Theano

A short practical guide

Emmanuel Bengio
folinoid.com
What is Theano?

- A language
- A compiler
- A Python library

```python
import theano
import theano.tensor as T
```
What is Theano?

What you really do:

- Build **symbolic** graphs of computation (w/ input nodes)
- Automatically compute gradients through it

\[
\text{gradient} = \text{T}.\text{grad} (\text{cost}, \text{parameter})
\]

- Feed some data
- Get results!
First Example

\[x = T.\text{scalar}(\ 'x'\) \]
First Example

\[x = T.\text{scalar}('x') \]
\[y = T.\text{scalar}('y') \]
First Example

\[
x = T.\text{scalar('x')} \\
y = T.\text{scalar('y')} \\
z = x + y
\]
First Example

\[
\begin{align*}
x &= T.\text{scalar('}x'\text{')} \\
y &= T.\text{scalar('}y'\text{')} \\
z &= x + y
\end{align*}
\]

'add' is an Op.
Ops in 1 slide

Ops are the building blocks of the computation graph

They (usually) define:

- A computation (given inputs)
- A partial gradient (given inputs and output gradients)
- C/CUDA code that does the computation
First Example

\[x = T.\text{scalar}() \]
\[y = T.\text{scalar}() \]
\[z = x + y \]
\[f = \text{theano}\text{.function}([x,y],z) \]
\[f(2,8) \ # \ 10 \]
A 5 line Neural Network (evaluator)

\[
\begin{align*}
 x &= T.\text{vector('x')} \\
 W &= T.\text{matrix('weights')} \\
 b &= T.\text{vector('bias')} \\
 z &= T.\text{nnet.softmax(T.dot(x,W) + b)} \\
 f &= \text{theano.function([x,W,b],z)}
\end{align*}
\]
A parenthesis about The Graph

```
a = T.vector()
b = f(a)
c = g(b)
d = h(c)
full_fun = theano.function([a],d) # h(g(f(a)))
part_fun = theano.function([c],d) # h(c)
```
Remember the chain rule?

\[
\frac{\partial f}{\partial z} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial z}
\]

\[
\frac{\partial f}{\partial z} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial b} \frac{\partial b}{\partial c} \cdots \frac{\partial x}{\partial y} \frac{\partial y}{\partial z}
\]
x = T.scalar()
y = x ** 2
\texttt{T.grad}

\begin{verbatim}
x = T.scalar()
y = x ** 2
g = T.grad(y, x) \# 2*x
\end{verbatim}
\[
\frac{\partial f}{\partial z} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial b} \frac{\partial b}{\partial c} \cdots \frac{\partial x}{\partial y} \frac{\partial y}{\partial z}
\]
T.grad take home

You don't really need to think about the gradient anymore.

- all you need is a **scalar** cost
- some parameters
- and a call to **T.grad**
Shared variables
(or, wow, sending things to the GPU is long)

Data reuse is made through 'shared' variables.

\[
\text{initial}_W = \text{uniform}(-k,k,(n_in, n_out))
\]
\[
W = \text{theano.shared(value=initial}_W, \text{name=}"W"")
\]

That way it sits in the 'right' memory spots
(e.g. on the GPU if that's where your computation happens)
Shared variables

Shared variables act like any other node:

```python
prediction = T.dot(x, W) + b
cost = T.sum((prediction - target)**2)
gradient = T.grad(cost, W)
```

You can compute stuff, take gradients.
Shared variables: updating

Most importantly, you can:

update their value, during a function call:

```python
gradient = T.grad(cost, W)
update_list = [(W, W - lr * gradient)]
f = theano.function(
    [x,y,lr],[cost],
    updates=update_list)
```

Remember, `theano.function` only builds a function.

```python
# this updates W
f(minibatch_x, minibatch_y, learning_rate)
```
Shared variables : dataset

If dataset is small enough, use a shared variable

```python
index = T.iscalar()
X = theano.shared(data['X'])
Y = theano.shared(data['Y'])
f = theano.function(
    [index,lr],[cost],
    updates=update_list,
    givens={x:X[index], y:Y[index]})
```

You can also take slices: \(X[\text{idx}:\text{idx+n}] \)
Printing things

There are 3 major ways of printing values:

1. When building the graph
2. During execution
3. After execution

And you should do a lot of 1 and 3
Printing things when building the graph

Use a test value

```python
# activate the testing
theano.config.compute_test_value = 'raise'
x = T.matrix()
x.tag.test_value = numpy.ones((mbs, n_in))
y = T.vector()
y.tag.test_value = numpy.ones((mbs,))
```

You should do this when designing your model to:

- test shapes
- test types
- ...

