
Goal-Directed Online Learning of Predictive
Models

Sylvie C.W. Ong, Yuri Grinberg, and Joelle Pineau

School of Computer Science
McGill University, Montreal, Canada

Abstract. We present an algorithmic approach for integrated learning
and planning in predictive representations. The approach extends earlier
work on predictive state representations to the case of online exploration,
by allowing exploration of the domain to proceed in a goal-directed fash-
ion and thus be more efficient. Our algorithm interleaves online learning
of the models, with estimation of the value function. The framework is
applicable to a variety of important learning problems, including scenar-
ios such as apprenticeship learning, model customization, and decision-
making in non-stationary domains.

Keywords: predictive state representation, online learning, model-based
reinforcement learning

1 Introduction

Reinforcement learning (RL) is the problem of learning how to behave so as to
maximize long-term reward through interactions with a dynamic environment.
In recent years, there has been an increased interest in the case of batch reinforce-
ment learning, whereby the data used for learning how to behave are collected
a priori. However in many domains, the case of online reinforcement learning
is more relevant than the batch case. An additional complication arising in the
online case is that the agent must explore its environment efficiently. Hence, one
of the central issues in online reinforcement learning is the trade-off between
exploration and exploitation. Generally speaking, to ensure efficiency in learn-
ing, there is a need for approaches that can achieve goal-directed learning from
interaction [23].

Much of the prior work on reinforcement learning in unknown domains has
focused on domains with full state observability [23]. The problem typically be-
comes much harder in partially observable environments, where the state of a
dynamical system is in general a function of the entire history of actions and
observations. Methods have been proposed for online learning in the partially
observable Markov decision process (POMDP) [17, 20]. However these methods
require a clear definition of the latent state variables of the system; this is not
always easy to formalize in some decision-theoretic systems. For example, in
human-robot interaction tasks, we typically need to handle partial state observ-
ability, yet it is often unclear what set of latent variables are appropriate for

2 Goal-Directed Online Learning of Predictive Models

capturing the human’s intention, cognitive state, or attentional level, to name
just a few relevant factors.

The predictive state representation (PSR) is a promising approach that for-
goes the notion of underlying latent variables, and instead represents system
state by the occurrence probabilities of future observation sequences, conditioned
on future action sequences [13]. Since the representation is based entirely on ob-
servable quantities, in principle, predictive models should be easier to learn from
data. PSRs have also been shown to have greater representational power than
POMDPs [21]. Prior work on learning predictive models have mostly taken the
approach of learning a complete model of the system with the objective of ob-
taining good predictive accuracy for all possible future behaviors, then planning
with the learned model. Thus they either assume the training data is acquired
through interaction with the environment using a purely exploratory policy [4],
or else side-step the exploration problem by learning from a batch of pre-sampled
action-observation trajectories [2].

Such approaches have several practical limitations. First, they assume an ar-
bitrary division between the learning phase and acting phase, which implies that
the cost of learning is unimportant. Second, when dealing with large domains
(i.e. many observations and actions) and limited data, they tend to suffer from
sparse parameter estimation and numerical instability (with some exception,
e.g. [2]). Third, they don’t naturally extend to handle non-stationary environ-
ments, unless a separate mechanism is involved to detect environment changes
and initialize a new learning phase.

In this paper, we propose an online algorithm for learning predictive models
of dynamical systems through goal-directed interaction. To our knowledge, this
is the first approach for learning predictive models that integrates learning and
planning in a way that explicitly tackles the problem of exploration and ex-
ploitation. Our approach is (loosely) based on the actor-critic framework. Model
parameters are estimated in an online fashion, interleaved with steps of data
gathering and policy optimization. The agent’s behavior policy for interacting
with the environment is derived from the most recently optimized policy, which
in turn is obtained from planning with the current model and the data gathered
thus far.

The contributions of this paper are primarily algorithmic and empirical (rather
than theoretical). In contrast to previous approaches to predictive model learn-
ing, the objective is not to learn the complete model, but to only learn relevant
aspects of the model for obtaining a good policy. Compared to prior work, our
approach should therefore be more data efficient and thus more easily scalable
to large action/observation domains, while having less empirical regret while
learning. Since learning and planning are integrated, our approach should also
more easily handle non-stationary environments. In preliminary investigations,
we demonstrate the performance of our method on a robot navigation domain.

