMDP, as a vector addition:
¢ =¢+0%, =U(p,s,a,s), that is, 62, is a vector full of zeros, with a 1 for the element

(ba
ss’*

Lemma 1 Foranyt > 2, any a-vector oy € I'y can be expressed as a?’a/(s, ¢,0) = R(s,a)+
YD osez Doses Tq‘zale;z/aza’(z)(s’, ¢+062,,19+06% ) for somea € A, and o' defining a mapping
7z — Ft—l-
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Proof Follows from proof of theorem 2.

Lemma 2 Given any a,b,c,d € R, ab — cd = (a_c)(b+d)§(a+0)(b_d).

Proof Follows from direct computation.

Lemma 3 Given any ¢, ¢’ € T, ¢, € O, then for all s € S, a € A, we have that

¢/a/1/1g/12 ¢Zs/'¢':/z 4
ZS’ES ZZEZ NSsSaNs/a - N;a/\/i)/a ’ < D§Q(¢/7 d)) + SUDgrcg DSZG(¢/7 ¢)
¢/ ,LZ)/
Proof Using lemma 2, we have that:
P, vy,

ZS’GS ZZEZ N;/CLN,Z//G - Niu‘/\/‘i’a

- Iy, Y Pgr _ P \ (Yo Yoo ) 4 (S | B ) (¥ Vi
2 s'esS z€Z N;? Nf Ni,//a Ni,/a W N;Tl Nsla N{Z,a

!
1 o Doy v, o Yo, 1 o, Yo, Yo
< 3Xves Nig ~ M Yozez e T N + 52 ves N TN >z N T N
Vo 95y 1 Yo, Yo oo 9ou
< ZS’GS T\/';? - N;Tl + 5 |:Sups/ES ZzeZ N{Z,’a - Nila [Zs’es N;? + W
e, 9l Y, Ye
= ZS’ES N;? - N;Tl + Sups/GS ZzEZ N;)l/a - Nila
!
= Dg’a(¢,a ¢) + SUDPgcg DSZG(¢/7 ’QZ})
Lemma 4 Given any ¢, ¢, A € T, then for all s € S, a € A,
/ / 2NZa Es/es ‘¢zs/—¢;i/‘
nga((b + A, ¢ + A) S nga(¢7 ¢ ) + (N(ZQ*F./\/—&(L)(N;;IJ”NXQ) .
Proof We have that:
D6+ A, ¢ + A)
_ PoTALy P TAL
g ZS/ES Ng“-’--’\@a - /\/’;74-./\/3&
. (62, HAL NN = (0% +A2, VNG +NR)
= Lues WS NN T
| PN N AL N o Nl N N
o s'es NGTHNR)NVGTHNR)
<5 BNFONG | VRO o)A (W -AG)
S 2ses | INF AN NG TNE s/€s VT NE TN 7 TN
< v || | VRISl o NN Tes A2y
= Zus'es NN W3 +NE WG FAED)
Nsa[z , ‘d)a /_¢/al|]+/\/'sa Ns/a_Nsa
_ sa / A s'€S | ss ss A & @
= D¢, ¢) + W+ N N TN
- 2NR' Sres 95, — |

D (¢, ') + R OINGEOR
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|
Lemma 5 Given any ¢, A € O, then for all s € S, a € A,
2NR* Yz 198 — ¥
D+ A+ A) < DE(, ') + (wagg)zw;?wga)-
Proof Same proof as for lemma 4, except that we sum over z € Z in this case. |

Lemma 6 Given any y € (0,1), then sup, v*/%z = ﬁ
Proof We observe that when z = 0, v*/22 = 0 and lim,_.., v*/2z = 0. Furthermore, /2
is monotonically decreasing exponentially as x increases, while x is monotonically increasing
linearly as z increases. Thus it is clear that v*/2z will have a unique global maximum in
(0,00). We can find this maximum by taking the derivative:

2 (v %)
_ (hw);””/gx 4 /2

790/2((1r12w)fv +1).

