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Abstract 
Deep Brain Stimulation (DBS) is a promising tool for treating drug-resistant epileptic patients. 
Currently, the most common approach is fixed-frequency stimulation (periodic pacing) by means 
of stimulating devices that operate under open-loop control. However, a drawback of this DBS 
strategy is the impossibility of tailoring a personalized treatment, which also limits the 
optimization of the stimulating apparatus. Here, we propose a novel DBS methodology based 
on a closed-loop control strategy, developed by exploiting statistical machine learning 
techniques, in which stimulation parameters are adapted to the current neural activity thus 
allowing for seizure suppression that is fine-tuned on the individual scale (adaptive stimulation). 
By means of field potential recording from adult rat hippocampus-entorhinal cortex (EC) slices 
treated with the convulsant 4-aminopyridine we determined the effectiveness of this approach 
compared to low-frequency periodic pacing, and found that the closed-loop stimulation strategy: 
(i) has similar efficacy as low-frequency periodic pacing in suppressing ictal-like events but (ii) is 
more efficient than periodic pacing in that it requires less electrical pulses. We also provide 
evidence that the closed-loop stimulation strategy can alternatively be employed to tune the 
frequency of a periodic pacing strategy. Our findings indicate that the adaptive stimulation 
strategy may represent a novel, promising approach to DBS for individually-tailored epilepsy 
treatment.  
1 Abbreviations  

                                                             
1   DBS: Deep Brain Stimulation; EC: Entorhinal Cortex. 
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Introduction 
Epilepsy is a highly-prevalent chronic neurological disorder (Kotsopoulos, et al., 2002) and up to 
30% of epilepsy patients do not respond to pharmacological treatment (Kwan and Brodie, 
2000).  Moreover, resective surgery comes at the risk of physical and cognitive impairments.  
An emerging alternative treatment for drug-resistant patients is deep brain stimulation (DBS), 
i.e. direct delivery of electrical pulses to the brain, aiming at modulating neuronal excitability and 
thus halting or even preventing seizures. Recent studies have been evaluating the effectiveness 
of DBS strategies in drug-resistant epileptic patients (Boon, et al., 2007; Ellis and Stevens, 
2008; Hamani, et al., 2009; Marks, 2008). However, conclusive evidence in humans is difficult to 
achieve, due to the large variance in the disease and symptoms among patients; it is therefore 
difficult to choose a single stimulation protocol that is effective on a collection of individuals. 

There are many parameters to select when applying DBS, including the target area for 
stimulation, as well as the frequency, intensity and pattern of the electrical pulses. These 
parameters can be specified either through an open-loop paradigm, or as a closed-loop control 
system. An open-loop strategy uses preset parameters to deliver stimulation, without monitoring 
electrical cortical activity. Examples of open-loop strategies include fixed-frequency stimulation 
(periodic pacing), as well as stimulation strategies based on a fixed random process (e.g., 
gaussian noise generator) (Durand and Bikson, 2001). In a closed-loop strategy, the stimulation 
parameters are dynamically changed in response to sensor readings of brain activity. This can 
be achieved by using software to automatically detect an impending seizure and administering a 
fixed stimulation protocol designed to terminate the seizure (Cohen-Gadol, et al., 2003; Durand 
and Bikson, 2001; Fountas, et al., 2005; Kossoff, et al., 2004; Loscher and Schmidt, 2004; 
Osorio, et al., 2005; Theodore and Fisher, 2004). This can also be achieved through more 
sophisticated feedback control methods (Guez, et al., 2008; Pineau, et al., 2009). 

