
COMP 551 – Applied Machine Learning 
Lecture 21: Bayesian optimisation

Associate Instructor:  Herke van Hoof (herke.vanhoof@mcgill.ca) 

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the  
instructor, and cannot be reused or reposted without the instructor’s written permission. 
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Office hours & midterm prep

I’m available for questions:
today, 2:30 - 3:30, room 104N (next to Joelle’s office)
wednesday, 9:00 - 10:00, room 104 N (next to Joelle’s office)

Other resources:
Tutorial this evening: TR3120, 7-9pm
Last minute questions, Joelle Pineau, 8:30-11 am
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Kaggle #3
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Choosing between linear methods

linear 
regression

ridge  
regression

bayesian linear 
regression

(kernel  
regression)

kernel ridge 
regression

Gaussian 
process

• Do we know good features? 

• Do we care about uncertainty? 

• How much data (in relation to number of features)?
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Choosing between linear methods
Few data, or care  
about uncertainty

Plenty of data

Know good 
features

Don’t know 
good features, 
or #features >  
#datapoints

Bayesian linear  
regression

Linear regression 
or ridge regression

Gaussian process 
regression

Kernel ridge  
regression
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Hyperparameter optimisation for GPR & BLR

What is a good model? Many hyperparameters / kernels possible
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Hyperparameter optimisation for GPR & BLR

What is a good model?  
(Model = choice of features, kernel, hyperparameters)

When we make point estimates (select best parameters), we can select 
hyperparameters to maximise MSE on validation set

What is a good way to judge the ‘goodness’ of hyperparameters in 
Gaussian process regression and Bayesian linear regression?
• How to judge whether the predicted amount of ‘uncertainty’ is good?
• Should we only look at the mean function (best w) or can we use all 

predictions (posterior distribution of w)?

• We will look at one answer to these questions
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Hyperparameter optimisation for GPR & BLR

What is a good model?

In Gaussian process regression and Bayesian linear regression, the model 
specifies a prior generative process over datapoints

Bayesian linear regression:

Gaussian process regression: 

We can use this model to ‘hallucinate’ or guess what the data might look like 
(before seeing the actual data)

y ⇠ N (0,K)

t ⇠ N (y,��1I)

w ⇠ N (0,⌃)

y ⇠ N (wTx,��1I)
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Hyperparameter optimisation for GPR & BLR

We can use generative models to ‘hallucinate’ or guess what the data 
might look like (before seeing the actual data)

If we have chosen a good prior (good kernel & hyperparameters), the 
guesses will look similar to the real dataset

Copyright C.M. Bishop, PRML Copyright C.M. Bishop, PRML

k(x, x0) = exp�kx� x0k2 k(x, x0) = exp�|x� x0|
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Hyperparameter optimisation for GPR & BLR

• If chosen a good prior (good kernel & hyperparameters), the 

guesses will look similar to the real dataset 

• Can compare random guesses (random w from prior) to dataset:

y = w0 + w1x+ w2x
2

x

y
w ⇠ N (0,⌃)

y ⇠ N (wTx,��1I)

1) Sample random w from prior

2) plot mean prediction
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Hyperparameter optimisation for GPR & BLR

• If chosen a good prior (good kernel & hyperparameters), the 

guesses will look similar to the real dataset 

• Can compare random guesses (random w from prior) to dataset:

y = w0 + w1x+ w2x
2 y =

6X

i=0

wix
i

x x

yy
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Hyperparameter optimisation for GPR & BLR

• Compare random guesses to dataset 

• We want guesses to be good on average  

• What makes a guess ‘good’?  

The dataset should be likely for this guess: take likelihood 

• How do we take the average? 
Consider all possible values w according to prior

p(y|x,w) = N (wTx,��1)

p(w) = N (0,⌃)
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Hyperparameter optimisation for GPR & BLR

• Compare random guesses to dataset 

• We want guesses to be good on average 

Z
p(w)p(y|w)dw

p(y|x,w) = N (wTx,��1)

consider all w

‘weight’ or contribution 
of this value of w

‘goodness’ of 
this value of w

p(w) = N (0,⌃)
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Hyperparameter optimisation for GPR & BLR

• Compare random guesses to dataset 

• We want guesses to be good on average  

• Make dependency on model explicit. Model M is defined by: 

feature choice, kernel choice, hyperparameter.
Z

p(w|M)p(y|w,M)dw = p(y|M)
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Hyperparameter optimisation for GPR & BLR

• Compare random guesses to dataset 

• We want guesses to be good on average  

• Make dependency on model explicit. Model M is defined by: 

feature choice, kernel choice, hyperparameter. 