Hence by solving when this is equal 0, we have:

& e gy
& = ;i:—Zlogv(e)

Hence we have that:

_ 2
- In(y79)
|
Lemma 7 SUPq, er'y,s€8 ‘051(8, ¢>¢) - (87 ¢/7 z7b,)| =0 fO?" any ¢7 (b/y ¢; ¢I~
Proof Foranya€ A, s€ S, |af(s,¢,v) —af(s,¢',¢")| =|R(s,a) — R(s,a)| = 0. |

Theorem 3 Given any ¢,¢' € T, ,¢' € O and v € (0,1), then Vt:

27| R|| o !
sup_au(s,0,0) — (s, 0)| < He  sup [ D(6,¢') + DY, )+
at€lt,seS s,s'€S,a€A

4 Zs”eS ’¢§Su _¢Isas// ’ + ZZGZ |¢Z’z_w-/jz‘

(=) \ NEHDWFHD T (Wile+nWe+1) ) |
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Proof Using lemma 1, we have that:

|0 (s, 0,9) — @™ (s, ¢/, )]
B ‘ (S a)—f—’YZs ESZZGZ _/\fsalj\z};s/za ( )(8/7¢+6gs’71/]+5g/z>

(z)la,w/a a
—R(S,CL) —’st/es ZzeZ /\TN’S@ZaQ ( )( ¢/+6ss’7w/+6s’z)

6 0t o\ B .
= 7 ZS’ES ZZEZ |:_N’sa_/\[ss’za, ( )( qb + 633” d) + 53’ ) Nsa,Ns’a ( )( ¢/ + 535’7 'I,Z)/ + 5s’z):| ’
o e a a a
[ Ses T | SRR 6+ G+ 59.) — 0/ + 02! +552.)
¢ Y

', oYY
N <./\/'Ssiz,/\/'55’za B NiszzA/'SS’Za> O/(Z)(S/7 ¢/ + 5?5” wl + 5?’2):|

PV
< A ves ey Nigw = o/ (2)(s/, ¢+ 0%, 0+ 69,) — &/ (2)(s/, ¢ + 6%, 0" + 62,
/w !/, ¢ZS/¢§/2 / / 6 / 5(1
+’yzs reS EZGZ /\/’saNsa '/\/’;a'/\/’i/a ‘Oé (Z)( ¢ + SS”Q’[) + S/Z)‘
< v sup |d/(2) ¢>+5ss/,w+5§/2) — o/ (2)(s, ¢ + 6%, 9 +6.)]
s'eS,zeZ
WIIRHoo PV, vy,
+ Zsles ZZEZ ‘Nsa/v’s’/a - Nga'/\/"g/a
< v S |o/(2)(s', ¢ + 0%, 0p +0%) — o/ (2)(s', ¢ + 6%, ¢ + %)
s'eS,zeZ

+ Bl (D§“(<i>’, 6) + supyes DYV, 1))
The last inequality follows from lemma 3. Hence by taking the sup we get:

Supateftyses ‘O‘t(87 ¢7 1/}) - Oét(S, ¢/7 wl)‘

< v sup ‘at—1(3/7¢+5§517¢+5g/z) - at—1(3/7¢/+5§3/7¢/ +5g’z)}
s,s'€S,a€Az€Z,a4 1€

+ sup  (DF(6,6) + Dy w)).

s,s'€S,acA

We notice that this inequality defines a recurrence. By unfolding it up to ¢ = 1 we get that:

SUDPq,ery,seS |at(5? ¢7 w) - at(‘S? gb,a ¢,)|

S ,yt—l sup |O‘1(5/7¢+A»¢+A/) - 041(8/,¢,+A,¢/ +A/)|
a1€l1,8'€S,A€T A €0] ||A][1=[|A|[1=(t~1)
+UfBllee 57072y sup (Dg(&/ + 8,0+ ) + DY/ + A, + A))
5,5'€S,a€ A,ACT,A'€0| ||A||1=||A||1=i

+ U= sup (D¢, 6) + DYWL 0))

s,8'€S,a€A
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Applying lemmas 7, 4 and 5 to the last term, we get that:

