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Abstract

Learning accurate models of agent behaviours is crucial for
the purpose of controlling systems where the agents’ and
environment’s dynamics are unknown. This is a challeng-
ing problem, but structural assumptions can be leveraged to
tackle it effectively. In particular, many systems exhibit mixed
observability, when observations of some system components
are essentially perfect and noiseless, while observations of
other components are imperfect, aliased or noisy. In this paper
we present a new model learning framework, the mixed ob-
servability predictive state representation (MO-PSR), which
extends the previously known predictive state representations
to the case of mixed observability systems. We present a
learning algorithm that is scalable to large amounts of data
and to large mixed observability domains, and show theoret-
ical analysis of the learning consistency and computational
complexity. Empirical results demonstrate that our algorithm
is capable of learning accurate models, at a larger scale than
with the generic predictive state representation, by leveraging
the mixed observability properties.

Introduction
A central problem in building many autonomous agents—
software, robots, or otherwise— is to estimate the dynamics
of the agents. Once the dynamics are known, they can be
used for tracking, planning and control, simulation, and a
multitude of other tasks. This problem is particularly chal-
lenging in large, complex systems with many interacting
components. In such systems, the observation and action
spaces can easily become so large that model learning be-
comes all but intractable.

In this paper, we focus on mixed observability systems
where some system components are fully observable, while
others are partially observable. In other words, there are
essentially perfect, noiseless observations of some system
components while observations of the other components are
imperfect, aliased or noisy. Such systems are often encoun-
tered in practice, in domains as diverse as resource manage-
ment (Chades et al. 2012) and robotics (Capitan, Merino,
and Ollero 2011). For example, in human-robot interactions,
rich, highly accurate sensors placed directly on the robot
agents effectively make the robots state fully observable.
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On the other hand, the sensing of human agents is gener-
ally done remotely, for example, via video cameras, hence
is much more inaccurate and noisy. We leverage the spe-
cial structure of mixed observability systems to develop a
new framework for learning models of such systems directly
from observable quantities.

A rich framework for modelling controlled dynamic sys-
tems is the partially observable Markov decision process
(POMDP) (Kaelbling, Littman, and Cassandra 1998). To
handle mixed observability systems, this has been recently
extended to the mixed observability Markov decision pro-
cesses (MOMDPs) (Ong et al. 2010). And while there are
a few methods for learning the parameters of a POMDP,
this remains a challenging problem - possibly due to local
minima issues and other difficulties inherent to learning ap-
proaches based on latent state variables. Furthermore there
is no existing work on learning parameters in MOMDPs.

An alternate method for modelling controlled dynamic
systems which shows much greater potential for learning
and estimation is the predictive state representation (PSR)
(Littman, Sutton, and Singh 2002). In this paradigm, the rep-
resentation is based entirely on observable quantities, and
thus predictive models are typically easier to learn from data
than latent state-based representations (Singh, James, and
Rudary 2004; Boots, Siddiqi, and Gordon 2010). The pri-
mary contribution of this paper is to adapt PSRs to mod-
elling mixed observability systems, such that they can be
applied to systems with this characteristic. Our novel frame-
work, called mixed observability predictive state represen-
tation (MO-PSR), is the first approach for learning models
of mixed observability dynamic systems.

As part of our contributions, we show that model learn-
ing with this framework is theoretically sound, and present
a learning algorithm that remains tractable given large
amounts of data. We present experimental results and analy-
sis on a simulated domain with mixed observability, compar-
ing our algorithm’s performance with model learning using
the generic PSR framework.

Technical Background
A controlled, discrete-time, finite dynamical system gener-
ates observations from a set O in response to actions from
a set A. At each time step t, an agent interacting with
the system takes an action at ∈ A and receives an ob-



servation ot ∈ O. A history, h = a1o1a2o2 · · · atot, is
a sequence of past actions and observations, while a test,
τ = at+1ot+1at+2ot+2 · · · at+kot+k, is a sequence of ac-
tions and observations that may occur in the future. The pre-
diction for test τ given history h, p(τ |h), is the conditional
probability that the observation sequence in τ occurs, if the
actions specified in τ are executed.