Now every node has a `.tag.test_value`
Printing things when executing a function

Use the **Print** Op.

```python
from theano.printing import Print
a = T.nnet.sigmoid(h)
# this prints "a:", a.__str__ and a.shape
a = Print("a",["__str__","shape"])(a)
b = something(a)
```

- **Print** acts like the identity
- gets activated whenever b "requests" a
- anything in `dir(numpy.ndarray)` goes
Printing things after execution

Add the node to the outputs

theano.function([...],
 [..., some_node])

Any node can be an output (even inputs!)
You should do this:

- To acquire statistics
- To monitor gradients, activations...
- With moderation*

*especially on GPU, as this sends all the data back to the CPU at each call
Shapes, dimensions, and shuffling

You can reshape arrays:

\[b = a.\text{reshape}((n,m,p)) \]

As long as their flat dimension is \(n \times m \times p \)
Shapes, dimensions, and shuffling

You can change the dimension order:

```python
# b[i,k,j] == a[i,j,k]
b = a.dimshuffle(0,2,1)
```
Shapes, dimensions, and shuffling

You can also add **broadcast dimensions**:

```python
# a.shape == (n,m)
b = a.dimshuffle(0,'x',1)
# or
b = a.reshape([n,1,m])
```

This allows you to do elemwise* operations with `b` as if it was `n × p × m`, where `p` can be arbitrary.

* e.g. addition, multiplication
Broadcasting

\[
\begin{array}{c c c}
1 & 2 & 1 & 2 \\
3 & 4 & + & \\
5 & 6 & \\
\end{array}
\]

\[
\begin{array}{c c c}
shape: (3, 2) & shape: (1, 2) \\
bcast: (F, F) & bcast: (T, F) \\
\end{array}
\]

\[
\begin{array}{c c c}
1 & 2 & 1 & 2 \\
3 & 4 & + & 1 & 2 \\
5 & 6 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{c c c}
shape: (3, 2) & shape: (3, 2) \\
bcast: (F, F) & bcast: (T, F) \\
\end{array}
\]

\[
\begin{array}{c c c}
2 & 4 & \\
4 & 6 & \\
6 & 8 & \\
\end{array}
\]

If an array lacks dimensions to match the other operand, the broadcast pattern is automatically expended to the **left** (\((F, F) \rightarrow (T, F), \rightarrow (T, T, F), ...\)),

to match the number of dimensions

(But you should always do it yourself)
Profiling

When compiling a function, ask theano to profile it:

\[
f = \text{theano.function}(\ldots, \text{profile=True})
\]

