
RRT-Plan: a Randomized Algorithm for STRIPS Planning

Abstract

We propose a randomized STRIPS planning algorithm called
RRT-Plan. This planner is inspired by the idea of Rapidly
exploring Random Trees, a concept originally designed for
use in continuous path planning problems. Issues that arise in
the conversion of RRTs from continuous to discrete spaces
are discussed, and several additional mechanisms are pro-
posed to improve performance. We pose several problems
that planners based on the relaxed plan length heuristic can-
not solve but RRT-Plan can. Our experimental results indi-
cate that RRT-Plan is competitive with the state of the art in
STRIPS planning, and that the use of randomization does not
significantly worsen plan quality. The success of RRT-Plan
indicates that similar randomization techniques could be ef-
fective in more advanced planning domains.

Introduction
In this paper we propose a new approach to planning in
discrete domains. We demonstrate this in the context of
STRIPS planning, due to its prevalence and generality. The
STRIPS language offers a compact and expressive means
to represent planning problems where the state can be de-
fined by a list of positive literals (Fikes & Nilsson 1971).
Such a simple language can capture a surprisingly com-
plex set of planning domains, and new planning algo-
rithms for STRIPS-type planning problems are an active
area of research (Vidal 2004; Gerevini & Serina 2002;
Helmert 2004).

Several recent successful algorithms for STRIPS plan-
ning are in the class of heuristic planners, e.g. HSP
(Bonet & Geffner 1999) and FF (Hoffmann & Nebel 2001),
which define a state-specific heuristic evaluation function
to guide search through the state space. Despite their suc-
cess, heurstic planners, due to their deterministic nature, are
subject to a number of weaknesses. In particular, in many
domains the heuristic function can give bad estimates, or
can fail to adequately distinguish neighbouring states. Ran-
domization is a standard approach that can help escape local
minima and to mitigate the impact of systematically bad in-
formation.

The use of randomization in planning has generated sig-
nificant attention in the field of robot path planning, where

Copyright c
�

2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

(LaValle 1998; LaValle & Kuffner 2000) introduced the no-
tion of Rapidly exploring Random Trees (RRTs). RRTs in-
terleave large scale stochastic exploration with deterministic
but incomplete local goal searches. RRTs are known to be
particularly useful in robotics path planning domains where
the state space is continuous, highly dimensional, and there
is a relatively large goal area. With the notable exception of
(Morgan & Branicky 2004), RRTs have not been extended to
discrete-space planners. These authors considered only the
general case of discrete search, and did not leverage any of
the ideas or techniques that have been developed for STRIPS
planning.

The primary contribution this paper is a novel algorithm
for solving STRIPS problems through the use of randomized
search. We call this algorithm RRT-Plan. There are a variety
of difficulties that arise with attempting to translate the RRT
concepts from the continuous case to the discrete case. First,
RRTs require the ability to randomly sample a state from the
state space. While this is relatively straight-forward in con-
tinuous spaces, sampling feasible states can be challenging
in discrete domains. Second, given a random state, RRTs
require the ability to identify a “nearest neighbour” (in state
space). Again, this has a straight-forward interpretation in
continuous domains, but is less clear in discrete planning.
Finally, a sub-planner must be invoked to try to connect the
current state to the goal. This paper discusses how RRT-
Plan is able to overcome these problems specifically for the
STRIPS representation, and argues that many of these ideas
extend nicely to more general discrete planning problems.

In addition to presenting the core RRT-Plan algorithm,
we present results validating performance of RRT-Plan com-
pared to the state-of-the-art planners FF (on whose tech-
nology we rely significantly), and LPG (Gerevini & Serina
2002). We present several techniques which allow RRT-Plan
to effectively focus on solving subgoals as well as to adapt
its search parameters based on information from the growth
of the tree. Finally, we describe a class of problems which
are known to be particularly challenging for heuristic plan-
ners, and show that these can be easily overcome by RRT-
Plan due to its randomized searching.

STRIPS planning
A STRIPS problem is defined by a set of atoms � , a set
of operators � , an initial set of atoms � , and a set of goal

atoms � . Associated with each operator ����� is a set of
preconditions 	�

��������� , add effects ����������� and delete effects����������� . A state � is a set of atoms. An operator can be
applied to a state if all of the operator’s preconditions are
asserted in that state. The resulting state ��� �"!#�
�%$&��'(���*)����
is the same as � , but with the atoms in ����������� added and
those in �*��������� removed.

The canonical example of a STRIPS planning problem is
Blocks World (McAllester & Rosenblitt 1991). This classic
domain models the arrangement of a collection of building
blocks. In each problem there is some number of blocks in
an initial configuration, and the goal is to achieve a different
specified configuration. Another standard STRIPS planning
problem is Logistics, in which the agent must direct the ship-
ment of packages by trucks and airplanes.

STRIPS planning has been studied extensively in the lit-
erature (Bylander 1994; Blum & Furst 1995). We now de-
scribe two very successful heuristic planners.

HSP - Heuristic Search Planner
(Bonet & Geffner 1999) first introduced the Heuristic Search
Planner (HSP). The algorithm formulates the planning prob-
lem as search through a discrete state space, where a heuris-
tic estimate of the distance (# of actions) between any state
and the goal is used to guide the search. Given the heuris-
tic, a refinement of Best-First Search is used until the goal is
reached.