Let T be the set of all tests and H the set of all histo-
ries. Given an ordering over H and T , we define the system-
dynamics matrix, D, with rows corresponding to histories
and columns corresponding to tests. Matrix entries are the
predictions of tests, i.e., Di,j = p(τj |hi). All the informa-
tion necessary to predict system dynamics is contained in
D, so it completely characterizes the system (Singh, James,
and Rudary 2004). Suppose the matrix has a finite number
of linearly independent columns, and we denote the set of
tests corresponding to those columns as the core tests, Q.
Then, the prediction of any test is the linear combination of
the predictions of Q. Let p(Q|h) be a vector of predictions
for Q given history h, then, for all possible tests τ , there ex-
ists a set of weights mτ , such that p(τ |h) = m>

τ p(Q|h).
Thus, the vector p(Q|h) is a sufficient statistic for history,
i.e. it represents the system state, and we can regard it as the
projection of history h on the PSR state-space. Define Mao

as the matrix with rows m>
aoq , for all q ∈ Q, and define a

set of weights m∞, where m>
ao = m>

∞Mao, for all a ∈ A,
o ∈ O. Given a history h, a new action a, and subsequent
observation o, the PSR state vector is updated by,

p(Q|hao) = p(aoQ|h)
p(ao|h)

=
Maop(Q|h)
m>

aop(Q|h)
=

Maop(Q|h)
m>

∞Maop(Q|h)
.

(1)
The projection of any history can be calculated by repeat-
edly applying the above equation, starting from the initial
system state, m0, which is the prediction vector given an
initial distribution over histories.

A PSR model is completely specified by the core tests Q,
and m0, m∞, and Mao, for all a ∈ A, o ∈ O. The usual
approach to model learning is to approximate the system-
dynamics matrix, D, through interactions with the system,
i.e. by sampling action-observation trajectories, then use D
to estimate the model (Singh, James, and Rudary 2004).

The Transformed Predictive State Representation (TPSR)
is a recently proposed extension to the PSR, which has
shown good model learning performance (Boots, Siddiqi,
and Gordon 2010). The TPSR approach estimates PT ,H, a
matrix containing the joint probabilities of histories and tests
p(τ, h), for all τ ∈ T and h ∈ H, where the rows corre-
spond to tests and columns to histories. PT ,H characterizes
a system in a similar way as the system-dynamics matrix D.
TPSR is a spectral approach which obtains a compact repre-
sentation of history by making use of the matrix of nonzero
left singular vectors U , from the singular value decomposi-
tion (SVD) of PT ,H. For any history h, p(T , h), the joint
probabilities of h and the set of all tests T is a linear combi-
nation of the column vectors in U . The TPSR representation
for the history h is U>p(T , h), the weights of that linear
combination.

The TPSR model learning algorithm additionally con-
structs PH, a vector of probabilities of all histories h ∈ H,
and PT ,ao,H, matrices containing the joint probabilities of
every history h ∈ H, followed by action a, observation o,
and every test τ ∈ T , for all a ∈ A and o ∈ O. Then, re-
gression methods are applied to learn model parameters b0,
b∞, and Bao, for all a ∈ A, o ∈ O, which are transformed
versions of the PSR parameters m0, m∞, and Mao.

