Online Boosting for Anytime Transfer and Multitask Learning
Supplementary Materials

Boyu Wang and Joelle Pineau
School of Computer Science
McGill University, Montreal, Canada
boyu.wang@mail.mcgill.ca, jpineau@cs.mcgill.ca

Proof of Theorem 1

Let D_m^b be the weight distribution of batch TrAdaBoost algorithm, D_m^o be the weight distribution of OTB, which can be viewed as the normalized version of Poisson parameter λ in Algorithm 2. Lemma 1 shows the convergence property of D_m^o.

Lemma 1. As $N_S \to \infty$ and $N_T \to \infty$, $D_1^o \overset{P}{\to} D_1^b$.

Define h_m^b as the mth base learner of batch TrAdaBoost, and h_m^o as the analogous base learner of OTB. Lemma 2 states that if the weight vector D_m^o converges to D_m^b, the base learner h_m^o also converges to h_m^b.

Lemma 2. If $D_m^o \overset{P}{\to} D_m^b$, and the base learners are naive Bayes classifiers, then $h_m^o \overset{P}{\to} h_m^b$.

Let $\epsilon_{S,m}^b = \sum_{x_n \in S_T} D_m^o(n) I(h_m^b(x_n) \neq y_n)$, $\epsilon_{T,m}^b = \sum_{x_n \in S_T} D_m^o(n) I(h_m^b(x_n) \neq y_n)$, $D_m^b = \sum_{x_n \in S_T} D_m^o(n)$; and $\epsilon_{S,m}^o$, $\epsilon_{T,m}^o$, D_m^o be their online approximation defined in line 22-24 of Algorithm 2. Lemma 3 states that $\epsilon_{S,m}^o$, $\epsilon_{T,m}^o$, D_m^o converge to their batch counterparts given h_m^o for a sample from source domain, and h_m^b for a sample from target domain.

Lemma 3. If $D_m^o \overset{P}{\to} D_m^b$, $h_m^o \overset{P}{\to} h_m^b$, and the base learners are naive Bayes classifiers, then $\epsilon_{S,m}^o \overset{P}{\to} \epsilon_{S,m}^b$, $\epsilon_{T,m}^o \overset{P}{\to} \epsilon_{T,m}^b$, and $D_m^o \overset{P}{\to} D_m^b$.

To prove the convergence of the ensemble of classifiers, we also need Lemma 4.

Lemma 4. If X_1, X_2, \ldots and $X_n \overset{P}{\to} X$, then $I(X_n = x) \overset{P}{\to} I(X = x)$ for all possible values x.

We omit the proofs of these last four lemmas since they follow quite readily from Theorem in (Oza and Russell 2001), Lemma 2, Lemma 8, Lemma 9, and Lemma 4 in (Oza 2001). We only give the proof of the main theorem.

Theorem 1. As $N_S \to \infty$ and $N_T \to \infty$, if the base learners are naive Bayes classifiers, OTB converges to batch TrAdaBoost algorithm.

Sketch of the Proof. The convergence of OTB can be proved by induction. For the first base learner, we have $D_1^o \overset{P}{\to} D_1^b$ by Lemma 1. Then by Lemma 2 and Lemma 3, we have $h_1^o \overset{P}{\to} h_1^b$, $\epsilon_{S,1}^o \overset{P}{\to} \epsilon_{S,1}^b$, $\epsilon_{T,1}^o \overset{P}{\to} \epsilon_{T,1}^b$, and $D_{1}^o \overset{P}{\to} D_{1}^b$, which completes the proof of the base case.

Now suppose we have $D_m^o \overset{P}{\to} D_m^b$, we need to prove $D_{m+1}^o \overset{P}{\to} D_{m+1}^b$, which can be shown as follow.

Note that $D_m^o(n)$ is normalized version of Poisson parameter λ of the nth sample of online data stream. Therefore, by (2) and (3) in Algorithm Outline section, we have

$$D_{m+1}^o(n) = \begin{cases} \frac{D_m^o(n) - \epsilon_{S,m}^o}{\epsilon_{T,m}^o + \epsilon_{S,m}^o - \epsilon_{T,m}^o} & h_m^o(x_n) = y_n \\ \frac{D_m^o(n) - \epsilon_{S,m}^o}{\epsilon_{T,m}^o + \epsilon_{S,m}^o - \epsilon_{T,m}^o} & h_m^o(x_n) \neq y_n \end{cases}$$

for a sample from source domain, and

$$D_{m+1}^o(n) = \begin{cases} \frac{D_m^o(n) - \epsilon_{S,m}^o}{\epsilon_{T,m}^o + \epsilon_{S,m}^o - \epsilon_{T,m}^o} & h_m^o(x_n) = y_n \\ \frac{D_m^o(n) - \epsilon_{S,m}^o}{\epsilon_{T,m}^o + \epsilon_{S,m}^o - \epsilon_{T,m}^o} & h_m^o(x_n) \neq y_n \end{cases}$$

for a sample from target domain.

References