SUPq;erl;,se8 |at(5’ ¢v ¢) - at(57 ¢,a Q;Z),)|
R||eo t—2 i ’
< Rl ity sup (D¢, 0) + Dy, v)
5,5'€8,a€A,AET, A €O ||All1=||A||1=i
2NE S |60 =90n] | 2NA" ey 00 —v |
(N;a+N2a)(N;7+NZa) (Ni:/a—i_NZ,/a)(Nqilla"—NZ,/a)
Rl| oo /
U= sup (D 6) + Dy v))
s,8'€S,a€A
R||oo t—2 /2 i /2 i /9 ’
= =y sup (+/2Dg(d, ) +7/2 Dy, )
s,8'€S,a€ A, AT AN €Q| ||A|1=]||A||1=1
271/2/\/‘2'1 Zs”GS |¢:S//*¢gu| + 2'77;/2-/\/'2,/(1 ZzEZ |¢Z/Z* ;7Z|
(N;H"“NZG)(N;’;I-FNEH') (Nila+NZ//a)(Nilla+NZ/la

8= sup  (Dg(0) + DE(W W)
s,s'€S,acA

Now we notice that /2 < 4NA"/2 since ||A||; = i, and similarly v¥/2 < yNie/Q. Hence by
applying lemma 6, we get that:

SupatEFt,SGS ‘Oét(s, (b: w> - at(s7 ¢/’ wl)‘
R||oo t—2 4 ’
< Ul 5342 sup D¢/, ) + DY (4, )
5,8'€5,a€A,AET A €Q] ||Al1=[|A!||1=i
+ 423”55‘ “ZSZS//*@VS(;//‘ + 42262 |wg/2* ;(/lz|
RN VAV V) T vy NN NG

+ U sp (D38 0) + Dy (W)

s,s'€S,a€eA
WRloo =2 i/2 sa( 4l s'a (1 A2 sres |98 =l
= 1—~ Zi:l g 878/21‘;264 (DS (¢ a¢) + DZ (w 7¢) + ]n(,y—e)(Nds)a+1)(N;;z+1)
A3 ez 08 ¥ | I Rlloo ( / ‘o )
+ S 7 s’z slz _|_ su DS& , _|_D5a ,
1n(,y—e)(N$ a+1)(N$la+1)> 1— S,SIESELGA S (¢ ¢) Z (1/] ¢)
_92 Rllso /
< (SZ0?) WY sup  [Dy(o!,0) + DY, )
s,8’€S,a€A )
4 4 Zs”es ‘d)zsn_‘ﬁ:;//l 4 Zzez |’¢’Z/z_w:/lz‘
(=) | WETHDNGHD T (W e (Ve +1)
3 R||so /
< (SX7”) e sw  [DF(90) + DEW)
b (Sureslotu ol | g W0, —vi ]
(=) \ WETHDWGHD) T (W e+ D) (Ve +1)

_ VRl sa( 4! s'a(, 1 4 2stres |98 =0 2aez VY A
— STV T oo su D D — = ss — EX] 5 s’z ; s’z
= 1, SIPb A[ §(@0)+ D (W Y) + gy >< W DD 1 e )

29[| R]| oo sa ( i/ s'a, 4 Es”ES WZS//*@SI:S//\ ZzEZ WJ:/Z* ;(72‘
< 2z u D gZ) qb + D —+ —+ 7 7 .
- (1—7)2 878,8592E |: S ( ’ ) Z (T’Z) ;¢) In(y~¢) < (N£“+1)(Nj,f‘+1) (Mz a+1)(J\/i),a+1)

Zs/es |¢¢st/ - (¢Zs/ +AZS/ )l <

; 1
Lemma 8 Givenp € T,s € S, a € A, then for all A € T, N DINGHNTE) = N
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Proof
Es’es ‘¢ZS/_(¢ZS/+AZS/)|
NG NZT+NZF+T)
s'es AZS/

NN +NR*+1)

— 1 NX
NG \ NN+ )
sa

N . . . .
The te ot s monotonicall creas and converge to 1 as N3¢ . Thus the
Trm W 1S ImMon ni Yy mcr ng an nverg NA — O u

lemma follows. [ |

Corollary 1 Givene > 0,0 €7T,se€ S, a€ A, z'f./\/(;“ > %—1 then for all A € T we have

Zs’es ‘d)(slsl - (¢:S/ +AZS/ )|
that TN+

<€

Zsles |¢:Sl - (¢zs/ +A(SLS/ ) ‘

Proof According to lemma 8, we know that for all A € 7, we have that VS D NN

1 : 1 1
Ngaﬁ. Hence lfN;;a>E*1, thenﬁgaﬁ<e. [ |

. Zz |wng(¢?z+Agz)| 1
Lemma 9 Given ¢y € O, s€ S, a € A, then for all A € O, (Nfaerl)(J\f,j%Ng“H) < N