The TPSR state is a linear combination of core tests. Due
to finite training data, in practice the TPSR algorithm has the
potential to learn a more compact state representation than
PSR algorithms. At the same time, the TPSR gives predic-
tions which are equivalent to those of PSR, as shown in the
consistency results in (Boots, Siddiqi, and Gordon 2010), for
the prediction of action-observation sequence a1o1 · · · atot,
given initial system state:

p(a1o1 · · · atot) = b>∞Batot · · ·Ba1o1b0

= m>
∞Matot · · ·Ma1o1m0 . (2)

Modelling mixed observability dynamical
systems with predictive state representations

As in the general PSR, a MO-PSR models a controlled,
discrete-time, finite dynamical system which generates ob-
servations from a set O in response to actions from a set A.
Here however, we assume that observations are factored as
observation variables. Furthermore, in a mixed observability
system, a subset of the observation variables provide perfect
information on some aspects of the system, while other ob-
servation variables are noisy. The fully observable system
components are thus directly observed through these perfect
information observation variables. In the MO-PSR formula-
tion, we lump these observation variables together, denoted
by ox, while the rest of the observation variables are denoted
as oy . Thus we have, ox ∈ Ox, oy ∈ Oy and O = Ox×Oy ,
with observation at time step t, ot = [oxt , o

y
t ] ∈ O.

As in the case for a general dynamical system, we could
characterize the system with a single system-dynamics ma-
trix D as in the PSR approach (or equivalently, a single PT ,H
in TPSRs), however, we obtain a more parsimonious model
by characterizing the system with a set of system-dynamics
matrices Di, i = 1, · · · |Ox|, where the histories represented
in Di is the set of histories that end with observation variable
ox taking value i. We present our model learning approach
in the next section, and then show that the resultant model is
more compact, and thus more amenable to efficient learning.

Mixed Observability Predictive State
Representations (MO-PSRs)
In the MO-PSR approach, the set of all histories H, is parti-
tioned into sets Hi, i = 1, · · · , |Ox|, where Hi is the set of
histories that end with observation variable ox taking value
i, i.e., h ∈ Hi is of form a1[o

x
1 , o

y
1]a2[o

x
2 , o

y
2] · · · at[oxt , o

y
t ],

with oxt = i. We then estimate a set of matrices, {PT ,Hi
|i =

1, · · · , |Ox|}, where matrix PT ,Hi
contains the joint proba-

bilities of every test τ ∈ T and every history h ∈ Hi.



The MO-PSR system state representation makes use of
the matrices of nonzero left singular vectors, Ui, from the
SVD decomposition of the PT ,Hi

matrices. Whereas the
TPSR approach represents system state by projecting all his-
tories h ∈ H onto the same matrix U , the MO-PSR approach
projects histories from the different sets of histories Hi, onto
different matrices Ui. The MO-PSR representation of his-
tory h ∈ Hi is U>

i p(T , h).

MO-PSR learning algorithm We now present the MO-
PSR learning algorithm. For ease of notation, we define a
function fx(o) that returns the value of the ox variable in o.
The symbol † denotes the Moore-Penrose pseudoinverse.

1. Sample action-observation trajectories from the mixed
observability system to be modelled, and compute empiri-
cal estimates of the following sets of vectors and matrices:

• {PHi |i = 1, · · · , |Ox|}, where PHi is a |Hi|×1 vector
containing the probabilities of all histories h ∈ Hi.

• {PT ,Hi |i = 1, · · · , |Ox|}, where PT ,Hi is a |T |× |Hi|
matrix containing the joint probabilities of all tests τ ∈
T and all histories h ∈ Hi.

• {PT ,ao,Hi |i = 1, · · · , |Ox|}, for all a ∈ A and o ∈ O.
PT ,ao,Hi

is a |T | × |Hi| matrix containing the joint
probabilities of all histories h ∈ Hi, followed by action
a, observation o, and all tests τ ∈ T .

• p is a |Ox|×1 vector, where the i-th element, pi, is the
probability that a history belongs to the set of history
Hi, or equivalently, the probability of observing ox = i
under the sampling policy.

2. Perform SVD on empirically estimated P̂T ,Hi
, to obtain

matrices of left singular vectors, Ûi, for i = 1, ..., |Ox|.
3. Compute model parameters from the empirical estimates.