The heuristic estimates of goal distance are obtained by
considering a relaxed version of the problem, where the
delete effects are ignored. It is impossible to reach the
goal more quickly with delete effects than without, therefore
whenever the length of the optimal relaxed plan can be cal-
culated, the heuristic estimate is admissible. Unfortunately,
solving the relaxed planning problem is itself NP-hard (By-
lander 1994), therefore in practice HSP uses an approxima-
tion of the relaxed costs. This is generally quite effective
and HSP can successfully solve a large number of STRIPS
planning problems.

HSP approximates the minimum path length to the goal,
denoted +�,-�.��� by summing the (estimated) minimum path
length (or cost) to each atom in the goal. For a given state � ,
a copy �
/ is made. The set of atom costs 01�2	3� is initialized to
zero for all 	4�4� , and 5 otherwise. We then find all opera-
tors that are applicable in ��/ , and add all atoms asserted by
those operators. The costs for atoms are updated according
to the rule:

03�6	&�872�:9<;>=@? 01�2	3�A)CBEDF03�.GH�>I (1)
Where G is the set of preconditions of the operator that

adds 	 . The process continues until a steady state is reached.
At this point all atoms with 03�6	&�J�K5 are unachievable,
and if the goal contains any such atoms it is an impossible
problem. The function 03�.GH� can be either the sum or the
maximum of 01�2	3� for the atoms in G . +&,-����� is just 03���L� ,
where � represents the atoms in the goal state.

For the purposes of this paper, it is important to note that
for a given state, every atom has a specific cost. Thus if one
were to change the goal definition, the atom costs do not
need to be recalculated to obtain a new heuristic estimate.

FF - Fast Forward Planner
The Fast Forward Planner by (Hoffmann & Nebel 2001)
is similar to HSP in that it uses heuristic search, and the
heuristic is based on the length of the relaxed plan. However
FF introduces several improvements.

First, a more sophisticated technique is used to estimate
the length of the relaxed plan. This technique uses the
planning graph, from Blum and Furst’s Graphplan proce-
dure (Blum & Furst 1995), to get an improved heuristic esti-
mate. This approximation is more precise because the plan-
ning graph is able to take into account positive interactions
between goal atoms, which HSP’s technique ignores.

In addition, FF features several pruning devices to fur-
ther refine the search. The two main ones are called help-
ful actions and added goal deletion. Helpful actions are
those which are applicable in the first action level of the re-
laxed planning graph. The intuition is that these actions pro-
vide the most direct means of achieving the goal atoms, and
therefore other (i.e. non-helpful) actions can be pruned from
the search tree. Added goal deletion instructs the algorithm
not to expand nodes in which goal atoms have apparently
been achieved too early, as indicated by the fact that they are
later deleted in the relaxed plan solution.

Finally, FF uses two stages of search. The first is called
Enforced Hill Climbing. During this stage FF employs the
above-mentioned aggressive search-pruning techniques, and
moves monotonically in the direction of improving heuristic
evaluation. The second phase is a Greedy Best First Search,
similar to HSP, which is slower but complete. As a result,
FF is guaranteed to find a solution if one exists. In pracice,
Hoffmann has shown that a significant number of planning
domains exhibit topologies that allow FF to run in polyno-
mial time (Hoffmann 2002).

The net effectiveness of the several innovations discussed
above make FF one of the most successful STRIPS planners.
However, there are a number of simple domains in which the+�, heuristic or FF’s pruning techniques break down.

We illustrate some such situations later in this paper, and
demonstrate that by injecting randomization in the search
procedure, these problems can be easily overcome.

Rapidly-exploring Random Trees
Rapidly-exploring Random Trees (RRTs) were first intro-
duced by (LaValle 1998; Kuffner & LaValle 2000) to solve
multidimensional path planning problems. The key concept
of RRTs is to use a randomized search process to grow a
tree of paths through the state space, until one of the nodes
in the tree is sufficiently close to the goal that the goal can
be found using a short deterministic search procedure. A
good example of the kinds of problems that can be solved
easily by RRTs is that of a humanoid robot picking up an
object (Kuffner et al. 2003). The robot has many degrees
of freedom, and thus the planning problem has high dimen-
sionality. The size of the search space is prohibitive for most
traditional deterministic planners, but RRTs are able to find
a solution in reasonable time.

RRTs were designed for continuous metric (but not nec-
essarily Euclidean) state spaces and are constructed by in-

Figure 1: RRT Expansion process. M�NPO�N6Q is the initial state,M is a randomly chosen point, M OSRUTAV is its nearest neighbor
in the tree. A local planner is invoked to connect M�OSRWT(V to M ,
but is only allowed to progress a distance X . From (Kuffner
& LaValle 2000).

crementally growing a search tree. Initially the tree has only
one node located at the starting state. Then we choose a
point MCVYTAOSZ at random in the state space. We find M�V[T(OSZ ’s
nearest neighbor in the tree, that state is denoted M�OSRUTAV . Next
we try to connect M V[TAO*Z and M OSRWTAV using a simple local plan-
ner, which essentially just moves in a straight line from one
point to the other until it encounters an obstacle. If the lo-
cal planner succeeds in reaching M�VYTAOSZ , it is added as a new
node in the tree. Typically the search is only allowed to pro-
ceed for some distance X , in which case the location reached
(called M%OSR]\^� is added instead. This process is illustrated in
figure 1. The distance X is a parameter that must be set; if it
is too low, the tree will require many iterations to grow.