More substantial evidence for the ability of DBS to successfully reduce epileptic symptoms 
has been produced using animal models of epilepsy. A number of studies focused on finding the 
appropriate stimulation site and frequency of stimulation for open-loop (D'Arcangelo, et al., 
2005; Durand and Bikson, 2001; Ellis and Stevens, 2008; Schiller and Bankirer, 2007) as well 
as for closed-loop strategies (Bush and Pineau, 2009; Durand and Bikson, 2001; Nakagawa 
and Durand, 1991; Schiff, et al., 1994; Schiller and Bankirer, 2007). By using an in vitro model 
of limbic ictogenesis, we have previously reported that repetitive low-frequency stimulation, 
delivered in the subiculum at frequencies similar to those of the CA3-driven interictal 
discharges, decreases epileptiform synchronization in the entorhinal cortex (EC) (Barbarosie 
and Avoli, 1997). In particular, we have shown that the 1 Hz frequency exhibits maximal efficacy 
in reducing EC ictogenesis (D'Arcangelo, et al., 2005). 

We have put forward, in previous studies, the use of statistical learning techniques to 
automatically optimize closed-loop strategies. We show how the strategies can be learned from 
field potential recordings in rat brain slices in which epileptiform discharges were induced by 
superfusion with the convulsant 4-aminopyridine (4AP) (Guez, et al., 2008; Pineau, et al., 2009). 
These studies suggested that closed-loop DBS could achieve successful suppression of ictal-
like activity using less pulses than open-loop periodic pacing strategies; however these results 
were obtained using an in silico model of epilepsy. Here, we have evaluated such statistical 
learning closed-loop strategies in vitro by using the 4AP model of limbic ictogenesis in adult rat 
hippocampus-EC slices. Our findings show that the learned controller is able to perform as well 
as the 1 Hz open-loop paradigm, while reducing the total stimulation delivered in most slices. In 
contrast, applying periodic pacing at the same effective mean frequency found by the closed-
loop controller is not as effective in suppressing ictal-like activity as our adaptive algorithm's 
solution. 
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Methods 

Brain slice preparation and maintenance 
All efforts were made to minimize the number of animals used and their suffering. All the 
procedures were carried on in accordance to the Canadian Council on Animal Care and McGill 
University guidelines. Nineteen male, adult Sprague-Dawley rats (250-300 g) were decapitated 
under deep isoflurane anesthesia. The brain was quickly removed and placed in cold (0-2º C) 
artificial cerebro-spinal fluid (ACSF), continuously bubbled with gas mixture (CO2 5% and O2 
95%) to equilibrate at pH=7.35-7.40, and having the following composition (mM): 124 NaCl, 2 
KCl, 2 MgSO4, 2 CaCl2, 1.25 KH2PO4, 26 NaHCO3 and 10 D-glucose. Partially disconnected 
combined hippocampus-EC slices (450 ⎧m thick) including the most ventral part of the 
hippocampal formation were cut as previously described (Panuccio, et al., 2010) using a 
VT1000S vibratome (Leica, Germany). In these brain slices fast CA3-driven interictal-like 
activity disclosed by 4AP application was observed within the hippocampus proper only, i.e. it 
did not propagate to the EC (cf., Avoli, et al., 1996, but see also Avoli, et al., 2002). Slices were 
then transferred to an interface recording chamber, lying between warm (~ 32º C) ACSF and 
humidified gas (CO2 5% and O2 95%), where they were allowed to recover for at least 1 hour 
before beginning continuous bath-application of 4AP Slices were continuously perfused at ~1 
ml/min.  
Field potential recording and stimulation paradigms 
Field potential recordings were made with ACSF-filled pipettes (tip diameter <10 ⎧m; resistance 
= 5-10 M∧) pulled from borosilicate capillary tubing (World Precision Instruments Inc., Sarasota, 
FL, USA) using a P-97 puller (Sutter Instrument, Novato, CA, USA). Extracellular signals were 
fed to a Cyberamp 380 amplifier (Molecular Devices, Palo Alto, CA) connected to a digital 
interface device (Digidata 1320A, Molecular Devices). Data were acquired at a sampling rate of 
5 KHz (low-pass filtered at 2 KHz), using the software Clampex 8.2 (Molecular Devices), stored 
on the hard drive and analyzed off-line using pClamp 9.0. Recording electrodes were placed in 
the deep layers of the medial EC, CA3 stratum pyramidale or radiatum, and the pyramidal layer 
of the proxymal subiculum (see Fig. 1A). Extracellular current pulses (0.1-2.25 mA, pulse width 
100 ⎧s) were delivered in the pyramidal layer of the proximal subiculum through a bipolar 
concentric Pt-Ir electrode (FHC, Bowdoin, ME, USA) plugged onto a high voltage stimulus 
isolator unit (A360, WPI Inc., Sarasota, Florida, USA) connected to the pulse generator 
Pulsemaster A300 (WPI Inc., Sarasota, Florida, USA). Current intensity required to induce a 
response with failure rate <80% was established before the beginning of any stimulation 
protocol and was kept constant throughout the experiment. The Cyberamp 380 amplifier was 
also connected to another digital interface device (USB-6221 M Series, National Instruments, 
Texas, USA) that acquired data at a sampling rate of 5 KHz using an in-house software. That 
software was performing signal processing in real time and was querying the adaptive controller 
software for the stimulation actions. Those stimulation requests were then transmitted digitally 
from the National Instruments digitizer to the pulse generator. 