• Bi
ao = Û>

i′ P̂T ,ao,Hi
(Û>

i P̂T ,Hi
)†, for i = 1, ..., |Ox|,

and for all a ∈ A and o ∈ O, where i′ = fx(o). This
is analogous to Mao in the PSR model. Instead of hav-
ing one linear operator associated with a particular ao
combination, the MO-PSR model learns a set of such
operators and applies the appropriate operator accord-
ing to the history prior to the appearance of ao.

• Compute bi0 = 1
pi
Û>
i P̂T ,Hi

1, for i = 1, ..., |Ox|,
where 1 is a |Hi| × 1 vector of ones. This set of pa-
rameters is analogous to m0 in the PSR model.

• Compute bi∞ = (P̂>
T ,Hi

Ûi)
†P̂Hi , for i = 1, ..., |Ox|,

analogous to m∞ in the PSR model.

Predictions
Given the model parameters, we can calculate the prediction
of a sequence a1o1 · · · atot, given an initial system state:

p(a1o1 · · · atot) =

|Ox|∑
i0=1

pi0 ×
(
(bit∞)>B

it−1
atot · · ·B

i1
a2o2

Bi0
a1o1

bi00

)

= (bit∞)>B
it−1
atot · · ·B

i1
a2o2

|Ox|∑
i0=1

pi0 ×Bi0
a1o1

bi00 .

(3)

The value of ox is known for all time steps, 1, · · · , t, since
it is the observations of the fully observable system compo-
nents. So for time steps k = 2, · · · , t, we apply the appro-
priate operator Bik−1

akok , where ik−1 = fx(ok−1), the value
of the ox variable in the previous time step, k−1. At system
initialization, the value of the ox variable is undefined. We
thus apply operators Bi0

a1o1
bi00 , weighted by pi0 , the proba-

bility of observing ox = i0 under the sampling policy, for
i0 = 1, · · · , |Ox|.

The system state at time step 1 is defined as:

b1 =

∑|Ox|
i0=1 pi0 ×Bi0

a1o1
bi0

(bi1∞)>
∑|Ox|

i0=1 pi0 ×Bi0
a1o1b

i0
0

, (4)

and for time steps t ≥ 2:

bt =
B

it−1
atot · · ·Bi1

a2o2

∑|Ox|
i0=1 pi0 ×Bi0

a1o1
bi00

(bit∞)>B
it−1
atot · · ·Bi1

a2o2

∑|Ox|
i0=1 pi0 ×Bi0

a1o1b
i0
0

=
B

it−1
atotbt−1

(bit∞)>B
it−1
atotbt−1

, (5)

where it = fx(ot), for t ≥ 1.

Consistency results
In this section, we show that the MO-PSR prediction for
action-observation sequence a1o1 · · · atot is equivalent to
the PSR prediction. We start by showing the relationship
between the MO-PSR and TPSR model parameters (Boots,
Siddiqi, and Gordon 2010). In our derivations, we impose
an ordering for the matrices used for learning TPSR, so for
example, PH is ordered such that

P>
H =

[
P>
H1

P>
H2

· · · P>
H|Ox|

]
,

and similarly for PT ,H and PT ,ao,H.
We first derive the relationship of the TPSR representation

of the initial system state to the MO-PSR parameters:

b0 = U>PT ,H1

= U>
[
PT ,H1

PT ,H2
· · · PT ,H|Ox|

]
1

=

|Ox|∑
i=1

U>PT ,Hi
1

=

|Ox|∑
i=1

U>(UiU
>
i PT ,Hi

)1

=

|Ox|∑
i=1

pi × (U>Ui)b
i
0 , (6)

where, since Ui and PT ,Hi
have the same column space,

UiU
>
i PT ,Hi

= PT ,Hi
.