When the RRT is grown in this way, it exhibits the follow-
ing property. If the random points are chosen uniformly over
the state space, then the tree expands to sample the configu-
ration space uniformly. If the points are chosen according to
some other distribution 	_�a`3� , then the tree will converge to
a sampling of the space by 	_�a`3� (LaValle 1998).

(Kuffner & LaValle 2000) extended the basic RRT con-
cepts to create an algorithm called RRT-Connect. This sim-
ple but powerful algorithm works by growing an RRT from
the start state, and after every expansion phase attempting to
connect to the goal. Because of the uniform sampling prop-
erty of the tree, the algorithm is probabilistically complete,
since eventually a point will be reached from which the goal
is directly achievable with the local planner. A more sophis-
ticated method grows two trees, one from the start and one
from the goal.

RRTs provide no guarantee over the quality of the final
plan (e.g. minimum length). In high-dimensional robot path
planning, it is often the case that finding some acceptable
plan is the overriding concern, while plan optimality is much
less important. RRTs are particularly useful when solutions
are not scarce, and there are many acceptable paths to the
goal. Intuitively, RRTs allow us to find one solution out of
many in high dimensional search spaces. Conversely, RRTs
are not very good at finding a solution when there is only
a small bundle of them, for example in the case where the
robot must navigate a narrow corridor.

Figure 2: One iteration of tree expansion.

In STRIPS planning domains, the goal is specified as a
subset of state atoms. Thus in many cases there are a large
number of acceptable goal states and many paths to the goal
states. RRTs exploit the existence of many possible solu-
tions, and we will attempt to do so as well in the algorithm
we propose below.

The RRT-Plan Algorithm
RRT-Plan is a randomized planning algorithm for discrete
state spaces, in particular those that can be represented us-
ing the STRIPS planning language. The algorithm extends
well-known heuristic planners such as HSP and FF, by intro-
ducing randomization in the exploration of the state space,
therefore providing the ability to escaple plateaus in the
heuristic function.

At a high-level, RRT-Plan contains much the same steps
as the RRT-Connect algorithm described above. An outline
is provided in Figure 2. The basic idea is to expand a tree
over the discrete state space, in random directions (guided
by the sampling of states), until a node is found that is suf-
ficiently close to the goal that they can be connected by a
short deterministic search.

There are several obstacles when trying to extend the con-
cepts of RRTs to the discrete planning case. First, RRTs re-
quire the ability to randomly sample from the state space.
Second, given a random state, RRTs require the ability to
find its nearest-neighbour in the tree. Finally, a determinis-
tic planner must be invoked as a sub-routine to try to connect
nodes to random states and to the goal. We now discuss each
step of our algorithm in detail.

Select random state (M%V[T(OSZ). The first step relies on the
ability to sample points randomly from the space. While it is
not difficult to sample randomly, it is practically impossible
to sample the reachable space uniformly. This is because
determining if any given state should be assigned a non-zero
probability (i.e. determining if it is reachable) is equivalent
to solving the planning problem itself.

Because of this difficulty, RRT-Plan generates target
states M VYTAOSZ by taking random subsets from the goal atoms.
This approach has several advantages. It is easy to compute.
If the problem is solvable, then every goal subset must itself
be reachable. Finally, it tends to bias the search towards the

goal. In the following we abbreviate “random goal subset”
as RGS.

Some domains have natural goal orderings, meaning that
some goal atoms must be achieved before others. The clas-
sic example of this is again Blocks World. Several meth-
ods exist to discover goal orderings (Korf 1985; Knoblock
1990); we use the heuristic technique of (Koehler & Hoff-
mann 2000). By utilizing this information, we can improve
the selection of random goal subsets by respecting the order-
ing relationships between goal atoms. Specifically, no goal
atom is included in the RGS unless all goal atoms which
must be achieved before it are also included. While the or-
dering would eventually be discovered through random trial
and error, using the computed goal agenda speeds up the
process.

Find Nearest Neighbor. The second step in the expan-
sion process requires finding the node in the tree that is clos-
est to the random target. While this distance is well-defined
in terms of the number of actions required to get from one
state to the other, finding the precise value is again equiva-
lent to the planning problem itself.

However this specific problem has been considered at
length by the heuristic planners, which try to estimate dis-
tance between a state and the goal. Therefore we turn to
them for inspiration on this issue.

FF and HSP both use the relaxed plan length heuristic,
called + , , but use different methods to estimate this func-
tion. We adopt the technique proposed by HSP (Eqn 1) be-
cause the distance is evaluated as a per atom cost, which
can be easily reused for different target states (i.e. differentMCVYTAOSZ). FF’s heuristic on the other hand requires a relaxed
plan graph to be constructed every time a new target is con-
sidered. In RRT-Plan, each tree expansion phase requires
one distance computation for each node in the tree, there-
fore this would become prohibitively expensive as the tree
grows larger.

Note that it is possible that the nearest neighbor node in
the tree actually contains the RGS target. In this case extra
goal atoms are added to the RGS until it is no longer con-
tained by the nearest neighbor.