Goal-Directed Online Learning of Predictive Models 3

2 Predictive State Representations

A controlled, discrete-time, finite dynamical system generates observations from
a set O in response to actions from a set A. At each time step t, an agent
interacting with the system takes an action at ∈ A and receives an observation
ot ∈ O. A history, h = a1o1a2o2 · · · atot, is a sequence of past actions and
observations, while a test, τ = a1o1a2o2 · · · akok, is a sequence of actions and
observations that may occur in the future. The prediction for test τ given history
h, p(τ |h), is the conditional probability that the observation sequence in τ occurs,
if the actions specified in τ are executed. The null test ε is the zero-length test.
By definition, the prediction for ε is always 1[13].

Let T be the set of all tests and H the set of all histories. Given an ordering
over H and T , we define the system-dynamics matrix, D, with rows correspond-
ing to histories and columns corresponding to tests. Matrix entries are the pre-
dictions of tests, i.e., Di,j = p(τj |hi) [21]. Suppose the matrix has a finite number
of linearly independent columns, and we denote the set of tests corresponding to
those columns as the core tests, Q. Then, the prediction of any test is the linear
combination of the predictions of Q. Let p(Q|h) be a vector of predictions for Q
given history h, and mτ be a vector of weights for test τ , then, for all possible
tests τ , there exists a set of weights mτ , such that p(τ |h) = mT

τ p(Q|h). Thus,
the vector p(Q|h) is a sufficient statistic for history, i.e. it represents the system
state, b. The set of all possible states form the PSR state-space, B, and we refer
to the state b = p(Q|h), as the projection of history h on the PSR state-space.
Define Mao as the matrix with rows mT

aoq, for all q ∈ Q. Given a history h, a
new action a, and subsequent observation o, the PSR state vector is updated by,

p(Q|hao) = p(aoQ|h)
p(ao|h) = Maop(Q|h)

mT
aop(Q|h)

. (1)

The projection of any history can be calculated by repeatedly applying the above
equation, starting from the prediction vector for the empty history, p(Q|φ), which
represents the initial system state, m0.

A PSR model is completely specified by the core tests Q, weight vectors maol,
for all a ∈ A, o ∈ O, l ∈ Q ∪ {ε}, and m0,. We denote these model parameters
collectively as M. The usual approach to model learning is to approximate the
system-dynamics matrix, D, through interactions with the system, i.e. by sam-
pling action-observation trajectories, then use D to estimate the model M[21].

3 Planning in PSRs

An agent taking action a ∈ A in a dynamic environment receives not just an
observation o ∈ O but also a reward r ∈ R. (Rewards are real numbers, however
we assume that there is a finite set R of possible values for immediate rewards.)
Denoting R(b, a) as the expected immediate reward for action a at system state b,
the goal of planning in PSRs for an infinite horizon problem is to find an optimal
policy that maximizes the expected cumulative rewards E[

∑
t γ

tR(bt, at)]. Here,

4 Goal-Directed Online Learning of Predictive Models

γ is a discount factor that constrains the expected sum to be finite, bt = p(Q|ht)
is the system state and at the action, at time t.

In general, there are two approaches to planning in PSRs. One approach
is to extend POMDP planning algorithms that exploit the fact that V ∗, the
value function for an optimal policy, can be approximated arbitrarily closely
by a piecewise-linear, convex function of the probability distribution (or belief)
over latent state variables. This approach represents a value function as a set of
linear functions and performs value iteration on the set, generating a new set
of linear functions at each iteration. The prediction vector p(Q|h) is the state
representation in PSRs that is equivalent to the belief state in POMDPs. It has
been shown that for each action a ∈ A, the expected immediate reward R(b, a)
is a linear function of the prediction vector b = p(Q|h) and thus, just as in
POMDPs, the optimal value function V ∗ is also a piecewise linear function of
the PSR system state[12]. Previous work has used this idea for planning in PSRs,
for both exact[12], as well as approximate planning[10, 11, 3].