We next derive the relationship between TPSR parameter
Bao and MO-PSR parameters. For the set of histories, Hi,

Bi
ao = U>

i′ PT ,ao,Hi
(U>

i PT ,Hi
)†

Bi
ao(U

>
i PT ,Hi

) = U>
i′ PT ,ao,Hi

, (7)



where i′ = fx(o), and, assuming PT ,ao,Hi and PT ,Hi per-
fectly characterise the system, we get an exact solution for
Bi

ao. From the TPSR definition of Bao:

Bao = U>PT ,ao,H(U>PT ,H)†

Bao(U
>PT ,H) = U>PT ,ao,H , (8)

which assumes that Bao is an exact solution.
We can pick out the columns corresponding to histories

h ∈ Hi, in the LHS and RHS of (8):

Bao(U
>PT ,Hi) = U>PT ,ao,Hi

= U>Ui′U
>
i′ PT ,ao,Hi

= U>Ui′(B
i
aoU

>
i PT ,Hi

) [(7)], (9)

where i′ = fx(o). Bao is a similarity transform of Bi
ao

when their application is limited to state representations for
histories from the set Hi:

Bao(U
>PT ,Hi

) = U>Ui′(B
i
aoU

>
i PT ,Hi

)

BaoU
> = U>Ui′B

i
aoU

>
i

BaoU
>U = U>Ui′B

i
aoU

>
i U

Bao = (U>Ui′)B
i
ao(U

>
i U) , (10)

where, since U has orthogonal columns, U>U is identity.
Lastly, we derive the relationship between the TPSR pa-

rameter b∞, and MO-PSR parameters. For the set of histo-
ries, Hi, we have the MO-PSR definition:

(bi∞)> = P>
Hi

(U>
i PT ,Hi

)†

(bi∞)>(U>
i PT ,Hi

) = P>
Hi

, (11)

which assumes that bi∞ is an exact solution. And from the
TPSR definition:

b>∞ = P>
H (U>PT ,H)†

b>∞(U>PT ,H) = P>
H , (12)

which also assumes that b∞ is an exact solution.
Next we pick out the columns corresponding to histories

h ∈ Hi, in the LHS and RHS of (12):

b>∞(U>PT ,Hi
) = P>

Hi

= (bi∞)>(U>
i PT ,Hi

) [(11)]. (13)

b∞ is equivalent to a similarity transform of bi∞ when their
application is limited to state representations for histories
from the set Hi:

b>∞(U>PT ,Hi
) = (bi∞)>(U>

i PT ,Hi
)

b>∞U> = (bi∞)>U>
i

b>∞U>U = (bi∞)>U>
i U

b>∞ = (bi∞)>(U>
i U) . (14)

From the prediction with the TPSR model in (2), we sub-
stitute in the derivations from (6), (10) and (14):

p(a1o1 · · · atot) = b>∞Batot · · ·Ba1o1b0 (15)

= (bit∞)>(U>
it U)(U>Uit)B

it−1
atot (U

>
it−1

U)

· · · (U>Ui2)B
i1
a2o2

(U>
i1U)

×
|Ox|∑
i0=1

pi0 × (U>Ui1)B
i0
a1o1

(U>
i0U)(U>Ui0)b

i0
0

= (bit∞)>B
it−1
atot · · ·B

i1
a2o2

|Ox|∑
i0=1

pi0 ×Bi0
a1o1

bi00 ,

and arrive at the MO-PSR prediction equation (3). Since
the predictions of the TPSR and PSR models are equiva-
lent (Boots, Siddiqi, and Gordon 2010), the predictions of
the MO-PSR and the PSR models are also equivalent.

In the above, Bakok
can be substituted with

(U>Uik)B
ik−1
akok(U

>
ik−1

U) because the terms are ap-
plied to the state representation for a history that ends
in ak−1ok−1. (Similarly for the substitution of b∞
with bit∞). Also, the column space of U encompasses
that of Ui, thus U>Ui has orthogonal columns, and
(U>Ui)

>(U>Ui) = (U>
i U)(U>Ui) is identity.

Complexity Analysis
In the following, we compare the MO-PSR and TPSR ap-
proaches in terms of time complexity for learning mixed ob-
servability systems. We show that while both give equivalent
predictions in terms of accuracy, the MO-PSR approach has
lower time complexity and learns models which are more
compact.