Invoke sub-planner to connect M O*RWTAV to M V[T(OSZ . RRT-
Plan requires a sub-planner at two steps - first to connect
the nearest neighbor M�OSRWTAV to the target M%V[T(OSZ , and second to
connect the new node M%OSRW\ to the goal. In both cases, we
propose to use FF, with some modifications.

Recall that FF features two stages of search: a fast phase
of Enforced Hill Climbing, and a slow (but complete) phase
of Greedy Best First Search. When applying FF as a sub-
planner in RRT-Plan, we only use only the first of these
phases. In addition, we only expand a limited number of
nodes. The search is restricted in these ways because the
connection attempt might be impossible if M�OSRUTAV is a dead
end, though significant effort is applied to prevent dead ends
from being added to the tree (see below). If a certain point
cannot be reached easily, we move on and do another expan-
sion iteration.

When using FF to perform local search, the added goal
deletion technique is turned off. A similar method called
goal subset locking is used in RRT-Plan (see below). The

helpful actions technique is used, but the stringency of ac-
tion pruning is modulated as certain atoms begin to appear
difficult to achieve.

Add MCO*R]\ to tree. We maintain a simple tree structure in
memory. When a goal subset M VYTAOSZ is reached from M OSRWTAV ,
a new node is added to the tree as a child of M�OSRWTAV , and the
actions required to reach M�VYTAOSZ are stored. If the full goal
is reached from a node in the tree, we can construct a full
solution by following the path from the root to the node and
then to the goal. In contrast to the continuous formulation,
if the sub-planner fails to connect to the target, no new node
is added to the tree.

Calculate atom costs for M%OSRW\ . We use the HSP heuristic
defined in Eqn 1 to calculate atom costs for any new node.
These reflect the estimated cost of achieving the goal from
state MCO*R]\ .

Attempt to connect M%O*R]\ to goal. Again, we use the En-
forced Hill Climbing phase of FF, with bounded node ex-
pansion. Normally the connection attempt does not succeed.
However, the algorithm has invested time in finding a route
to this new state, and should use the knowledge that the new
state can be reached. Thus the best (smallest heuristic value)
state discovered in the search is added to the tree.

Importantly, this allows is for the node expansion limit to
be effectively bypassed. Consider the following scenario.
A new RRT node is created, and then an attempt is made to
reach the goal. This attempt fails because of the node expan-
sion limit, but would have succeeded if it had been allowed
to continue. Because the resulting state is also added as a
new node, it can be selected as nearest neighbor on the next
iteration, and the search can be continued from the point it
was halted due to the expansion limit.

One common occurrence is as follows. The algorithm will
perform a goal connection attempt, and make good progress,
achieving many goal atoms and obtaining a low heuristic
value. However due to some subtlety of the problem it will
fail to achieve the goal. The best state is added to the tree,
and on the following iteration it is selected as nearest neigh-
bor. The search moves to the random goal state, which con-
stitutes a slight detour which puts the goal in direct reach.
A good example of this is the DriverLog domain. On the
first goal attempt, all of the packages will be delivered to the
correct locations, but getting the drivers and trucks to their
destinations is more difficult. The tree continues to grow
from this near goal state, and the problem is solved after a
bit of trial and error.

Goal Subset Locking Several of the problems encoun-
tered by +&D planners are caused by the fact that the relaxed
plan length heuristic does not penalize the deletion of goal
atoms. If a goal atom can be achieved in an “easy” way
through the deletion of an already asserted goal atom and in
a “hard” way (in which other goal atoms are not deleted), the
heuristic value is low, corresponding to the “easy” way. Fur-
thermore, and perhaps more problematically, states which
are closer to or further from the solution along the hard path
are not accorded correspondingly better or worse values (see
the discussion of the PUSH-BLOCK domain below).

To avoid such situtations, when a RGS is achieved in the
connection phase of RRT-Plan, the atoms of the RGS are

locked so that any future action which deletes them is not
considered. Additionally, any goal atoms which are locked
in a parent node are also locked in its children. Importantly,
this restriction is taken into account when calculating the
atom cost estimates for the node (Eqn 1). States for which
the final goal is accorded an infinite heuristic value are dis-
carded. We define + ,b(c>d ���*)W0e��� to be the length of the relaxed
plan from � to the goal where actions which delete atoms in
goal subset 0f� are disallowed. It is clear that:

+ , �.���hgi+ ,b(c>d �.�S)U0f���kj&0f�
This follows directly from the fact that the actions allowed

in the goal subset locked relaxed plan are a subset of those
allowed for the general relaxed plan. Reducing the number
of available actions can only increase the length of the re-
sulting plan.

Adapting the Search Parameters
We can extract several important bits of information from
the growth (or failure to grow) of the tree. This information
is used to adapt the parameters of the sub-planner.

Three pieces of information are collected regarding tree
growth. Each is the result of counting connection failures of
the sub-planner. First, we keep track of how many times a
given node has failed to connect to M�VYTAOSZ in the expansion
phase. This counter is added to the distance function for
a given node, so that a node with a large failure counter is
selected less frequently as a nearest neighbor (eventually it
is no longer selected at all).

The planner also keeps two similar counters for the goal
atoms. These are incremented each time the atom is in-
cluded in the RGS but cannot be reached. The sub-planner
search can fail for two reasons: the node expansion limit
is reached, or the list of states to expand is exhausted. We
track the number of occurrences of both failure modes for
each atom, and the parameters for the local search are cho-
sen based on maximum failure counts for the atoms in the
RGS.