An alternative approach is to extend function approximation algorithms for
RL that were originally developed for fully observable systems. The system state
is compactly represented by a vector of features instead of the state variable, and
a mapping is learned from features to the value function, Q-function, or actions.
The features are usually prespecified (for example, using domain knowledge)
and the mapping function is usually parametric, so planning reduces to learn-
ing the parameter values of the mapping function. The prediction vector p(Q|h)
is the state representation in PSRs that is equivalent to the feature vector in
fully observable systems. Previous work has extended RL methods such as Q-
learning[12], SARSA[18] and Natural Actor-Critic[1], by learning mapping func-
tions as described above, with the PSR system state taking the place of feature
vectors. We adopt this latter approach due to its flexibility and scalability.

4 Online Reinforcement Learning with Predictive Models

We now present our algorithmic approach to model-based online RL in Algo-
rithm 1. Just as in the PSR planning methods mentioned in Section 3, the
algorithm does planning in the PSR state-space, and aims to learn a good policy
as a function of the PSR system state.

4.1 Algorithm overview

Given a PSR model, M, any history can be projected to the corresponding
PSR state-space. To learn such a model, the usual steps mentioned in Section 2
are performed – sampling action-observation trajectories from the environment,
approximating the system-dynamics matrix D, and estimating the model M.
Unlike previous approaches however, our objective is online RL, not offline plan-
ning, thus model learning in our algorithm is goal-directed – trajectories are
sampled so as to balance exploration of the environment with exploitation to
obtain good rewards. To accomplish this, the algorithm interleaves optimizing

Goal-Directed Online Learning of Predictive Models 5

Algorithm 1 Goal-directed Online Model Learning

1: input: Initial behavior policy, πe
init.

2: initialization: i← 1; πe
i ← πe

init.
3: repeat
4: Sample Ḡi, a set of Ni trajectories from the environment (Algorithm 2, which

requires as input, behaviour policy πe
i and model Mi−1.) Let Gi denote the set

of trajectories sampled up to iteration i, i.e. Gi = Gi−1

⋃
Ḡi .

5: From Gi, approximate the system-dynamics matrix Di, and estimate Mi (de-
scribed in Section 4.2).

6: Optimize policy πi with Mi and Gi (Algorithm 3).
7: i← i+ 1.
8: Update the behaviour policy πe

i using πi−1.
9: until stopping conditions are reached.

10: output: Predictive model M, and its policy π.

a policy π using the current model M (line 6), and, sampling trajectories (line
4) using a behavior policy πe derived from π (line 8). The model M is then
updated based on the samples (line 5), and the process repeats. A key feature
of the algorithm is that learning the model and planning with the model are
integrated. If the process is interrupted or stopping conditions reached (line 9),
the algorithm outputs both a model M and its policy π (line 10). This is in
contrast to previous approaches which learn the model and then plan with it, as
two separate and distinct processes.

The algorithm is a general framework with different possible choices for be-
haviour policies, and model learning and planning methods. For concreteness,
we describe a particular implementation of these three steps.

The behaviour policy πe is a stochastic policy which maps the system state
b to a probability πe(b, a) for each action a ∈ A. Policy πe repeatedly samples
trajectories of the form a1, o1, r1, a2, o2, r2 . . ., starting from the initial system
state (Algorithm 2). At the first iteration of the algorithm, before any model
learning and policy optimization have occurred, πe1 is set to the initial behaviour
policy πeinit (line 2, Algorithm 1), a blind/open-loop policy such as a uniform
random action policy. Thus, action sampling in line 6 of Algorithm 2 is not
conditioned on the system state, at ∼ πei (a), and the state update step in line 7 is
skipped. In subsequent iterations, i ≥ 2, πei is updated based on πi−1, the policy
optimized in the previous iteration (line 8, Algorithm 1). To balance exploration
and exploitation, possible choices for πe include softmax and ε-greedy policies.
In our experiments, we implemented the latter –

πei (b, a) =

{
1− ε for a = πi−1(b)
ε

|A|−1 for all other actions a

– where πi−1(b) is the optimal action at system state b, and ε is akin to the
exploration constant.