• Likelihood of data after marginalizing model hyperparameters:  

marginal likelihood

Z
p(w|M)p(y|w,M)dw = p(y|M)
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Hyperparameter optimisation for GPR & BLR

• Let’s consider this example one more time

y = w0 + w1x+ w2x
2

y =
6X

i=0

wix
i

Marginal likelihood 
on train set: 
relatively high

Marginal likelihood 
on train set: 
relatively low
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Hyperparameter optimisation for GPR & BLR

• Compare to MSE of best w on train set:

y = w0 + w1x+ w2x
2

y =
6X

i=0

wix
i

order 2: better marginal 
likelihood

order 6: better 
likelihood for 
best w
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Hyperparameter optimisation for GPR & BLR

• Example was for selecting the feature representation 

• More general: maximise train-set likelihood of best solution 

leads to complex solution that overfit



Herke van Hoof19

Hyperparameter optimisation for GPR & BLR
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Hyperparameter optimisation for GPR & BLR

• Example was for selecting the feature representation 

• More general: maximise train-set likelihood of best solution 

leads to complex solution that overfit 

• More features, small assumed noise, narrow lengthscale,  

• Best solution fits data well, but does not generalise 

• Typical overfitting. One solution: cross validation
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Hyperparameter optimisation for GPR & BLR

• Example was for selecting the feature representation 

• More general: maximise train-set likelihood of best solution 

leads to complex solution that overfit 

• Maximise train-set likelihood averaged over all possible 

solutions (marginal likelihood), inherently discourages 

complexity 

• Complex models have a larger variance. Thus, some 

solutions will fit the data well and others terribly. 

• Holds as long as the number of hyperparameters is 

reasonably small in relation to number of datapoints
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Hyperparameter optimisation for GPR & BLR

• How to calculate the maximum marginal likelihood? 

• Take BLR model (GPR is analogous) 

• Marginal likelihood is predictive distribution for empty dataset - 

we know how to evaluate it from lecture 20! 

• Easier to maximise the log:

Z
p(w|M)p(y|w,M)dw = p(y|M)

CN

p(y|M) = N (0,��1I+ xT⌃x) =
1p

|2⇡CN |
exp�1

2
yTC�1

N y

log p(y|M) = �1

2
log |CN |� 1

2
yTC�1

N y � N

2
log(2⇡)
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Hyperparameter optimisation for GPR & BLR

• Marginal likelihood can be used as objective to select e.g. 

between different kernels, or different numbers of features to 

include (e.g. order of polynomial) 

• In this case, can simply take the model with the best 

marginal likelihood 

• It can also be used to optimise continuous parameters: 

• the kernel hyperparameters (for GPR)  

• possibly hyperparameters for features 

• the noise term ��1
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Hyperparameter optimisation for GPR & BLR

• How to maximise the marginal likelihood? 

• Can find a maximum using gradient ascent 

• Local optima possible! 

• If we have many hyperparameters, might still overfit 

• In that case, marginal likelihood can be calculated on 

validation set or e.g. LOOCV 

• There is an efficient way to calculate LOOCV

log p(y|M) = �1

2
log |CN |� 1

2
yTC�1

N t� N

2
log(2⇡)
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Hyperparameter optimisation for GPR & BLR

• Example: automatic relevance determination (ARD) 

• Length scale tells how fast we expect the GP to change 
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Hyperparameter optimisation for GPR & BLR

• Example: automatic relevance determination (ARD) 

• Length scale tells how fast we expect the GP to change  

• High length scale: knowing this feature exactly might not be so 

important. Low relevance. 

• Can use a different length scale for  
each input dimension 

• Optimisation shows which dimensions 

have high relevance and which low 
(inverse of length scale)

input 1input 2

output

Copyright C.M. Bishop, PRML
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Hyperparameter optimisation for GPR & BLR

• E.g. for data from function shown, optimisation would yield: 

• High relevance (short lengthscale) for input 2 

• Low relevance (long lengthscale) for input 1 

• Using these relevance values 

usually leads to better  
predictions and generalisation

input 1input 2

output

Copyright C.M. Bishop, PRML
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Hyperparameter optimisation for GPR & BLR

• Any questions about hyperparameter optimisation for Gaussian 

process regression and Bayesian linear regression?

input 1input 2

output

Copyright C.M. Bishop, PRML
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Optimisation of unknown function
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Optimisation of unknown function

• Problem: find value x for which function f(x) is maximal 

• f(x) is a ‘black box’ function: we only know the value f(x) for 

small set of points x that we evaluate 

• evaluating f(x) is relatively expensive 

• Say, x describes advertising strategy and f(x) #sales 

• x NN hyperparameters, f(x) cross-validation performance 

• x describes vehicle design, f(x) result of evaluation in 

time-consuming simulation
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Optimisation of unknown function

• Problem: find value x for which function f(x) is maximal 

• Example of black box function

learning rate

Final  
neural  
network 
performance

?

?

?