Before running the adaptive code, we assessed slice viability in terms of subicular projections 
to the EC by testing the efficacy of periodic pacing at 1 Hz, which has proved to be the most 
effective low-frequency periodic pacing protocol in terms of suppression of ictal activity (cf. 
D’Arcangelo et al., 2005). During the training phase, three different stimulation strategies were 
applied in 4 slices as follows: (i) periodic pacing at 0.5Hz, (ii) period pacing at 1Hz, (iii) periodic 
pacing at 2 Hz. An early version of the closed-loop controller was also applied to other 4 slices 
to obtain more relevant training data. Each stimulation paradigm was preceded by a control 
period and followed by a recovery phase, which also served as the control of the following 
stimulation protocol. In total, about 12 hours of recording (including control and stimulation 
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protocols) were acquired to train our closed-loop controller. During the validation phase, three 
different stimulation strategies were applied on 11 slices as follows: (i) periodic pacing at 1 Hz, 
(ii) adaptive stimulation using the closed-loop controller, and (iii) periodic pacing at the average 
frequency of the adaptive stimulation protocol (we call this the effective frequency stimulation). 
As above, each stimulation paradigm was preceded by a control period and followed by a 
recovery phase, which also served as the control of the following stimulation protocol. The 
effective frequency stimulation, ƒ (Hz), is a periodic pacing strategy. A different effective 
frequency is computed for each slice after application of the adaptive controller using the 
following equation: 

 
where ns is the total number of pulses delivered during the duration T, in seconds, of the 
adaptive stimulation protocol.  This strategy effectively includes as many pulses as the adaptive 
strategy applied to the slice, but distributed in a periodic manner. 
Adaptive stimulation design 
The stimulation patterns for the adaptive stimulation strategy are computed in real-time based 
on a function relating the observed neural activity and optimal stimulation parameters.  This 
function is learned a priori using data collected from the training slices. This function defines the 
parameters of the adaptive stimulation strategy over the full range of observed neural 
conditions.  The function is then used on the validation slices, to match observed neural signal 
with optimal stimulation parameters. A full description of the mathematical and computational 
methods underlying the adaptive controller can be found in Guez, et al. (2008) and Pineau, et 
al. (2009).  Here, we briefly summarize the mathematical method. 

Field potential recordings were processed using Fast Fourier Transforms over different 
window lengths to extract spectral features forming the state vector s on which the adaptive 
controller based its stimulation decision at each time step. A cost c was associated with 
performing a stimulation action a in a state s, whose cost was mainly influenced by the 
presence of epileptiform activity in s but also by the frequency of stimulation described by a. 
The controller could then choose, by the mean of an action a at a state s, between not 
stimulating or stimulating at either 0.5 Hz, 1 Hz, or 2 Hz for the duration of the next reference 
window. The goal of the controller was to reduce the long-term accumulation of those costs. To 
achieve that, a sophisticated regression tool, called extremely randomized trees Geurts, et al., 
2006, was used to learn the long-term cumulative cost  of applying an action a in any 
state s using the field potential recordings in the training dataset. In the validation phase, an 
optimal stimulation action , can then be selected based on the current neuronal network state 