The model learning and policy optimization steps are evoked every Ni sam-
pled trajectories. We describe these steps in the next two sections.

6 Goal-Directed Online Learning of Predictive Models

Algorithm 2 Adaptive Goal-Directed Sampling

1: input: Behaviour policy πe, model M, number of trajectories to sample N , and
maximum number of time steps T .

2: repeat
3: t← 1.
4: Set bt to the initial system state, m0.
5: repeat
6: Sample at ∼ πe

i (bt, a). Execute at, get observation ot and reward rt from the
environment.

7: Update the system state bt+1 using equation (1) and model M.
8: t← t+ 1.
9: until t = T .

10: until N trajectories have been sampled.
11: output: Sampled trajectories Ḡ.

4.2 Online Model Learning

Our model learning method is based on an online linear compression of the ob-
served trajectories. In particular, we use an online singular value decomposition
(SVD) method to update model parameters from streaming data.

To obtain a compact, low dimensional model representation, we learn a trans-
formed PSR (TPSR) model [19]. TPSRs are a generalization of PSRs where the
model parameters, m′0, M ′ao and m′ao, are transformed versions of PSR parame-
ters, m0, Mao and mao, respectively, and give equivalent predictions for any tests
τ . The TPSR model’s compactness arises from its state being a linear combina-
tion of predictions for a potentially large set of PSR core tests. The state update
proceeds as the PSR update in equation (1), with the transformed parameters
substituting the PSR parameters.

Our model learning method relies on recent progress in learning TPSRs using
spectral methods, as introduced in [2]. In this approach, instead of learning the
system-dynamics matrixD, only the thin SVD decomposition ofD is maintained.
New data is incorporated directly into the SVD decomposition using the online
update method described in [5]. The computational complexity of the online
update in the i-th iteration of our algorithm is O(si × |M|3), where |M| is
the TPSR dimension, and si is the effective number of updated entries in Di
due to the additional data incorporated from newly sampled trajectories Ḡi. (In
contrast, regular (batch) SVD has complexity O(n3), for Di of size n×n, i.e., the
complexity is dependent on the size of D, which could grow very quickly with the
size of the action/observation spaces.) Further advantages of this model learning
method are that it avoids actually building and storing D, and it is amenable to
tracking of non-stationary environments.

4.3 Policy Optimization

Our policy optimization method is based on fitted value iteration [9], an approach
which formulates function approximation as a sequence of supervised learning

Goal-Directed Online Learning of Predictive Models 7

Algorithm 3 Fitted Q Iteration [7] for Predictive Models

1: Input: A set of tuples, F , of the form (bt, at, rt, bt+1), constructed from a set of
sampled trajectories G and using a predictive model M.

2: Initialization:
3: k ← 0.
4: Set Q̂k(b, a) to be zero for all b ∈ B, a ∈ A.
5: Iterations:
6: repeat
7: k ← k + 1.
8: Build training set, T = {(il, ol), l = 1, · · · , |F|}, where:
9: il = (blt, a

l
t), and, ol = rlt + γmaxaQ̂k−1(blt+1, a).

10: Apply a regression algorithm to learn the function Q̂k(b, a) from training set T .
11: until stopping conditions are reached.
12: Output: policy π, where π(b)← argmaxaQ̂(b, a).

problems. In particular, our algorithm performs something akin to batch mode
Q-learning with function approximation, by applying an ensemble of trees al-
gorithm to a sequence of regression problems. This fitted Q iteration approach
has been shown to give good performance in fully observable systems and has
good convergence properties [7]. We extend the algorithm to partially observable
systems in Algorithm 3.

Given a set of trajectories G and a predictive model M, the goal is to learn
Q̂(b, a), an estimation of the expected cumulative reward as a result of executing
action a from system state b. Given Q̂(b, a), the optimal action at b is π(b) ←
argmaxaQ̂(b, a). The input to the algorithm is a set of tuples, (bt, at, rt, bt+1),
constructed from one-step system transitions in sampled trajectories of the form,
a1, o1, r1, a2, o2, r2, · · ·. This requires tracking the system state bt at every time
step: for each trajectory, b1 is set to the initial system state m0, then for each
subsequent time step, bt+1 is updated from bt, at, and ot, using equation (1). The
set of tuples is used for solving a sequence of regression problems. At iteration k
in the sequence, the regression function to be learned is the mapping from (b, a)
to Q̂k(b, a). The training set for fitting the regression function has as input the
pairs (bt, at), and target outputs rt + γmaxaQ̂k−1(bt+1, a), where Q̂k−1(b, a) is
the regression function learned in the previous iteration k−1, and γ is a discount
factor. Repeated applications of the regression algorithm in successive iterations
result in increasingly better approximations to the true Q-function.