Herke van Hoof32

Optimisation of unknown function

• Problem: find value x for which function f(x) is maximal 

• f(x) is a ‘black box’ function: we only know the value f(x) for 

small set of points x that we evaluate 

• evaluating f(x) is relatively expensive 

• f(x) might have local optima 

• derivatives might not be known 

• How can we approach this problem?
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Optimisation of unknown function

• So far, we have mainly done gradient ascent 

• but gradient ascent might need many function evaluations 

(costly), can get stuck in local minima, requires an estimate of 

the gradient 

• Can we do better?
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Optimisation of unknown function

• How might a problem look like? 

• Where to sample next, if we have a budget for, say, 10 samples?

input variable x

f(x)

points that were already 
evaluated
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Optimisation of unknown function

• How might a problem look like?

input variable x

f(x)

we could sample here, might be  
near local maximum

but here we know very  
little, could help find  
better solutions later
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Optimisation of unknown function

• How might a problem look like? 

• How about now?

input variable x

f(x)
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Optimisation of unknown function

• Idea: to make a good decision we should imagine what the whole 

function should look like 

• It seems important to take into account how certain we are for 

various input values x 

• A Gaussian process might do the job here! 

• This implies Bayesian point of view: Bayesian optimisation
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Bayesian optimisation
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function  
evaluations



Herke van Hoof39

Bayesian optimisation

• Where to sample next? 

• What happens if we simply sample where mean is highest?
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Bayesian optimisation

• We don’t sample on the right at all! 

• We might miss the real maximum
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Bayesian optimisation

• Where to sample next? 

• Two objectives: 

• Exploitation: sample where we think high values are 

If we know the samples will be low, it does not make sense 

to sample there 
Maybe: sample highest Gaussian process mean? 

• Exploration: If we always sample where we think the 

highest value is, we might miss other values 
Maybe: sample where uncertainty is highest?
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Bayesian optimisation

• Several strategies exist for combining these two objectives 

• Strategies for ‘rating’ new sample: acquisition function 

• Very straightforward: upper confidence bound 

• Acquisition functions gives a ‘score’ to each sample point 

• Upper confidence bound has good theoretical properties

aUCB(x
⇤;D) = µ(x⇤;D) + �(x⇤;D)

predicted mean  
given data so far

predicted standard deviation 
given data so far

trade-off 
parameter
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Bayesian optimisation

• Upper confidence bound acquisition function
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Bayesian optimisation

• Upper confidence bound acquisition function
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Bayesian optimisation

• We now explore sufficiently well go get close to the maximum
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Bayesian optimisation
• Different acquisition functions exist: 

• Probability of improvement 

• Probability sampled value > current maximum? 

• Sometimes too greedy 

• Expected improvement 

• Weights probability with amount of improvement 

• Can be overly greedy 

• Upper confidence bound 

• Strong theoretical properties 

• Need to set tuning parameter 𝜅
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Bayesian optimisation
• Pros 

• Attempt at global optimisation 

• Need relatively few samples to get close to optimum 

• Software packages available 

• Cons 

• Computational expensive 

• Need to fit a GP and hyperparameters in every iteration 

• Need to maximise non-convex acquisition function 

• Sensitive to choice of model (kernel, hyperparameters) 

• Only works well with few input (up to ~10 dimensions)
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Bayesian hyperparameter optimisation

• One application of Bayesian optimisation is hyperparameter 

optimisation 

• Example: Tune learning rate in deep neural net 

• Nonconvex function with local optima 

• Evaluating a learning rate is expensive: we must train the 

network with that rate to know how good it is
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Bayesian hyperparameter optimisation

• One application of Bayesian optimisation is hyperparameter 

optimisation 

• Practical issues [Snoek & Larochelle, 2012] 

• ‘Standard’ Gaussian kernel too smooth 

• Taking only the best hyperparameters ignores some 

plausible functions: take average over plausible parameters 

• Some hyperparameters are more costly to evaluate than 

others: e.g. small networks vs large network 

• Use ‘improvement per second’ as acquisition function
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Bayesian hyperparameter optimisation

• Results [Snoek & Larochelle, 2012] 

• Code available: https://github.com/HIPS/Spearmint

Average over  
hyperparameters

Optimisation of 
hyperparameters

Take cost  
into account
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Bayesian hyperparameter optimisation

• Results [Snoek & Larochelle, 2012] 

• Code available: https://github.com/HIPS/Spearmint

Take cost  
into account

https://github.com/HIPS/Spearmint
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Recap

• Hyperparameter optimisation for GP regression and Bayesian linear 

regression using marginal likelihood 

• Pick model & hyperparameters such that fit is good on average 

over all parameter vectors 

• Is an objective function 

• Bayesian optimisation for optimising expensive ‘black box’ functions 

• Fit unknown objective function with GPR 

• Can be used for optimising hyperparameters of learners 

• Is an optimisation method that needs an objective function
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What you should know

• Key idea of hyperparameter optimisation with marginal 

likelihood 

• Difference between marginal likelihood and likelihood of best 

model 

• Key idea of Bayesian optimisation 

• Pros and cons of Bayesian optimisation