, using the best learned controller function .  
Data and statistical analysis 
We arbitrarily defined ictal-like (hereafter termed ictal) discharges to be those epileptiform 
events resembling EEG ictal activity and lasting longer than 3 s. We used the following 
parameters as performance indicators of the adaptive controller: 

(i) , which denotes the proportion of ictal time during protocol p for the slice i, where for 
each slice the following protocols are executed in the following sequence: Control (CTRL1) → 1 
Hz stimulation → Recovery (CTRL2) → Adaptive stimulation → Recovery (CTRL3) →  Effective 
frequency stimulation. For clarity, we denote by c(p) the protocol with no stimulations 
immediately preceding a stimulation protocol p.  
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(ii)  is the mean frequency that a stimulation protocol p resorts to for the i-th slice, and 
measures the amount of stimulation used by the protocol. By definition, the adaptive stimulation 

protocol and the effective frequency protocol share the same value  for any particular slice. 
Data throughout the text are expressed as mean ± SEM and n indicates the number of slices 

unless otherwise specified. Significance was set at p<0.05. 

Results 
Fig. 1A illustrates the brain slice preparation used in this study and the positions of the recording 

and the stimulating electrodes. In Fig. 1B, the estimate  is computed for each slice in the 
validation set under the different protocols; the quartiles are reported as box-plots for each 
protocol. Ictal activity generated by each slice did not significantly change throughout the three 
control phases, suggesting that electrical stimulation did not induce any detectable modification 
in the functionality of EC neuronal networks (Duration - CTRL1: = 40.4 ± 10.1 s; CTRL2 = 35 ± 
5.6 s; CTRL3 = 33 ± 6.7 s; Interval: CTRL1 = 170.4 ± 38.1 s, CTRL2 = 193.3 ± 33 s, CTRL3 = 
180.1 ± 31.5 s; n = 11, 11 and 9, respectively). During 1 Hz stimulation, 5 out of 11 slices 
generated a total of 11 ictal discharges, which emerged mostly during the early stimulation 
phase. Ictal events lasted 11 ± 3 s and occurred at an interval of 209 ± 46 s. During adaptive 
stimulation, 3 out of 11 slices generated 13 ictal discharges lasting 12 ± 6 s and occurring every 
306 ± 131 s. During periodic pacing at the effective frequency, 4 out of 9 slices generated 19 
ictal discharges that were 19 ± 5 s long and occurred at an interval of 167 ± 18 s. Statistical 

comparison of  values indicated that all stimulation protocols significantly decreased ictal 
activity as compared to control (CTRL1 = 0.24 ± 0.04, 1 Hz: 0.02 ± 0.01 n=11, p<0.001; CTRL2 
= 0.16 ± 0.03, Adaptive Stimulation: 0.01 ± 0.01, n=11, p<0.001; CTRL3 = 0.16 ± 0.03, Effective 
Frequency: 0.05 ± 0.02, n=9, p<0.01. Wilcoxon–Mann–Whitney two-sample rank-sum test). 

It may be expected that the three stimulation policies perform differently in terms of 
suppression of ictal activity. Statistical analysis using repeated measure Friedman test (n=9, 
k=3) returned a value of p=0.13, thus suggesting that the three paradigms performed similarly 
possibly due to the limited data set used in this study. Moreover, it is important to stress that the 

median value of  for each simulation protocol was 0 (i.e., complete suppression). The 
fundamental difference between the 1 Hz protocol and the other protocols stems in the rate of 

stimulation as measured by the effective frequency  (Fig. 1B, inset). A Wilcoxon signed rank 

test determined that the distribution of   for the adaptive controller is unlikely to have at least 
1 Hz as median (n=11, p<0.03), i.e., the rate of stimulation employed by the adaptive controller 
is mostly slower than 1 Hz. Therefore, the closed-loop strategy proposed here is more efficient 
than low-frequency periodic pacing in that it requires less stimulation. We also provide 
preliminary evidence that the closed-loop stimulation strategy can alternatively be employed to 
tune the frequency of a periodic pacing strategy. 