We use extremely randomized trees (Extra-Trees)[8] as the regression algo-
rithm. This predicts the value of a regression function using an ensemble of trees.
The tree building procedure requires specification of the number of trees to build
Mtree, and the minimal leaf size nmin (refer to [7] and [8] for more details).

5 Experimental Results

We evaluated our proposed algorithm on two Gridworld problems of different
sizes, depicted in Figure 1. The agent does not sense its position directly, only

8 Goal-Directed Online Learning of Predictive Models

(a) (b)

Fig. 1. Maps for Gridworld problems, GW-25 (a) and GW-47 (b). The cross is the
starting position and the lightly shaded cell is the goal. Refer to the text for details.

the presence of adjacent walls in the four cardinal directions, hence there are
16 possible observations. In each time step, the agent takes a step in one of the
four directions and the action succeeds with probability 0.8, otherwise, the agent
moves in one of the perpendicular directions. The agent remains in place if it
bumps into a wall. We refer to the two problems as GW-25 and GW-47, their
respective environments contain 25 and 47 free cells. The agent receives zero
reward everywhere except at the goal where it receives a reward of 1.

Our algorithm samples trajectories of fixed lengths (11 and 13 for GW-25 and
GW-47, respectively). In the first iteration, 100 such trajectories are collected
for GW-25 and 150 for GW-47, followed by 10 trajectories in each subsequent
iteration. The trajectories are used to estimate probabilities of histories of up to
length 6 and 8 for GW-25 and GW-47, respectively, and tests of up to length
4. The online TPSR learning process incorporates probability estimations from
newly acquired data of each iteration and updates a 3-dimensional state-space
TPSR model . We ran the fitted Q algorithm with 100 iterations and a discount
factor of 0.95. The extremely randomized trees in the algorithm built single trees
across all actions, in an ensemble consisting of 25 trees (Mtree parameter) and
with minimum leaf size set at 15 data points (nmin parameter).

To illustrate the advantages of our approach we compare our algorithm with
the usual (regular) approach in PSR literature which learns a model using a
purely exploratory policy (uniform random action selection) for trajectory sam-
pling, followed by planning only after model learning is completed [3].

Results of the policy performance with increasing number of sampled tra-
jectories are presented in Figure 2. Plots (a), (b) and (c) compare the policies
learned by our algorithm (adaptive) and the regular algorithm on GW-25. We
show results for different settings of the exploration constant ε in our algorithm.
Plot (d) shows performances on GW-47. Policies were evaluated by generating
100 trajectories and logging the proportion of trajectories that reached the goal.

Figure 2 shows that given the same number of sampled trajectories, our algo-
rithm improves its policy faster than the usual PSR model learning and planning
approach, and that the performance gap increases with increased problem size
(compare plots (a) for GW-25 with (d) for GW-47.) Plots (a) to (c) show that

Goal-Directed Online Learning of Predictive Models 9

the difference between the results for ε = 0.2 and ε = 0.3 are minimal. However,
for ε = 0.5 two differences are noticeable. Firstly, for the initial 250 sampled
trajectories, the policies for ε = 0.5 improve slightly slower as compared to when
ε is set to lower values. This is expected – with the bigger exploration factor, the
optimal policy is invoked less. The second, more interesting observation is that,
starting from the 350th sampled trajectory onwards, the performance of these
policies continues to grow beyond the maximum achieved by the other policies. A
possible explanation is that more exploration results in a more accurate model,
which in turn is used to find a better policy. Yet, the majority of exploration is
performed “on the way to the goal”, leading to significantly better policies com-
pared to those learned from completely random exploration. In a sense, it can
be seen as a type of exploration-exploitation tradeoff which is different from the
usual case in RL involving estimation of action values. Here, lack of exploration
leads to inaccurate estimates of system dynamics, but exploring uniformly at
random results in slow convergence to the optimal policy.