when exiting python, it will print the profile.
Profiling

Class

<table>
<thead>
<tr>
<th>% time</th>
<th>% sum</th>
<th>apply time</th>
<th>time per call</th>
<th>type</th>
<th>#call</th>
<th>#apply</th>
<th>Class name</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.4%</td>
<td>30.4%</td>
<td>10.202s</td>
<td>5.03e-05s</td>
<td>C</td>
<td>202712</td>
<td>4</td>
<td>theano.sandbox.cuda.basic_ops.GpuFromHost</td>
</tr>
<tr>
<td>23.8%</td>
<td>54.2%</td>
<td>7.975s</td>
<td>1.31e-05s</td>
<td>C</td>
<td>608136</td>
<td>12</td>
<td>theano.sandbox.cuda.basic_ops.GpuElemwise</td>
</tr>
<tr>
<td>18.3%</td>
<td>72.5%</td>
<td>6.121s</td>
<td>3.02e-05s</td>
<td>C</td>
<td>202712</td>
<td>4</td>
<td>theano.sandbox.cuda.blas.GpuGemm</td>
</tr>
<tr>
<td>6.0%</td>
<td>78.5%</td>
<td>2.021s</td>
<td>1.99e-05s</td>
<td>C</td>
<td>101356</td>
<td>2</td>
<td>theano.sandbox.cuda.blas.GpuGer</td>
</tr>
<tr>
<td>4.1%</td>
<td>82.6%</td>
<td>1.368s</td>
<td>2.70e-05s</td>
<td>Py</td>
<td>50678</td>
<td>1</td>
<td>theano.tensor.raw.random.RandomFunction</td>
</tr>
<tr>
<td>3.5%</td>
<td>86.1%</td>
<td>1.172s</td>
<td>1.16e-05s</td>
<td>C</td>
<td>101356</td>
<td>2</td>
<td>theano.sandbox.cuda.basic_ops.HostFromGpu</td>
</tr>
<tr>
<td>3.1%</td>
<td>89.1%</td>
<td>1.027s</td>
<td>2.03e-05s</td>
<td>C</td>
<td>50678</td>
<td>1</td>
<td>theano.sandbox.cuda.dnn.GpuDnnSoftmaxGrad</td>
</tr>
<tr>
<td>3.0%</td>
<td>92.2%</td>
<td>1.019s</td>
<td>2.01e-05s</td>
<td>C</td>
<td>50678</td>
<td>1</td>
<td>theano.sandbox.cuda.dnn.GpuSoftmaxWithBias</td>
</tr>
<tr>
<td>2.8%</td>
<td>94.9%</td>
<td>0.938s</td>
<td>1.85e-05s</td>
<td>C</td>
<td>50678</td>
<td>1</td>
<td>theano.sandbox.cuda.basic_ops.GpuCAReduce</td>
</tr>
<tr>
<td>2.4%</td>
<td>97.4%</td>
<td>0.810s</td>
<td>7.99e-06s</td>
<td>C</td>
<td>101356</td>
<td>2</td>
<td>theano.sandbox.cuda.basic_ops.GpuAllocEmpty</td>
</tr>
<tr>
<td>0.8%</td>
<td>98.1%</td>
<td>0.256s</td>
<td>4.21e-07s</td>
<td>C</td>
<td>608136</td>
<td>12</td>
<td>theano.sandbox.cuda.basic_ops.GpuDimShuffle</td>
</tr>
<tr>
<td>0.5%</td>
<td>98.6%</td>
<td>0.161s</td>
<td>3.18e-06s</td>
<td>Py</td>
<td>50678</td>
<td>1</td>
<td>theano.sandbox.cuda.basic_ops.GpuFlatten</td>
</tr>
<tr>
<td>0.5%</td>
<td>99.1%</td>
<td>0.156s</td>
<td>1.03e-06s</td>
<td>C</td>
<td>152034</td>
<td>3</td>
<td>theano.sandbox.cuda.basic_ops.GpuReshape</td>
</tr>
<tr>
<td>0.2%</td>
<td>99.3%</td>
<td>0.075s</td>
<td>4.94e-07s</td>
<td>C</td>
<td>152034</td>
<td>3</td>
<td>theano.tensor.elemwise.Elemwise</td>
</tr>
<tr>
<td>0.2%</td>
<td>99.5%</td>
<td>0.073s</td>
<td>4.83e-07s</td>
<td>C</td>
<td>152034</td>
<td>3</td>
<td>theano.compile.ops.Shape_i</td>
</tr>
<tr>
<td>0.2%</td>
<td>99.7%</td>
<td>0.070s</td>
<td>6.87e-07s</td>
<td>C</td>
<td>101356</td>
<td>2</td>
<td>theano.tensor.opt.MakeVector</td>
</tr>
<tr>
<td>0.1%</td>
<td>99.9%</td>
<td>0.048s</td>
<td>4.72e-07s</td>
<td>C</td>
<td>101356</td>
<td>2</td>
<td>theano.sandbox.cuda.basic_ops.GpuSubtensor</td>
</tr>
<tr>
<td>0.1%</td>
<td>100.0%</td>
<td>0.029s</td>
<td>5.80e-07s</td>
<td>C</td>
<td>50678</td>
<td>1</td>
<td>theano.tensor.basic.Reshape</td>
</tr>
<tr>
<td>0.0%</td>
<td>100.0%</td>
<td>0.015s</td>
<td>1.47e-07s</td>
<td>C</td>
<td>101356</td>
<td>2</td>
<td>theano.sandbox.cuda.basic_ops.GpuContiguous</td>
</tr>
</tbody>
</table>

... (remaining 0 Classes account for 0.00%(0.00s) of the runtime)

Finding the culprits:

24.1% 24.1% 4.537s 1.59e-04s 28611 2 GpuFromHost(x)
Profiling

A few common names:

- **Gemm/Gemv**, matrix \times matrix / matrix \times vector
- **Ger**, matrix update
- **GpuFromHost**, data CPU \rightarrow GPU
- **HostFromGPU**, the opposite
- **[Advanced]Subtensor**, indexing
- **Elemwise**, element-per-element Ops (+, -, exp, log, ...)
- **Composite**, many elemwise Ops merged together.
Loops and recurrent models

Theano has loops, but can be quite complicated.