Computational Complexity
The main computational bottleneck in the spectral approach
to model learning is the SVD operation itself. The SVD op-
eration on a matrix of size m × n, where n < m, has com-
plexity O(mn2). Assume that |H| = |T | = n. The TPSR
approach requires an SVD operation on the matrix PT ,H,
which has complexity O(n3). The MO-PSR approach, on
the other hand, performs |Ox| of SVD operations on matri-
ces PT ,Hi , i = 1, · · · , |Ox|. Assuming that on the average,
the size of each set of history Hi is n

|Ox| , SVD on each of the
matrices PT ,Hi

has O(n( n
|Ox| )

2) operations. This gives a to-

tal of O(|Ox|( n3

|Ox|2 )) = O( n3

|Ox| ) operations, representing a
|Ox| factor reduction in computational complexity.

Model Complexity
Next, we consider the size of the models learned. For the
TPSR approach, the dimensions of the model parameters
(and hence, the number of entries in the model parameters)
are directly related to the number of nonzero left singular
vectors from the SVD on matrix PT ,H. This is the same
as the rank of PT ,H, and the rank of the system-dynamics
matrix D. For the MO-PSR approach, the dimensions of
the model parameters are directly related to the number of
nonzero left singular vectors from the SVD on each matrix



PT ,Hi , i = 1, · · · |Ox|. This is the same as the rank of each
matrix Di, i = 1, · · · |Ox|. Thus, we begin by examining the
ranks of matrices D, and Di, i = 1, · · · |Ox|.

Rank of system-dynamics matrices As mentioned
above, mixed observability systems can be modelled as
MOMDPs. The MOMDP formulation utilizes the concept
of an underlying or nominal state, s, which for a mixed ob-
servability system is factorized as the nominal state of the
fully observable system components, x, and the nominal
state of the partially observable system components, y. So,
for a mixed observability system, the state space is factored
as S = X × Y . MOMDPs maintain system state informa-
tion by keeping track of the probabilities of being in each
of the nominal states s ∈ S as a function of history. Thus
the representation of history h is a |X ||Y| × 1 belief vector,
with vector entries p(x, y|h), for all x ∈ X and all y ∈ Y .
The system-dynamics matrix D of a system modelled as a
MOMDP can be generated from estimating p(τ |h), for all
τ ∈ T and h ∈ H, from p(τ |h) =

∑
x,y p(τ |x, y)p(x, y|h)

(Ong et al. 2010).

Lemma 1. For any mixed observability system that can be
modelled as a MOMDP with fully observable nominal states
x ∈ X and partially observable nominal states y ∈ Y , the
rank of the matrix D is no more than |X ||Y|.
Proof: Matrix D can be factored as the product of matri-
ces A and C, where A is a |H| × |X ||Y| matrix with en-
tries p(x, y|h), and C is a |X ||Y| × |T | matrix with entries
p(τ |x, y). Both A and C have at most rank |X ||Y|, thus D
also has at most rank |X ||Y|.

Now consider the matrices Di, i = 1, · · · |Ox|, where the
histories represented in Di is the set of histories Hi which
end in the observation variable ox taking on value i. Note
that observation ox represents the observation that gives per-
fect information on the fully observable components in the
system while in the MOMDP framework, x represents the
nominal state of those components. Thus, in the MOMDP
model, ox and x are one and the same, and the observation
space Ox is the same as the nominal state space X .

Theorem 1. For any mixed observability system that can be
modelled as a MOMDP with fully observable nominal states
x ∈ X and partially observable nominal states y ∈ Y , the
rank of each of the Di, i = 1, · · · |Ox|, is no more than |Y|.
Proof: The matrix Di has rows corresponding to the set of
histories which end in the observation variable ox taking on
value i. Di can be factored as the product of Ai and C, where
Ai is |Hi|×|X ||Y| and C is |X ||Y|×|T |. Here, as above, C
has at most rank |X ||Y|. However, this is not the case for Ai.
Each of the histories in the set Hi ends in the observation
variable ox taking on value i. Thus, for all histories h ∈
Hi, p(x, y|h) = 0 for all x 6= i. So only columns in Ai

corresponding to x = i, for all y ∈ Y , are nonzero, and thus
Ai has at most rank |Y|. Di thus also has at most rank |Y|.