When the algorithm has failed several times to reach an
atom because of the node expansion tolerance, that param-
eter is simply increased. When the list of states has been
exhausted, the remedy is to decrease the aggressiveness of
action pruning. There are currently three levels of action
pruning:l

TARGET HA - consider only actions which are helpful
in achieving the current RGS.l
FULL HA - consider all actions which are helpful in
achieving the full goal.l
ALL APPLICABLE - consider all actions which are ap-
plicable in a given state.

Where we mean helpful actions in the sense of (Hoffmann
& Nebel 2001).

In the domains we have tested on, there is typically only
one atom which is difficult to reach. For example in Blocks-
World, the atom representing the blocks at the base of the
tower is often very difficult to achieve, especially in a way

such that + ,b(c>dnm 5 . As the tree expansion continues, RRT-
Plan fails several times to reach that atom, until eventually
the search parameters are sufficiently relaxed. After the
atom is achieved, the goal can usually be reached rapidly.

Note here the contrast to FF. On such problems, FF will
try the fast Enforced Hill Climbing phase, which will fail.
Then the slow GBFS phase will run, and eventually suc-
ceed in achieving the critical atom in such a way that the
full goal is now easy. But the algorithm remains in the slow
phase, and the “good” state does not have a particularly low
heuristic value, so many more node expansions are required
to complete the search.

A precise and optimal strategy for relaxing the search con-
straints remains a topic for further work. In the following
results the node expansion tolerance began at 500 and in-
creased 10% per failure. The action pruning began with
TARGET HA, relaxed to FULL HA after 10 failures, and
relaxed to ALL APPLICABLE after 50 failures.

Problems Where Randomization Helps
Heuristic planners such as those described above (e.g. HSP
and FF) use an approximation of the relaxed plan length as
an estimate of the distance to the goal. FF uses a variety
of additional techniques to prune the search space. These
methods are generally quite effective, but are prone to failure
in certain cases.

We now describe some of these situations with specific
examples. Similar observations were made by (Helmert
2004). We show how randomization can deal effectively
with these issues.

Issue with the o_p heuristic
The +�, heuristic function gives length of the relaxed plan
from a state to the goal. The relaxed plan ignores the delete
effects of actions. Since the goal cannot be achieved more
rapidly by discarding delete effects, the +3, function is ad-
missible.

Unfortunately this heuristic is often somewhat uninfor-
mative. Indeed, in their original paper on HSP, (Bonet &
Geffner 1999) argue that an approximation which is closer
to a correct estimate of the true distance to the goal is more
helpful than one which provides a strict lower bound. In
any event, it often occurs that a large number of states are
assigned an identical heuristic value. In the terminology of
(Hoffmann 2002), this is called a plateau. When the search
procedure reaches a plateau, it cannot make progress except
by exhaustively examining states.

We can see an example of this in a modified logistics do-
main. Assume there is a long chain of locations, with one
truck in the middle. The truck must deliver a different pack-
age to each end of the chain. In this case, the relaxed plan
length heuristic assigns the same value to each state where
one of the packages is not yet delivered. As a result, the
heuristic is completely uninformative in terms of making
progress towards either goal (in this case, the problem can
still be solved because there are only as many states as links
in the chain, but larger instances can be constructed with an
exponential number of states).

Figure 3: The PUSH-BLOCK domain. The black squares
are blocks. A and B denote locations to which the blocks
must be pushed. Any state in which the lower block is closer
or farther away from A has the same evaluation, because the
relaxed plan simply moves the block from B to A.

In this domain, RRT-Plan will succeed immediately: one
goal atom or the other will be randomly selected. Achieving
either of the goal atoms (while ignoring the other) is easily
done, and once the first is achieved, the second is also easy.

A related problem can be understood by looking at a do-
main we have constructed called PUSH-BLOCK. Here we
have a set of blocks positioned on a regular grid. Blocks can
be pushed horizontally and vertically, but only one block can
occupy a location. There is only one meaningful predicate,
(OCCUPIED X Y), which indicates whether a grid position
has a block in it (there are other predicates which just encode
adjacency relationships between rows and columns). There
are two actions, one corresponding to pushing a block verti-
cally and the other to pushing a block horizontally. The goal
is a set of locations which must be OCCUPIED.

Consider the situation shown in figure 3. The goal is
to have blocks in positions A and B. Position B is already
occupied and thus we need only move the block from the
lower left corner to A. However, in the relaxed plan a short
solution appears: move the block at B to A. Thus every state
in which the lower block is nearer or closer to A has the same
heuristic value of 3, which is the length of the relaxed plan.
In other words, the +�, heuristic becomes a bad evaluator of
states for which the goal is nearby in the relaxed plan.

On the other hand, if we ignored the block at B, the prob-
lem would be trivial. The +&, heuristic would give a per-
fect evaluation of states, and the lower block would move

Figure 4: Problem encountered by FF in DriverLog domain.
Truck and driver are both at A; goal is to move only the
driver to B. Dotted lines indicate walking paths, solid line is
unwalkable highway. The only action recognized as helpful
by FF is to drive from A to B.

directly to A. This is exactly what RRT-Plan does by lock-
ing the goal atom representing the block at B. In general, the
more goals and blocks considered by the heuristic, the worse
the quality of the evaluation provided.