Fig. 1C showcases different scenarios that occurred when running the adaptive controller. 
Sample traces are recordings from the medial EC, and panels a and c are the control phases of 
the experiments illustrated in panels b and d, respectively (stimulus artifacts were truncated). 
The adaptive code dynamically changes the stimulation frequency in order to entrain network 
activity and dampen (Fig. 1Ca,b) or even prevent (Fig. 1Cc,d) the generation of ictal events. 

 
Discussion 
In this work we have leveraged statistical machine learning techniques to learn a closed-loop 
stimulation strategy from in vitro electrophysiology data. The result is an adaptive stimulation 
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algorithm that can control epileptiform activity. Our key findings can be summarized as follows. 
(i) The adaptive stimulation strategy has similar efficacy as low-frequency periodic pacing in 
suppressing ictal events in an in vitro animal model of ictogenesis. (ii) The adaptive stimulation 
strategy is more efficient than periodic pacing in that it requires less stimulation overall.  

We show here that applying the mean stimulation frequency of the adaptive protocol for a 
given slice, referred to as effective frequency stimulation, decreases ictal activity with 
performance similar to the adaptive strategy. However, it is not possible to predict a priori the 
effective periodic pacing frequency in any given experiment; there is no analytic formula to 
calculate this. Rather, the effective periodic pacing frequency of a particular subject (or brain 
slice) can be discovered by applying the adaptive strategy on and calculating the rate of 
stimulation. In the future, employing the adaptive controller to probe the network activity and 
automatically tune the frequency of a periodic pacing protocol may represent an attractive 
alternative to running the adaptive strategy at all times. In contrast to our in vitro model, where 
periodic pacing at 1 Hz consistently achieves significant reduction of ictal activity, optimization of 
DBS parameters in epileptic animals and, more importantly, in human epileptic patients, is an 
open question.  It is unlikely that a single non-adaptive stimulation strategy will work well across 
subjects. Therefore, automatically tuning, or learning, the DBS parameters for a particular 
subject becomes highly desirable. Learning the DBS parameters in an efficient way online (as 
opposed to training based on a fixed set of data) is a challenging problem in many respects. 
One difficulty is that the controller needs to acquire information about the subject by probing (i.e. 
applying pulses at varying times to observe the effects), while simultaneously maintaining a 
tolerably low level of ictal activity. In practice, achieving these two goals simultaneously may be 
challenging. Statistical machine learning techniques can provide significant guidance to tackle 
this problem by designing controllers that probe and adapt parameters in a principled way. 
These controllers have the potential to learn at different timescales to continuously adapt to a 
given patient, as well as incorporating additional relevant factors, such as the time of the day, or 
the level or type of physical activity of the subject (e.g., exercise vs. sleep). In other work, we 
have provided a useful approach for inferring a sufficient state representation from data to 
characterize the neural system, including predicting network activity and response to electrical 
stimulation (Bush, et al., 2012). 
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Figure  

 
Figure 1 - Adaptive stimulation performs similarly but is more efficient than low-
frequency periodic pacing in controlling ictal activity. 
A: Brain slice schematic illustrating the position of the recording and stimulating electrodes.2 B: 
Box plots summarizing on the performance of the three stimulation protocols in terms of 
suppression of ictal activity as compared to their respective control phases. Each stimulation 

paradigm significantly decreased the  (* p<0.05). However, as further emphasized by the box 
plot in the inset, the adaptive algorithm requires less stimulation overall. C: Sample recordings 
from the EC of two different brain slices illustrating the adaptive behavior of the closed-loop 
controller. In panels a and c are the control phases of the experiments illustrated in panels b 
and d, respectively. The adaptive stimulation algorithm adjusts the frequency of stimulation in 
order to dampen or prevent ictal activity. Stimulus artifacts were truncated.  
 

                                                             
2  mEC: medial entorhinal cortex. CA1 and CA3: cornu ammonis 1 and 3, respectively. Sub: subiculum. 
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