Size of model representation The dimensions of the
TPSR model parameters, b0, b∞ and Bao, for all a ∈ A and
o ∈ O, are functions of the number of columns in U , which
is the same as the rank of D. From Lemma 1, for a system

that can be modelled by a MOMDP, the model representa-
tion size for a TPSR is of order 2|X ||Y|+ |A||O|(|X ||Y|)2,
or equivalently, 2|Ox||Y| + |A||O|(|Ox||Y|)2. From The-
orem 1, the upper bound on the rank of Di is |Y|. Thus,
the upper bound on the dimensions of both bi0 and bi∞ is
|Y|×1, and the upper bound on the dimensions of each of the
|A||O| matrices Bi

ao is |Y|×|Y|. There are |Ox| sets of such
model parameters, thus the MO-PSR model representation
size is upper bounded by 2|Ox||Y| + (|Ox||A||O||Y|2) =
2|Ox||Y|+(1/|Ox|)(|A||O|(|Ox||Y|)2). In general, the sec-
ond term is dominant, so the MO-PSR approach will have a
factor of |Ox| reduction compared to the TPSR approach.

Preliminary Results
We present preliminary results to illustrate the performance
of MO-PSR compared to TPSR on a problem from the
International Probabilistic Planning Competition (IPPC) at
ICAPS 2010. The Elevators problem consists of one or more
elevator agents operating in a building, and human agents
waiting on each of the floors. The elevator agents are under
MO-PSR/TPSR control and are fully observable, while the
human agents follow a stochastic process and are partially
observable. We refer the reader to the IPPC’s website for
detailed problem specification.

Method and Evaluation
We ran experiments on two Elevators domains: 1 elevator
and 3 floors (Elev1Floor3), and, 1 elevator and 4 floors
(Elev1Floor4). In both domains, the MO-PSR and TPSR
learning algorithms were each given 10,000 to 100,000
training trajectories of 8 time steps, sampled from a simu-
lator given uniformly random generated actions. The MO-
PSR algorithm learned models from histories of lengths up
to 3 and tests of lengths up to 4 (MO-PSR h3t4) as well as
models from histories and tests of length 1 (MO-PSR h1t1).
The TPSR algorithm was only able to incorporate histories
and tests of length 1 in the model (TPSR h1t1) without run-
ning out of memory (7 GB) during the SVD operation.

In the Elev1Floor3 domain, the upper bounds on the ranks
of PT ,H and each of PT ,Hi

is 768 and 16, respectively.
Accordingly, we learned MO-PSR models by keeping the
largest 16 left singular vectors from SVD on each PT ,Hi

while for TPSR, no more than the largest 250 left singular
vectors from the SVD on PT ,H could be used without run-
ning out of memory. In the Elev1Floor4 domain, while the
upper bound on the rank of each of PT ,Hi is 64, with 10,000
training trajectories there were only 48 nonzero left singular
vectors from SVD on each PT ,Hi

so we learned MO-PSR
models of dimension 48 throughout. The upper bound on the
rank of PT ,H is 4096 but for TPSR, no more than the largest
128 left singular vectors from the SVD on PT ,H could be
used without running out of memory.

We evaluated the learned models on 1000 test trajectories
of length 4. The prediction error for each test trajectory is
the mean squared error = 1

4

∑
t=1...4 (pt − p̂t)

2, where pt is
the actual probability of the observation at time t according
to the true system dynamics, and p̂t is the probability of the
observation as predicted by the learned model.