From the two examples above we may make an interest-
ing observation about RRT-Plan. By choosing goal subsets
at random and locking goal atoms already achieved, the al-
gorithm is effectively imposing an artificial goal ordering
on the problem. While such an imposition cannot make the
solution easier in an absolute sense, it can often make the
solution more obvious to the planner, by allowing it to prune
the search space more aggressively.

Issue with helpful action pruning
FF uses the notion of helpful actions to prune the search
space during enforced hill climbing. Helpful actions are
those which have add effects which are present in the first
fact level of the solution to the relaxed planning problem.
Intuitively, these are the actions which provide the most di-
rect means of achieving the most pertinent atoms.

(Hoffmann & Nebel 2001) give an example where helpful
actions can prune all of the solutions to the problem. Their
example is somewhat abstract; we’ll present a situation that
arises in one of the actual planning domains, DriverLog.

DriverLog is basically the same as Logistics, except there
are only trucks, and the truck drivers can walk around as
well as drive. (Hoffmann 2002) showed that FF can handle
the logistics problems in polynomial time, so we might ex-
pect this domain to be similarly easy. However, consider the
situation shown in figure 4.

Here a truck and driver are both at location A. Locations
A and B are linked by a highway which can be driven across
but not walked. A and B are also linked indirectly through
C, and these paths can be walked by the driver. The goal is
to have the truck at A, and the driver at B. The solution is
clearly (WALK D1 A C) - (WALK D1 C B).

The relaxed plan graph will have only one level, because
the first goal atom is achieved in the initial state and the sec-

1 10 100 1000
150

200

250

300

350

400

Time(s)

P
ro

bl
em

s
S

ol
ve

d

FF
RRT−Plan
LPG

Figure 5: Number of plans solved as a function of time for
FF and RRT-Plan. Time is on a logarithmic scale.

ond goal atom can be achieved with only one action. Thus
the only helpful action considered is to drive from A to B.

RRT-Plan handles this case by randomly asserting (AT
TRUCK A), and locking this atom when it is achieved. Now
the relaxed plan solution will not be allowed to consider
the DRIVE action, and so will select the correct WALK ac-
tion instead. Note that RRT-Plan has no way of knowing in
advance that (AT TRUCK A) should be selected, it simply
chooses it after several iterations of trial and error.

Experimental Results
To validate RRT-Plan, we compared its performance with
that of state-of-the-art planners FF and LPG (Gerevini & Se-
rina 2002) on problems from the planning competitions from
1998, 2000, and 2002 (McDermott 2000; Bacchus 2001;
Long & Fox 2003). We also used the STRIPS version of
the Pipesworld domain from the 2004 competition.

We also used the PUSH-BLOCK domain described
above. This is simply a 20x20 grid of positions which can
be occupied by blocks. The blocks can be pushed left, right,
up or down, but not into a location which already contains
another block. The goal is simply a set of locations to which
we must move blocks. We generated 20 domains, starting
with one block/goal atom and moving up to 20.

Figure 5 shows the number of problems solved by the
planners within a given time length, while Table 1 shows
the number of problems solved by FF and RRT-Plan on sev-
eral standard planning domains. These statistics were gen-
erated by allowing the planners to run for up to five minutes
and recording the time to completion. Experiments were
performed on a 3GHz Pentium 4 Linux machine with 2GB
of RAM. Looking at the table, we see that RRT-Plan out-
performs FF in several domains and is worse in only one,
FreeCell. These results can be broken down as follows:

Rovers, Satellite, Logistics . In these domains, FF’s fast
Enforced Hill-Climbing phase is able to rapidly solve the

problem. Because we use this same technique for the sub-
planner, RRT-Plan will also rapidly solve the problem, after
a small number of iterations. LPG also solves these prob-
lems easily.

Mystery, MPrime, FreeCell . The problems in these do-
mains have a small number of goal atoms. This essentially
cripples the randomization of RRT-Plan, because there are
so few goal subsets to choose from. However, the search
constraints will be relaxed until all the effort is expended
by the sub-planner, thus RRT-Plan again becomes equiva-
lent (modulo exact parameter settings) to FF. LPG does sig-
nificantly better on the MPrime domain than both FF and
RRT-Plan, and significantly worse on the FreeCell domain.

Blocks-World, DriverLog, Depot, Pipesworld, Push-
Block. In these domains RRT-Plan seems to achieve con-
sistently better results than FF. In the case of DriverLog and
Push-Block, the reason should be clear from the discussion
above.

For Depot and in particular Blocks-World, the cause is a
bit more difficult to discern. These domains are character-
ized by strong goal orderings. However, the goal agenda
technique used by FF (Koehler & Hoffmann 2000) is able
to discover the goal ordering and provide it to the planner.
We speculate that FF does not consider the full goal when
achieving goal subsets, which cripples the Goal Added Dele-
tion heuristic. RRT-Plan will attempt to reach the first goal
atom and reject several states as unacceptable (+ ,b(c>d �q5).
Thereafter the search constraints are relaxed, and finally the
difficult atom is achieved acceptably, after which the prob-
lem becomes easy.

The goal of RRT-Plan is to find solutions to difficult prob-
lems. To that end, we were prepared to accept suboptimal
plan lengths. We expected the plans generated to be uni-
formly worse than those created by other planners. Surpris-
ingly, this was not always the case, as shown by Table 3.
Indeed, for some problems the plan generated by RRT-Plan
is about half the length of FF’s. Figure 6 shows the number
of plans generated of a given length.