So here's a simple example

```python
x = T.vector('x')
n = T.scalar('n')
def inside_loop(x_t, acc, n):
    return acc + x_t * n

values, _ = theano.scan(
    fn = inside_loop,
    sequences=[x],
    outputs_info=[T.zeros(1)],
    non_sequences=[n],
    n_steps=x.shape[0])

sum_of_n_times_x = values[-1]
```
Loops and recurrent models

Line by line:

```python
def inside_loop(x_t, acc, n):
    return acc + x_t * n
```

- This function is called at each iteration
- It takes the arguments in this order:
 1. Sequences (default: `seq[t]`)
 2. Outputs (default: `out[t-1]`)
 3. Others (no indexing)
- It returns `out[t]` for each output
- There can be many sequences, many outputs and many others:

```python
f(seq_0[t], seq_1[t], .., out_0[t-1], out_1[t-1], .., other_0, other_1, ..):
```
Loops and recurrent models

values, _ = theano.scan(
 # ...
 sum_of_n_times_x = values[-1]

values is the list/tensor of all outputs through time.

values = [
 [out_0[1], out_0[2], ...],
 [out_1[1], out_1[2], ...],
 ...
]

If there's only one output then values = [out[1], out[2], ...]
Loops and recurrent models

\[fn = \text{inside_loop}, \]

The loop function we saw earlier

\[\text{sequences}=[x], \]

Sequences are indexed over their **first** dimension.
Loops and recurrent models

If you want \texttt{out[t-1]} to be an input to the loop function then you need to give \texttt{out[0]}.

\begin{verbatim}
outputs_info=[T.zeros(1)],
\end{verbatim}

If you don't want \texttt{out[t-1]} as an input to the loop, pass \texttt{None} in \texttt{outputs_info}:

\begin{verbatim}
outputs_info=[None, out_1[0], out_2[0], ...],
\end{verbatim}

You can also do more advanced "tapping", i.e. get \texttt{out[t-k]}
Loops and recurrent models

```
non_sequences=[n],

Variables that are used inside the loop (but not indexed).

n_steps=x.shape[0])

The number of steps that the loop should do.

Note that it is possible to do a "while" loop
```
Loops and recurrent models

The whole thing again

```python
x = T.vector('x')
n = T.scalar('n')
def inside_loop(x_t, acc, n):
    return acc + x_t * n

values, _ = theano.scan(
    fn = inside_loop,
    sequences=[x],
    outputs_info=[T.zeros(1)],
    non_sequences=[n],
    n_steps=x.shape[0])

sum_of_n_times_x = values[-1]
```
A simple RNN

\[h_t = \tanh(x_t W_x + h_{t-1} W_h + b_h) \]
\[\hat{y} = \text{softmax}(h_T W_y + b_y) \]

```python
def loop(x_t, h_tm1, W_x, W_h, b_h):
    return T.tanh(T.dot(x_t, W_x) +
                  T.dot(h_tm1, W_h) +
                  b_h)

values, _ = theano.scan(loop,
                        [x], [T.zeros(n_hidden)], parameters)

y_hat = T.nnet.softmax(values[-1])
```
Dimshuffle and minibatches

Usually you want to use minibatches ($x_{it} \in \mathbb{R}^k$):

```python
# shape: (batch size, sequence length, k)
x = T.tensor3('x')
# define loop ...
v,u = theano.scan(loop,
    [x.dimshuffle(1,0,2)],
    ...)
```