Figure 1: (a) Prediction errors of the MO-PSR and TPSR models on Elev1Floor3. (b) Prediction errors of the MO-PSR and
TPSR models on Elev1Floor4. (c) Comparison of prediction errors on Elev1Floor4 for MO-PSR models trained with different
parameters. (d) Run times for SVD operation for the MO-PSR and TPSR models on Elev1Floor4.

Results

As shown in Figure 1 (a) and (b), in both the Elev1Floor3
and Elev1Floor4 domains, MO-PSR models learned from
histories and tests of length 1 (MO-PSR h1t1) gave more
accurate predictions than the corresponding TPSR models
TPSR h1t1. MO-PSR models learned from histories of up
to length 3 and tests of up length 4 (MO-PSR h3t4) fur-
ther improved in prediction accuracy. A possible explanation
for the better performance of MO-PSR h1t1 versus TPSR
h1t1 is their respective model complexities. Looking at the
Elev1Floor3 domain for example, in the TPSR model, each
of the Bao matrices has dimension 250 × 250. In the MO-
PSR model, for each combination of ao values, there are
|Ox| = 48 of Bi

ao matrices of dimension 16 × 16 each.
Thus, the model representation size for the MO-PSR model
is smaller by a factor of approximately 2502

48×162 ≈ 5. This re-
sults in less training data required to learn a model of com-
parative or better accuracy.

Furthermore, the MO-PSR algorithm was able to achieve
this better performance with much reduced computational
complexity, as illustrated in Figure 1 (d). In the MO-PSR al-
gorithm, the run time for SVD operations was at most 0.11
second, for the model learned from 100,000 training trajec-
tories. The corresponding time required in the TPSR algo-
rithm was 529.5 seconds. All experiments were run on a PC
with two 3.3 GHz CPUs and 7GB RAM, running Ubuntu
10.04.3 LTS.

Figure 1 (c) compares the performance of MO-PSR mod-
els on Elev1Floor4, when learning from histories and tests
of different lengths, and with different dimensions for model
parameters, i.e. by retaining different numbers of left singu-
lar vectors from SVD on each PT ,Hi . The results show that
MO-PSR models with dimension 48 give better predictions
as compared to models with dimension 16. This is to be ex-
pected as the upper bound on the rank of each PT ,Hi

is 64.
Given the same model dimensions, MO-PSR models learned
from histories and tests of longer lengths perform better than
with shorter lengths, because more information is extracted
from the training data.

Final Discussion
We have proposed a novel model learning approach for
learning agent behaviours in systems with mixed observ-
ability. The MO-PSR framework shares the properties of
power of expressiveness and ease of model learning as in
the general PSR approach. However, the MO-PSR approach
takes advantage of structural properties in the system to
improve learning and modelling efficiency, as compared to
PSRs. While the model learning algorithm itself is relatively
straightforward, it has potential impact for a great number of
domains, given that many large, complex systems are mixed
observability systems. As such, the consistency and com-
plexity results we have shown are important, for ensuring
correctness and generalization.

The work presented here shares some similarities with
memory-PSRs (James, Wessling, and Vlassis 2006), where
the systems-dynamics matrix is partitioned based on memo-
ries consisting of arbitrary length ao sequences. In contrast,
MO-PSR partitions the systems-dynamics matrix based on
only the fully observable ox variable, and in the last observa-
tion only. While memory-PSRs enable more compact mod-
elling of some dynamical systems, the class of such systems
has not been clearly defined, and is not believed to overlap
directly with mixed observability systems.

The focus of this paper is on model learning, therefore we
don’t demonstrate how the learned model can be used for
control and planning. However, prior work on PSR planning
algorithms is well established, much of which can likely be
extended to MO-PSRs (James, Singh, and Littman 2004;
Izadi and Precup 2008; James, Wessling, and Vlassis 2006;
Boots, Siddiqi, and Gordon 2010; Rafols et al. 2005; Ab-
erdeen, Buffet, and Thomas 2007). We expect computational
savings on the order of |Ox| compared to planning with TP-
SRs, due to the smaller model representation. Verifying this
will be the subject of future work.
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