RRT-Plan is of course a randomized algorithm and there-
fore can produce different results on different runs. While
we have not performed exhaustive testing, the numbers in
Table 1 change only slightly (in one test suite we observed
only 6 failures on Pipesworld, in another 1 failure in Push-
Block). This is probably because the average completion
time for some problems is around the 5 minute cutoff and
therefore variation can mean the problem sometime regis-
ters as a failure.

We have performed systematic tests on the hard Driver-
Log (16-20) problems, and therefore the table lists means
and standard deviations for plan length and completion time.
These numbers were obtained by running RRT-Plan 100
times on each problem.

In comparing RRT-Plan to LPG, the most reasonable anal-
ysis is to look at the number of domains where one exceeds
the other, rather than number of problems. With the excep-
tion of Push-Block, the score is seems to be tied: RRT-Plan
wins in MPrime and loses in FreeCell, while in other do-
mains performance is roughly equal. A greater number of
problems and especially domains is needed to more rigor-

75 150 225 300
0

50

100

150

200

250

300

350

400

Plan Length

P
ro

bl
em

s
S

ol
ve

d

FF
RRT−Plan
LPG

Figure 6: Plan length comparison for FF, LPG, and RRT-
Plan.

ously compare performance of the planners.

Table 1: Performance of FF, RRT-Plan, and LPG on various
domains. Entries list the number of problems the planner
could not solve within five minutes of CPU time.

Domain FF RRT-Plan LPG
Blocks World (35) 3 1 0

Driverlog (20) 5 0 0
Depot (22) 3 0 0

Freecell (80) 8 10 70
Logistics (63) 0 0 0
MPrime (35) 3 3 0
Mystery (30) 14 13 12

Pipesworld (50) 15 8 9
Rovers (20) 0 0 0
Satellite (20) 0 0 0

Push-Block (20) 15 0 19

Discussion
This paper presents a randomized algorithm for STRIPs
planning. The strong emphasis on randomization is con-
ceptually novel, compared to current state-of-the-art discrete
planners. The algorithm is shown to exhibits competitive
empirical performance on a number of standard domains.
The algorithm is inspired by Rapidly exploring Random
Trees, a concept borrowed from the domain of continuous
space path planning. However, significant alteration of the
underlying RRT concept must be made for it to work in the
discrete domain.

In general, one of the most important advantages of ran-
domized over deterministic algorithms is that they avoid
systematic errors. Heuristic planners such as FF use sev-
eral techniques which are generally powerful and effective,
but can sometimes fail completely even in simple situations.

Table 2: Time to completion (seconds) on DriverLog prob-
lems 10-20. For problems 16-20, mean and std dev are given
for RRT-Plan.

Problem FF RRT-Plan LPG
driverlog-11 0.00 0.00 0.05
driverlog-12 0.41 0.02 0.17
driverlog-13 0.17 0.05 0.47
driverlog-14 0.21 0.05 0.13
driverlog-15 0.06 0.09 0.18
driverlog-16 - r = 15.7, s = 6.4 274.79
driverlog-17 - r = 5.0, s = 1.6 2.14
driverlog-18 - r = 2.7, s = 0.6 38.34
driverlog-19 - r = 34.4, s = 16.5 215.41
driverlog-20 - r = 12.7, s = 5.6 9.77

Table 3: Plan Length for DriverLog problems 10-20. For
problems 16-20, mean and std dev are given for RRT-Plan.

Problem FF RRT-Plan LPG
driverlog-11 24 25 16
driverlog-12 51 48 40
driverlog-13 35 35 49
driverlog-14 37 50 41
driverlog-15 47 49 39
driverlog-16 - r = 144, s = 17 181
driverlog-17 - r = 114, s = 4.6 95
driverlog-18 - r = 107, s = 5.3 83
driverlog-19 - r = 191, s = 15.2 159
driverlog-20 - r = 143, s = 2.9 94

We have described a number of such situations above, and
shown that our randomized algorithm provides better robust-
ness in such cases.

The goal of the original RRT formulation is to expand the
tree so that it reaches a uniform sampling of the configura-
tion space. Our original idea was to try to achieve a similar
thing for the discrete space search - to grow the tree until it
samples the reachable states uniformly. However, this ap-
proach met with a variety of difficulties.

The basic problem in the analogy between the continuous
and discrete cases is as follows. In the continuous case the
region from which the sub-planner can achieve the goal di-
rectly is typically of the same dimension as the entire space.
In the discrete case, the region can be exponentially smaller,
depending of course on the nature of the sub-planner. There-
fore even if we achieved uniform coverage of the space -
which is itself quite difficult to do - the algorithm would still
require exponential time and memory.

Instead of attempting to choose states randomly from the
space, RRT-Plan instead randomly samples from goal sub-
sets. As the number of achieved goal subsets in the tree
grows, it moves closer and closer to the complete goal.
In this sense, it is best to think of RRT-Plan as searching
through the space of artificial goal orderings. With this re-
formulation in mind, we can make an interesting analogy.
Continuous RRTs are highly effective in problems with high
dimensionality but where solutions are not scarce, but en-
counter difficulty in problems where there is only a thin bun-
dle of solutions (such as navigation in a narrow corridor).
Similarly, RRT-Plan is effective at choosing an artificial goal
ordering, in problems where there is no natural goal order-
ing. This artificial ordering can speed up the search signif-
icantly. RRT-Plan can also deal with problems with natural
goal orderings, when those orderings are discovered using
the method of (Koehler & Hoffmann 2000). We imagine
that the algorithm will fare poorly in situations with natural
goal orderings which are not discovered. However, it would
seem that such situations are relatively scarce.