Proof Same proof as lemma 8. |

Corollary 2 Given e >0, ¢ € O, s € 5, a € A, if Nj* > 1 —1 then for all A € O we

have that 2ozez Vs~ (WS +AL )|

sa sa sa <
WD NP+NE+D) €

Proof Same proof as corollary 1, but using lemma 9 instead. |

Theorem 4 Given any ¢ > 0 and (s, ¢,v) € S’ such that 3a € A,3s' € S, Ndf/“ > N§ or
N3'® > N, then A(s, ¢/, ') € §' such that Ya € A,¥s' € S, Nj* < N§, Nj* < Ng; and
lat(s, 0, 1) — (s, ¢, Y")| < € holds for all t and oy € Ty.

Proof Consider an arbitrary e > 0. We first find a bound on N3 and N3 such that any
vector with higher counts is within e distance of another vector with lower counts. Let’s

_~)2 _~)2 —e
define ¢ = gih R’(Roo and ¢’ = % According to corollary 1, we have that for any

¢ € T such that N3* > 6—%, — 1, then for all ¢’ € 7 such that there exists a A € 7 where

¢ = ¢+ A, then %ﬁ%ﬁi'&j{&%igl < €””. Hence we want to find an N such that given ¢ € T

with N(;“ > N, there exists a ¢' € T such that N3 < N, DF(¢,¢') < € andexistsa A € T
such that ¢ = ¢’ + A. Let’s consider an arbitrary ¢ such that N’ 5" > N. We can construct

N¢? ,
a new vector ¢’ as follows, for all s’ define ¢/%, = { J\%‘f J and for all other a’ # a,s” # s,

define ¢'%, = ¢%,, for all s'. Clearly, ¢' € 7, such that N — |S| < N3¢ < N. Moreover, we
have that gzﬁ’s‘?;,, < (;3?,/ g forall s, a’,s”, and thus there exists a A € T such that ¢ = ¢’ + A.
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. . @' o ..
Furthermore, from its construction, we know that Vs’, NS% — Sﬁffl < ﬁ Hence it is clear
& ¢

from this that D (¢, ¢') < N‘j'S'. Thus, if we want D (¢, ¢) < €, we just need to take

N > Wifra) Since we also want N > 6—% — 1, let’s just define Ng = max ('S‘(%E/), 6—%, — 1).
Ns = Ng, as defined in Section 4, will be our bound on ./\/jf‘ such that, as we have just
showed, for any ¢ € 7 such that N3* > Ng, we can find a ¢’ € 7 such that V3 < Ng,

/ / Zs”es ‘QSZSII_(ZS:;//‘ i . . . . .
DE(¢,¢') < € and NSV 1) < €', Similarly, since we have a similar corollary

(corollary 1) for the observation counts i, we can proceed in the same way and define
Nz = max (M 1 1), such that for any ¥ € O such that Nia > Nz, we can find

€ Y€
a ¢/ € O such that N3¢ < Nz, D¥(y,/) < ¢ and % < €. Ny = Ng as we
have deﬁged in Section 4.
Now let S = {(s,¢,9) € S'|Vs' € S,a € A, Nj)/a < Ng & Ni/“ < Nz} and consider an arbi-
trary (s, ¢,1) € S’. For any s’ € S, a € A, such that qu/a > Ng, there exists a ¢/ € T such

sl’a < s'a / / Zs”%s |¢:/Su*/¢/ﬁsu\
that N3,% < Ng, D¢, ¢') < € and DT

Thus let’s define ¢%_, = ¢/4,, for all s” € S. For any s’ € S, a € A, such that /\/'(Z,“ < Ng,
just set &gls/, = ¢% ., Vs" € S. Similarly, for any s’ € S, a € A, such that N,Z/“ > Ny,

. / s'a < s'a ! / 2.z |w§’z7 ;7z|
there exists a ¢’ € O such that N, < Nz, D5%(¢,¢') < € and NN 1)

we have just showed above). Thus let’s define 1/;;1, o =, for all s € S. For any s’ € S,
a € A, such that /\/;‘Z,“ < Nz, just set %, = 4%, Vs € S. Now it is clear from this con-
struction that (s, ,%) € S. By Theorem 3, for any t, SUPg, er, ses [t (s, ;1) —au(s, b, 9)| <
27||R|| oo s,a 7 s',a 7 4 Zs”es |¢:9//_4;z//| ZZEZ szz—@flle
T1_~N\2 su D 9 D ) —e sa N7sa = 7 . 7 g <
(1—v)2 s,s’eSE)zeA |: S (¢ ¢) + VA (¢ w) + In(y—°) ( (Nd> _,'_1)('/\/'(; T1) -+ (le a""l)(Nj-) ar1)

< €” (as we have just showed above).