In Figure 3 we compare the execution times required for each algorithm to
reach the same levels of performance on GW-25 (with ε = 0.5 in our algorithm).
Our algorithm essentially trades off data efficiency with computational complex-
ity. Data efficiency is often crucial in real world settings – experience is more
expensive than computation and the aim is to learn in as few trials or with as lit-
tle experience as possible. Another important advantage is that our algorithm is
‘anytime’ – at any stage, the optimal policy (based on the most recently learned
model) is immediately available to the agent. This is not the case for the usual
approach of planning only after model learning is completed.

6 Related Work

There has been few prior work that address online learning of PSR models.
McCracken and Bowling [15], and Aberdeen et al. [1], employ a constrained-
gradient algorithm for online PSR learning. Boots and Gordon [2] learn TPSR
models online by utilizing low-rank modifications of thin SVDs. However, none
of these approaches address the problem of integrated learning and planning.
In particular, although the work in [2] uses a similar model learning method as
ours, it focuses on learning alone, while in [1], planning proceeds together with
learning but the resultant policy from planning does not inform the behaviour
policy for model learning.

The idea of not learning a complete model that can predict all possible fu-
tures has been explored in approximate PSRs ([6],[22],[24]), where the objective
is to learn models that accurately predict only specific quantities of interest.
The relevant predictions are specified beforehand and efficient use of sampled
trajectories is achieved by aggregating tests and histories according to these
predictions. In contrast, our approach achieves data efficiency by biasing sam-
pling towards goal-directed trajectories, with sampling behaviour adaptively and
automatically learned from system interaction.

10 Goal-Directed Online Learning of Predictive Models

(a) (b)

(c) (d)

Fig. 2. Experimental results on the Gridworld problems depicted in Figure 1. Plots
(a), (b) and (c) show policy performances on GW-25, with exploration constant ε set
at 0.2, 0.3, and 0.5 respectively, in our algorithm. Plot (d) shows policy performances
on GW-47, with ε = 0.2 in our algorithm. All results were averaged over 100 runs.
Error bars indicate standard deviations.

7 Discussion and Conclusion

This work proposes a new integrated learning and planning approach in PSRs.
We show in preliminary experiments the advantages over doing learning and
planning separately – given the same amount of data for learning, our method
was able to learn a model and a value function that gives better policies, and
the policy performance gap increases with increased problem size.

Our approach is suitable for domains where the initial system conditions
are such that a good policy can be obtained without learning the dynamics
of the whole state space or, equivalently, without searching in the whole space
of policies. For example, in navigation tasks, the initial system state would be
concentrated on a small portion of the environment if for example, the robot is
learning how to navigate in a building, starting from a particular room within
the building. Another necessary assumption is that the goal is reachable within
the limits we impose on the trajectory length, starting from the initial system
state. In practice, we make sure that the trajectories are of sufficient length in
relation to the path to the goal.

Goal-Directed Online Learning of Predictive Models 11

Fig. 3. Run time comparisons on Gridworld problem GW-25, with ε = 0.5 in our
algorithm. Results were averaged over 40 runs. Error bars indicate standard deviations.
The experiments were carried on a PC with two 3.3GHz CPUs and 7GB of RAM,
running Ubuntu 10.03 OS.

There are some interesting and important learning problems, which are par-
ticularly amenable to solution with our approach. In apprenticeship learning,
the goal is to learn a policy that is at least as good or better than an expert.
We can apply our method to apprenticeship learning in an unknown domain, by
deriving the initial behaviour policy from the expert policy, and then iteratively
improving upon it. Our method could also be applied to model customization.
Given a basic model that is not customized to the current environment, our al-
gorithm iteratively learns a better suited model. Lastly, given the online nature
of our algorithm, and the integration of learning and planning, our approach can
be extended to learning in non-stationary domains. We aim to investigate the
applicability of our method to these classes of problems in our future work.