While the selection of random goal orderings is at the
heart of our approach, several additional techniques are re-
quired. Most prominently is the idea of goal subset lock-
ing. By pointing the +�, heuristic at a goal subset and pre-
venting it from deleting already achieved goals, the topol-
ogy of the search landscape is simplified. Local minima
and plateaus which would otherwise hamper the planner’s
progress are removed. Also, as the tree grows certain goal
atoms are identified as problematic, and more effort is de-
voted to achieving them.

Striking the correct balance between exploration of the
search space and exploitation is a standard question in AI
planning. Previous heuristic search planners have focussed
almost entirely on exploitation - moving in the direction
of decreased heuristic value. Because there are situations
where the heuristic function is systematically incorrect, it
is often useful to include an element of exploration in the
search. On the other hand, due to the size of the space, it
would be inefficient to explore haphazardly. The random
goal subset selection technique of RRT-Plan is a compro-
mise between the two objectives.

Our results show RRT-Plan to be competitive with lead-
ing STRIPS planners. In particular, RRT-Plan can handle
several types of problems which FF stumbles on, while per-
forming only slightly worse than FF in other cases, such as
when there are very few goal atoms. A main question for
future work is how to extend RRT-Plan to deal with such
cases. The answer to this question will likely involve finding
actions that assert the goal atom(s) and using the precondi-
tions of those actions as a new set of goals, from which to
randomly sample. This could even involve growing another
RRT from the goal which expands in the regression space
(Bonet & Geffner 1999) of the problem.

A large body of other open questions involve how to ap-
ply RRT style randomization to the more sophisticated plan-
ning problems (such as those which involve temporal con-
straints, resource allocation, and fluents), and to what extent
such techniques are effective. It is reasonable to hope that
this line of research will be quite successful, inasmuch as
the additional aspects of the planning problem make it more
similar to continuous path planning in which RRTs are quite
effective.

Acknowledgment
We would like to thank Joerg Hoffmann, Bernhard Nebel,
Blai Bonet and Hector Geffner for making the source code
to their planners available online.

References
Bacchus, F. 2001. The AIPS ’00 planning competition. AI
Magazine 22(3):47–56.
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
95), 1636–1642.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Biundo, S., and Fox, M., eds.,
Proc. 5th European Conf. on Planning, 359–371. Durham,
UK: Springer: Lecture Notes on Computer Science.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69(1-2):165–204.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. In IJCAI, 608–620.
Gerevini, A., and Serina, I. 2002. LPG: A planner based
on local search for planning graphs with action costs. In
Ghallab, M.; Hertzberg, J.; and Traverso, P., eds., AIPS,
13–22. AAAI.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Fourteenth International Conference on
Automated Planning and Scheduling (ICAPS 2004), 161–
170.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. J. Artif.
Intell. Res. (JAIR) 14:253–302.
Hoffmann, J. 2002. Local search topology in planning
benchmarks: A theoretical analysis. In Proceedings of

the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS-02). 379-387.
Knoblock, C. A. 1990. Learning abstraction hierarchies for
problem solving. In Dietterich, T., and Swartout, W., eds.,
Proceedings of the Eighth National Conference on Artifi-
cial Intelligence. Menlo Park, California: AAAI Press.
Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven
planning algorithm. Journal of Artificial Intelligence Re-
search 12:338–386.
Korf, R. E. 1985. Macro-operators: a weak method for
learning. Artif. Intell. 26(1):35–77.
Kuffner, J. J., and LaValle, S. M. 2000. RRT-connect: An
efficient approach to single-query path planning. In Proc.
IEEE Int’l Conf. on Robotics and Automation, 995–1001.
Kuffner, J.; Nishiwaki, K.; Kagami, S.; Inaba, M.; and In-
oue, H. 2003. Motion planning for humanoid robots. In
Proc. 11th Intl Symp. of Robotics Research (ISRR 2003).
LaValle, S. M., and Kuffner, J. J. 2000. Rapidly-exploring
random trees: Progress and prospects. In Workshop on the
Algorithmic Foundations of Robotics.
LaValle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planning. TR 98-11, Computer Science
Dept., Iowa State University.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. J. Artif. Intell. Res.
(JAIR) 20:1–59.
McAllester, D., and Rosenblitt, D. 1991. Systematic
nonlinear planning. In Proceedings of the Ninth National
Conference on Artificial Intelligence (AAAI-91), volume 2,
634–639. Anaheim, California, USA: AAAI Press/MIT
Press.
McDermott, D. V. 2000. The 1998 AI planning systems
competition. AI Magazine 21(2):35–55.
Morgan, S., and Branicky, M. S. 2004. Sampling-based
planning for discrete spaces. In Proc. IEEE/RSJ Intl. Conf.
Intelligent Robots and Systems.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Zilberstein, S.; Koehler, J.; and Koenig, S.,
eds., ICAPS, 150–160. AAAI.

