Basic problem

- Given only input data: \(D = \{x_i\}, i=1:n \), find some patterns or regularity in the data.

- Typically use generative approaches: model the available data.

- Different classes of problems:
 1. Clustering
 2. Anomaly detection
 3. Dimensionality reduction
 4. Autoregression
A simple clustering example

- A fruit merchant approaches you, with a set of apples to classify according to their variety.
 - Tells you there are five varieties of apples in the dataset.
 - Tells you the weight and colour of each apple in the dataset.

- Can you label each apple with the correct variety?
 - What would you need to know / assume?

\[
\text{Data} = \langle x_1, \text{?}, x_2, \text{?}, ..., x_n, \text{?} \rangle
\]

A simple clustering example

- You know there are 5 varieties.

- Assume each variety generates apples according to a (variety-specific) 2-D Gaussian distribution.

- If you know \(\mu_i, \sigma_i^2 \) for each class, it’s easy to classify the apples.

- If you know the class of each apple, it’s easy to estimate \(\mu_i, \sigma_i^2 \).

What if we know neither?
A simple algorithm: K-means clustering

- **Objective**: Cluster \(n \) instances into \(K \) distinct classes.

- **Preliminaries**:
 - **Step 1**: Pick the desired number of clusters, \(K \).
 - **Step 2**: Assume a parametric distribution for each class (e.g. Normal).
 - **Step 3**: Randomly estimate the parameters of the \(K \) distributions.

- **Iterate, until convergence**:
 - **Step 4**: Assign instances to the most likely classes based on the current parametric distributions.
 - **Step 5**: Estimate the parametric distribution of each class based on the latest assignment.

K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.

2. Randomly guess \(k \) centers:
 \[\{ \mu_1, \ldots, \mu_k \} \] (assume \(\sigma^2 \) is known).
K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.
2. Randomly guess k centers:
 \(\{ \mu_1, \ldots, \mu_k \} \) (assume \(\sigma^2 \) is known).
3. Assign each data point to the center.
4. Each center finds the centroid of the points it owns...
 and jumps there.

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm starts

K-means algorithm continues (2)
K-means algorithm continues (3)

Image courtesy of Andrew Moore, Carnegie Mellon U.

K-means algorithm continues (4)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm continues (9)

K-means algorithm terminates
Properties of K-means

- **Optimality?**
 - Converges to a local optimum.
 - Can use random re-starts to get better local optimum.
 - Alternately, can choose your initial centers carefully:
 - Place μ_1 on top of a randomly chosen datapoint.
 - Place μ_2 on top of datapoint that is furthest from μ_1.
 - Place μ_3 on top of datapoint that is furthest from both μ_1 and μ_2.

- **Complexity?** $O(knm)$ where $k = \#\text{centers}$
 $n = \#\text{datapoints}$
 $m = \text{dimensionality of data}$

- K-means is an instance of a family of learning algorithms called “Expectation-Maximization” (aka EM).

A simple algorithm: K-means clustering

- **Objective:** Cluster n instances into K distinct classes.

- **Preliminaries:**
 - **Step 1:** Pick the desired number of clusters, K.
 - **Step 2:** Assume a parametric distribution for each class (e.g. Normal).
 - **Step 3:** Randomly estimate the parameters of the K distributions.

- **Iterate, until convergence:**
 - **Step 4:** Assign instances to the most likely classes based on the current parametric distributions. **Expectation step**
 - **Step 5:** Estimate the parametric distribution of each class based on the latest assignment. **Maximization step**
Expectation Maximization (more generally)

- Iterative method for learning the maximum likelihood estimate of a probabilistic model, when the model contains unobservable variables.

- **Main idea:**
 - If we had sufficient statistics for the data (e.g. counts of possible values), we could easily maximize the likelihood.
 - With missing data, we “fantasize” how the data should look based on the current parameter setting. I.e. Compute expected sufficient statistics.
 - Then we maximize parameter setting, based on these statistics.

Expectation Maximization (more generally)

- Start with some initial parameter setting.

- **Repeat** (as long as desired):
 - **Expectation (E) step:** Complete the data by assigning “values” to the missing items.
 - **Maximization (M) step:** Compute the maximum likelihood parameter setting based on the completed data.

Once the data is completed (E-step), computing the log-likelihood and new parameters (M-step) is easy! This is what we did for K-means.
Expectation Maximization: Properties

- Likelihood function is guaranteed to improve (or stay the same) with each iteration.
- Iterations can stop when no more improvements are achieved.
- Convergence to a local optimum of the likelihood function.
- Re-starts with different initial parameters are often necessary.
- Time complexity (per iteration) depends on model structure.

EM is very useful in practice!

Anomaly detection

http://www.anomalydetectionresearch.com
Anomaly detection

• K-means (and other discriminative approaches) tend to be ineffective, because one class is much more rare than the other.

• A simple generative approach:
 – Fit a model, \(p(x) \) using the input data.
 – Set a decision threshold \(\epsilon \) and predict \(Y = \{1 \text{ if } p(x) > \epsilon, \ 0 \text{ otherwise}\} \).
 – Use a validation set to measure performance (can use cross-validation to set \(\epsilon \)).

Anomaly detection vs Supervised learning

Anomaly detection
• Small number of positive examples (e.g. <10).
• Large number of negative examples (e.g. >100).
• Many different “types” of anomalies, so don’t want to fit a model for the positive class.

Supervised learning
• Similar number of positive and negative examples
• More homogeneity within classes, or enough data to sufficiently characterize each classes.

Gaussian Mixture Model

- Write \(p(x) \) as a linear combination of Gaussians:

\[
p(x) = \sum_{k=1:K} p(z_k) \ p(x \mid z_k)
\]

where \(p(z_k) \) is the probability of the \(k \)th mixture component

and \(p(x \mid z_k) = N(x \mid \mu_k, \sigma_k^2) \) is the prob. of \(x \) for the \(k \)th mixture component.

- Estimate parameters \(p(z_k), \mu_k, \sigma_k^2 \), using Expectation-Maximization approach.
Practical issues

- Need $p(x)$ to be low for anomalous examples.
- Apply techniques for construction/selection of features to achieve this.
- Need a validation set to select features and learning parameters.

Dimensionality reduction

- Given points in an m-dimensional space (for large m), project to a low dimensional space while preserving trends in the data.
- Principal Components Analysis
Autoregressive models for time series

• The problem:
 – Given a time series: \(X = \{x_1, x_2, \ldots, x_T\} \)
 – Predict \(x_t \) from \(x_{t-1} \).

• A simple autoregressive (AR) model:
 \[
 X_t = w_0 + \varepsilon + \sum_{i=1}^{p} w_i x_{t-i} + \varepsilon_t
 \]
 where \(w_i \) are the parameters and \(\varepsilon_t \) is white noise.

• A more general model, autoregressive-moving average (ARMA):
 \[
 X_t = w_0 + \varepsilon + \sum_{i=1}^{p} w_i x_{t-i} + \sum_{i=1}^{q} \theta_i \varepsilon_{t-i}
 \]
 where \(w_i, \theta_i \) are the parameters, and \(\varepsilon_t \sim \mathcal{N}(0, \sigma^2) \) are assumed to be iid samples from a normal distribution.

What you should know

• The general form of the unsupervised learning problem.

• Basic functioning and properties of useful algorithms:
 – K-means / Gaussian mixture models
 – Expectation-maximization

• Characteristics of common problems:
 – clustering, anomaly detection, dimensionality reduction, autoregression, autoencoding