It would be interesting to compare empirically our algorithm with history-
based approaches such as U-Tree [14], Monte-Carlo AIXI [25] and ΦMDPI [16].
These algorithms also integrate learning and planning, while attempting to bal-
ance exploration and exploitation. Their approach differs from ours in repre-
senting system state with histories rather than predicted probabilities of future
experiences. We leave this also to future work.

Acknowledgments. The authors wish to thank Doina Precup (McGill Univer-
sity) for helpful discussions regarding this work. Funding was provided by the
National Institutes of Health (grant R21 DA019800) and the NSERC Discovery
Grant program.

References

1. Aberdeen, D., Buffet, O., Thomas, O.: Policy-gradients for PSRs and POMDPs.
In: AISTATS (2007)

12 Goal-Directed Online Learning of Predictive Models

2. Boots, B., Gordon, G.J.: An online spectral learning algorithm for partially ob-
servable nonlinear dynamical systems. In: Proceedings AAAI (2011)

3. Boots, B., Siddiqi, S., Gordon, G.: Closing the learning-planning loop with pre-
dictive state representations. In: Proceedings of Robotics: Science and Systems
(2010)

4. Bowling, M., McCracken, P., James, M., Neufeld, J., Wilkinson, D.: Learning pre-
dictive state representations using non-blind policies. In: Proceedings ICML (2006)

5. Brand, M.: Fast low-rank modifications of the thin singular value decomposition.
Linear Algebra and its Applications 415, 20–30 (2006)

6. Dinculescu, M., Precup, D.: Approximate predictive representations of partially
observable systems. In: Proceedings ICML (2010)

7. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning.
Journal of Machine Learning (2005)

8. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning
63, 3–42 (2006)

9. Gordon, G.J.: Approximate Solutions to Markov Decision Processes. Ph.D. thesis,
School of Computer Science, Carnegie Mellon University (1999)

10. Izadi, M., Precup, D.: Point-based planning for predictive state representations.
In: Canadian Conference on AI (2008)

11. James, M.R., Wessling, T., Vlassis, N.: Improving approximate value iteration
using memories and predictive state representations. In: AAAI (2006)

12. James, M.R., Singh, S., Littman, M.L.: Planning with predictive state represen-
tations. In: International Conference on Machine Learning and Applications. pp.
304–311 (2004)

13. Littman, M., Sutton, R., Singh, S.: Predictive representations of state. In: Advances
in Neural Information Processing Systems (NIPS) (2002)

14. McCallum, A.K.: Reinforcement Learning with Selective Perception and Hidden
State. Ph.D. thesis, University of Rochester (1996)

15. McCracken, P., Bowling, M.: Online discovery and learning of predictive state
representations. In: Neural Information Processing Systems 18 (2006)

16. Nguyen, P., Sunehag, P., Hutter, M.: Feature reinforcement learning in practice.
Tech. rep. (2011)

17. Poupart, P., Vlassis, N.: Model-based bayesian reinforcement learning in partially
observable domains. In: Tenth International Symposium on Artificial Intelligence
and Mathematics (ISAIM) (2008)

18. Rafols, E.J., Ring, M., Sutton, R., Tanner, B.: Using predictive representations to
improve generalization in reinforcement learning. In: IJCAI (2005)

19. Rosencrantz, M., Gordon, G.J., Thrun, S.: Learning low dimensional predictive
representations. In: Proceedings ICML (2004)

20. Ross, S., Pineau, J., Chaib-draa, B., Kreitmann, P.: A Bayesian approach for learn-
ing and planning in partially observable Markov decision processes. Journal of
Machine Learning Research 12, 1655–1696 (2011)

21. Singh, S., James, M., Rudary, M.: Predictive state representations: A new theory
for modeling dynamical systems. In: Proceedings UAI (2004)

22. Soni, V., Singh, S.: Abstraction in predictive state representations. In: AAAI (2007)
23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT

Press (1998)
24. Talvitie, E., Singh, S.: Simple local models for complex dynamical systems. In:

Advances in Neural Information Processing Systems (NIPS) (2008)
25. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI ap-

proximation. JAIR 40, 95–142 (2011)