This way scan iterates over the "sequence" axis.
Otherwise it would iterate over the minibatch examples.
2D convolutions

\[x : (\cdot, 1, 100, 100) \quad W : (3, 1, 9, 9) \]
2D convolutions

input $x: (m_b, n_c^{(i)}, h, w)$

filters $W: (n_c^{(i+1)}, n_c^{(i)}, f_s, f_s)$

x.shape: (batch size, n channels, height, width)
W.shape: (n output channels, n input channels,
filter height, filter width)
output = T.nnet.conv.conv2d(x, W)

This convolves W with x, the output is

$o: (m_b, n_c^{(i+1)}, h - f_s + 1, w - f_s + 1)$
2D convolutions

Example input, 32×32 RGB images:

```python
# x.shape: (batch size, n channels, height, width)
x = x.reshape((mbsize, 32, 32, 3))
x = x.dimshuffle(0,3,1,2)
# W.shape: (n output channels, n input channels, filter height, filter width)
W = theano.shared(randoms((16,3,5,5)), name='W-conv')
output_1 = T.nnet.conv.conv2d(x, W)
```

The flat array for an image is typically stored as a sequence of RGBRGBRGBRGBRGBRGBRGBRGBRGBGB...

So you want to flip (dimshuffle) the dimensions so that the channels are separated.
2D convolutions

Another layer:

```python
W = theano.shared(randoms((32, 16, 5, 5)),
                  name='W-conv-2')
output_2 = T.nnet.conv.conv2d(output_1, W)
# output_2.shape: (batch size, 32, 24, 24)
```
2D convolutions

You can also do pooling:

```python
from theano.tensor.downsample import max_pool_2d
# output_2.shape: (batch size, 32, 24, 24)
pooled = max_pool_2d(output_2, (2,2))
# pooled.shape: (batch size, 32, 12, 12)
```
2D convolutions

Finally, after (many) convolutions and poolings:

```
flattened = conv_output_n.flatten(ndim=2)
# then feed `flattened` to a normal hidden layer
```

we want to keep the minibatch dimension, but flatten all the other ones for our hidden layer, thus the
```
ndim=2
```
A few tips: make classes

Make reusable classes for layers, or parts of your model:

```python
class HiddenLayer:
    def __init__(self, x, n_in, n_hidden):
        self.W = shared(...)
        self.b = shared(...)
        self.output = activation(T.dot(x,W)+b)
```
A few tips: save often

It's really easy with theano/python to save and reload data:

class HiddenLayer:
 def __init__(self, x, n_in, n_hidden):
 # ...
 self.params = [self.W, self.b]
 def save_params(self):
 return [i.get_value() for i in self.params]
 def load_params(self, values):
 for p, value in zip(self.params, values):
 p.set_value(value)
A few tips: save often

It's really easy with theano/python to save and reload data:

```python
import cPickle as pickle
# save
pickle.dump(model.save_params(),
    file('model_params.pkl', 'w'))
# load
model.load_params(
    pickle.load(
        file('model_params.pkl','r')))
```

You can even save whole models and functions with `pickle` but that requires a few additional tricks.
A few tips: error messages

ValueError: GpuElemwise. Input dimension mis-match. Input 1 (indices start at 0) has shape[1] == 256, but the output's size on that axis is 128.
Apply node that caused the error: GpuElemwise{add,no_inplace}
 (<CudaNdarrayType(float32, matrix)>,
 <CudaNdarrayType(float32, matrix)>)
Inputs types: [CudaNdarrayType(float32, matrix),
 CudaNdarrayType(float32, matrix)]

It tells us we're trying to add $A + B$ but $A : (n, 128)$, $B : (n, 256)$
A few tips: floatX

Theano has a default float precision:

theano.config.floatX

For now GPUs can only use float32:

TensorType(float32, matrix) cannot store a value of dtype float64 without risking loss of precision. If you do not mind this loss, you can: 1) explicitly cast your data to float32, or 2) set "allow_input_downcast=True" when calling "function".
A few tips: read the doc

http://deeplearning.net/software/theano/library/tensor/basic.html
MNIST

http://deeplearning.net/data/mnist/mnist.pkl.gz

Opens console
A list of things I haven't talked about
(but which you can totally search for)

- Random numbers (`T.shared_randomstreams`)
- Printing/Drawing graphs (`theano.printing`)
- Jacobians, Rop, Lop and Hessian-free
- Dealing with NaN/inf
- Extending theano (implementing Ops and types)
- Saving whole models to files (`pickle`)