< € (as

2[[Rl|eo

== [e’ +€ + ﬁ (" + €| =e [ |

Theorem 5 Given any € > 0, (s,¢,%) € S and oy € Ty computed from the infinite
BAPOMDEP. Let &y be the a-vector representing the same conditional plan as ay but com-
puted with the finite BAPOMDP (S, A, Z,T¢, O¢, Re,7), then |6y (Pe(s, o, 1)) —au(s, ¢, ¥)| <

1—v-

Proof Let (s,¢',1") = Pe(s, ¢,v).

|dt(736(87 ¢a d))) - at(s’ ?, ¢)|

< lau(s, ¢, 0") — aul(s, & )| + au(s, &, 1) — (s, ¢, )

< au(s, ¢, ¥') —au(s, ¢',9')| + € (by Theorem 4)

= WX oez wes T 0507 [& (2)(Pe(s', ¢ + 8%, 0 +6%.)) — o/ (2) (s, ¢ + 6%, 0 +82.)] | + €
Y es Nes T O3 6/ (2) (Pls', &' + 000" +03.)) = o/ (2)(/, 0/ + 00,0/ + 9.)| + ¢
YSUPzez s'es ‘07/(2)(736(8/, ¢I + 535/7 W + 5?’3)) - O/(Z)(S/, ¢/ + 5?5’7 W + 5?’,2)‘ te

v Supatflef‘t,l,(s’,¢”,'¢)”)€5’ ‘dt—l(,Pﬁ(slv ¢//7 w”)) - at—1(3/7 (Z)//? wll)’ +e

VA VANRVAN
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Thus, we have that:

SUDq, ery,0es |t (Pe(0)) - (o)
< YSUPu, er, y.oes |G-1(Pe(0)) —ar1(a’)| + e

This defines a recurrence. By unfolding it up to ¢t = 1, where Vo € S, a1(P(0)) = a1(0),
we get that sup,,cr, sesr [ (Pe(0)) — as(0)] < 622;3 ~¢. Hence for all ¢, this is lower than

€
<. m

Theorem 6 Given any ¢ > 0, and any horizon t, let T be the optimal t-step policy com-
puted from the finite POMDP (Se, A, Z, T, O¢, Re,7y), then for any initial belief b the value

of executing policy 7 in the BAPOMDP Vi, (b) > V*(b) — 275

Proof Pick any starting belief b in the BAPOMDP. Let o* denote the optimal t-step
condition plan in the BAPOMDP for b: o = argmax,r, Z(s,¢,¢) b(s, ¢, v)a(s, 1), such
that the value of this optimal conditional plan is } 7 , ) b(s,®,¥)a"(s, ¢, ¢) = V*(b).
Denote a@* the corresponding a-vector representing the same ¢-step conditional plan in the
finite POMDP approximation.

Now let &' = argmax;p, > (s .4) (s, ,¥)&(Pe(s,$,¢)) be the optimal t-step con-
ditional plan in the finite POMDP approximation if we start in belief b. This condi-
tional plan represents exactly what the policy 7, would do over t-steps starting in b.
Denote o the corresponding a-function in the BAPOMDP representing the same t-step
conditional plan. Then the value of executing 7; starting in b in the BAPOMDP is
Vi (0) = > (s.60) b(s, p,1)a/(s,¢,1). Using Theorem 5, this value is lower bounded as
follows:

Vﬁ't (b)

= L(sow) 056 9)(s5,0,9)

> Y (s U5 D) (Pels,6,9)) — 15
= Z(S@ﬂl’) b(s’ ¢7 w)d*(,Pe(Sa ¢7 %0 ) T 1=
> Y (esu) V(5 0, 9)0" (Pels, 6,9)) — 2055
= Vb)) - 275
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